
1

Software Configuration Management
Practices for eXtreme Programming Teams

Ulf Asklund, Lars Bendix, Torbjörn Ekman

{ulf | bendix | torbjorn}@cs.lth.se
Department of Computer Science

Lund Institute of Technology
Sweden

Abstract

Extreme Programming (XP) is becoming popular as a software
development method and there is quite a lot of literature describing
its philosophy and practices. However, in all of this literature
Software Configuration Management (SCM) is almost never
mentioned explicitly, leaving XP practitioners with the impression
that SCM is not needed and SCM people with the impression that
XP is not sound from an SCM perspective.
We carried out a more profound analysis of XP and its practices
seen from an SCM perspective. We found that in general XP and
its practices do not go against common SCM standards, if we take
into consideration that the XP context is different from that of
more traditional projects. However, some SCM aspects need to be
made explicit and a number of SCM-specific sub-practices need to
be added to make XP a complete and sound development method
seen from an SCM perspective. We report on how we implemented
“our findings” on several dozen XP projects and our experience
from doing this through several iterations.

1. Introduction

Ever since Kent Beck published his seminal paper [Beck99] on eXtreme
Programming (XP) a lot has been written about XP and its philosophy and
practices, and the use of XP as a development method is spreading. Some years
ago our department decided to use XP on second year student projects [HBM03],
and we realised that although the XP literature, like [Beck00], [JAH01] and
[chromatic03] says a lot about XP practices and explains how they support each
other, it hardly mentions Software Configuration Management (SCM) and how

2

to do that on XP projects. It says Frequent Releases, but how can we do that
according to SCM rules and still keep up the speed in a project? It says that we
should have Collective Code Ownership, but that sounds frightening to many
seasoned SCM people – can it be done, and if so, how should it be done? Those
questions, and many others regarding SCM and XP, are left unanswered – or at
best hinted at implicitly – in the current literature.

So we set out to analyse XP and SCM and their interactions to see whether XP is
actually a sound and complete development method seen from an SCM
perspective. We suspected that it would be the case, as most reported XP projects
seem to be successful. However, we claim that no development project can be a
success without the use of SCM, and as SCM is not explicitly mentioned in XP
and its practices, this cannot be the full story. The success of XP projects must
derive from doing something more than the basic XP practices. Implicit SCM
processes must have been followed on these projects. Our aim was to bring out
these processes such that they could be stated explicitly and our students could
have this additional support for their projects. Because they are not seasoned
developers, they have no previous implicit or intuitive experience to help them.

We expect other XP projects to be able to benefit from our findings – and we
expect SCM people to do so too. SCM is a generic service and one size does not
fit all, so each specific (type of) project has to tailor the way SCM is carried out
to its specific needs – and so has also XP projects.

We start by a brief presentation of SCM and those practices of XP that we
consider relevant from an SCM perspective. Then we go on to a careful, in-depth
analysis of each of the relevant XP practices with respect to how sound and
complete they are seen from an SCM perspective. This uncovers a number of
weaknesses where SCM requirements are not met. In the second part of the
analysis, we cover all the SCM activities needed and analyse to which extent
they are covered by the XP practices. Again some weaknesses are revealed.
Subsequently we design a number of SCM-related sub-practices that will satisfy
those SCM requirements that were not met by the standard XP practices to
complete the development method from an SCM perspective. We then briefly tell
the story of how we have implemented some of these new SCM sub-practices on
a number of XP projects and our experience from several iterations of
improvement. Finally, we draw our conclusions and indicate what we think could
be done in the next iteration.

2. Background

This chapter will provide the reader with a brief overview of important SCM
activities and XP practices relevant to SCM. Subsequent chapters will use the
structure, terminology and concepts introduced here.

3

2.1 Software Configuration Management
SCM is traditionally considered as consisting of the four activities: Configuration
Identification, Configuration Control, Configuration Status Accounting and
Configuration Audit [Berlack92], [Leon00]. However, these activities reflect
mostly the part of a development project that has relations to the customer. In the
context of analysing XP practices, we have chosen to include also developer
oriented aspects of SCM such as: version control, build management, workspace
management, concurrency control, change management and release management
[Babich86], [MP97] and [AB01].

Configuration Identification:
Activities comprising determination of the product structure, selection of
configuration items, documenting the configuration item's physical and
functional characteristics including interfaces and subsequent changes, and
allocating identification characters or numbers to the configuration items and
their documents.

Configuration Control:
Activities comprising the control of changes to a configuration item after formal
establishment of its configuration documents. Control includes evaluation, co-
ordination, approval or disapproval, and implementation of changes.
Implementation of changes includes engineering changes and deviations, and
waivers with impact on the configuration.

Configuration Status Accounting:
Formalized recording and reporting of the established configuration documents,
the status of proposed changes and the status of the implementation of approved
changes.
Status accounting should provide the information on all configurations and all
deviations from the specified basic configurations. In this way the tracking of
changes compared to the basic configuration is made possible.

Configuration Audit:
Examination to determine whether a configuration item conforms to its
configuration documents. Functional configuration audit: a formal evaluation to
verify that a configuration item has achieved the performance characteristics and
functions defined in its configuration document. Physical configuration audit: a
formal evaluation to verify the conformity between the actual produced
configuration item and the configuration according to the configuration
documents.

Version Control:
The possibility to store, recreate and register the historical development of an
item (document or source code) is a fundamental characteristic of a version
control system. The tool has to minimize the storage space needed to keep all
versions of an item. It has to impose a structure on how versions can develop

4

from each other. And, finally, it has to keep track of relevant information about
the different versions.

Build Management:
Build management handles the problem of putting together and compile modules
in order to create a running system. The description of dependencies and
information about how to compile items is given in a system model, which is
used to derive object code and to link it together. The build process can be
automated and implement as well minimal builds as compilation in
heterogeneous environments and support for parallel compilation.

Workspace Management:
The different versions of the documents in a project are kept in a repository by
the version control tool. Because these versions have to be immutable,
developers cannot be allowed to work directly within this repository. They have
to take out a copy of the document, modify it, and add the modified copy to the
repository. Workspace management must provide functionality to create a
workspace from a selected set of files from the repository. When the developer
has finished carrying out modifications, he needs to add the changed documents
and modules to the repository. Working on the changes, a developer would need
to be able to update his workspace with (selected) additions from the repository.

Concurrency Control:
If we want to allow several developers to work on the system at the same time,
we must also provide mechanisms to synchronize their work. The problem that
can occur is that more than one developer in his workspace makes a change to
the same document or module. If this situation is not detected - or avoided - the
second developer will overwrite the first developer's change when he adds his
workspace to the repository.

Change Management:
There are multiple and complex reasons for changes and change management
covers all types of changes to a system. It includes tools and processes, which
support the organization and tracking of changes from the origin of the change to
the approval of the actually implemented source code. Various tools are used to
collect data during the process of handling a change request. It is important to
keep traceability between the change request and the actual implementation - in
both directions. Change management data can also be used to provide valuable
metrics about the progress of project execution.

Release Management:
Release management deals with both the formal aspects of releasing to the
customer and the more informal aspects of releasing to the project. For a
customer release we need to carry out a configuration audit before the actual
release. This includes verifying that the produced package (application,
documentation, help files, etc) is actually installable. Releasing changes to the

5

project is a matter of how to integrate changes from developers. We need to
decide on when and how that is done – and in particular on the “quality” of
changes before they can be released. In order to re-create a release we use a bill-
of-material (BOM) that records what went into a product and how it was built.

2.2 eXtreme Programming
Not all of XP’s practices are directly related to an analysis from an SCM
perspective. We have identified the following as the most directly related:
Collective Code Ownership, Continuous Integration, Frequent Releases,
Refactoring and Planning Game.

Collective Code Ownership:
This practice means that everyone owns all parts of the code and consequently is
free to change it at will. There is no notion of assigning ownership of code to
individual developers or pairs and having them be responsible for that code. If a
pair working on a particular story feels the need to change some other code to
make their own story work, they are free to do so at any time without having to
ask and wait for someone else to do it for them. In fact they are encouraged to
add, change or refactor code whenever they see that it can be improved. If they
need additional information to carry out a change, they can look up the pair that
made the code in the first place and discuss the change with them. As a
consequence of practising Collective Code Ownership there will inevitably be
parallel work, that is, two or more pairs changing the same code at the same time.

Continuous Integration:
This means that changes have to be integrated into the common production code
immediately when a task or story is done. As a part of the integration process you
first integrate the latest production code into your own changes, then you must
run all the unit tests once again to verify that they still work and that your new
code (or changes done by others) does not break the system. Only then you can
“release” your code and integrate it into the pool of common production code.
Continuous Integration also means that a pair should continuously integrate the
latest version of the common production code into their workspace.

Frequent Releases:
This practice means that an XP project should try to put the system into
production use as early as possible and even before it has solved the whole
problem. It should also subsequently do new releases very frequently, which can
be anywhere from a daily to a monthly basis. What has to be released is not a
demo that is commented on and then set aside, but (part of) an actual system that
the customer puts into production use. The team and the customer can use
Frequent Releases as an aid in steering the project and it also gives the team and
the customer confidence in the project to see that something useful is actually
produced and delivered.

6

Refactoring:
This practice is probably the trickiest one to use. The idea is that XP is very code
driven. After the initial zero-th version where the general architecture and design
is laid out, everything is focused on implementing stories and making them work.
After a task or story has been completed, but before it is released to the common
repository, the code is taken through a series of transformations to simplify both
the code and the design. Refactoring should be carried out as a series of steps that
are reversible, so you can always back out if a refactoring does not work. For
each step in the refactoring process you make sure that the transformed code does
not break any of the unit tests.

Planning Game:
This practice handles scheduling of an XP project. At the start of each iteration, it
is decided what should go into it. XP stresses that it is a “game” between the
customer, who provides resources (time and money) and requirements (stories
that the customer has written beforehand), and the developers, who estimate the
costs and risks of implementing each requirement. The “game” then consists in
the customer making an informed choice of which requirements should actually
be implemented in the following iteration and which should be postponed to
subsequent iterations or even abandoned. If there is not a perfect match between
resources and estimate, the customer has the option to either remove some
requirements from this iteration or to allocate more resources. He could also ask
the developers to reconsider the estimate in case it “surprises” him, or the
developers could prompt the customer for more information needed to do the
estimate. However, it is important that each player sticks to his role.

3. Analysis

In this chapter, we will do a more careful in-depth analysis of each of these XP
practices with respect to how sound and complete they are seen from an SCM
perspective. This gives rise to the introduction of a number of SCM-related sub-
practices. We also cover the general SCM activities needed in any type of project
and analyse to which extent they are covered by the XP practices. In many cases,
XP already takes care of the SCM requirements, but in some cases our more
explicit SCM focus results in a number of SCM-related sub-practices that are
needed to make the XP development process complete. Whenever the analysis
ends with the finding that a sub-practice is needed, there is a reference within
curly brackets to the definition and description in chapter 4.

3.1 From XP practices
We start with the XP practices generally described above and for each practice
we analyse if, and if so how, this practice either implements SCM requirements
or makes it harder to maintain a proper SCM level.

7

Collective Code Ownership:
A direct consequence of Collective Code Ownership is that the copy-merge work
model is the only realistic way to synchronize developers {Use copy-merge work
model}, see also workspace management below.

Continuous Integration:
The drawback of the copy-merge model and optimistic check-out is the potential
risk of merge conflicts that can be hard to resolve. Continuous Integration
minimizes this drawback. An important clarification is that integration means
both updating the workspace and committing to the main development line.

This practice may be tailored a bit if branches are used. If, for example, each
story is implemented on its own branch in order to increase traceability, other
changes should not be mixed into the branch during the development.

Refactoring:
A refactoring differs from a “normal” implementation of a story (functionality) in
that it often is more global. The actual changes made due to the refactoring is
scattered over a larger part of the code compared to a “normal” implementation,
which is more local. A consequence of this is that the risk for merge conflicts
increases when refactorings are made in parallel with other changes (or indeed
other refactorings).

To reduce this drawback with refactorings the developer should really try to
divide the refactoring into smaller steps, and for each step integrate, test, and
commit {Incremental refactoring}. In this way possible merge conflicts are found
as soon as possible and the size of each conflict is smaller.

Applying the copy-merge model {Use copy-merge work model}, as proposed in
workspace management below, also means that it is possible to continuously
maintain a “virtual split-combine”, i.e. not a long-lived static split, but a split
continuously changing with the stories/tasks currently implemented. To reduce
merge conflicts hard to resolve, an impact analysis for each story evaluating
possible conflicts with other potential parallel stories should be made {Impact
analyse refactorings}. This is especially important for large refactorings, as these
tend to create merge conflicts.

Planning Game:
As part of the Planning Game, each story is prioritised and the cost to implement
it is estimated. In addition to the cost to implement each story by itself, there will
be a cost to integrate them and to resolve possible merge conflicts. If the costs
due to coordination and integration get too high it may have been better to
change the order in which they were implemented (and change the stories
implemented concurrently). Thus, including an impact analysis as part of the
Planning Game, predicting possible large integration problems and take these
into consideration when establishing the plan for the next iteration, can reduce

8

the total cost of implementing a certain set of stories {Impact analysis of stories
as part of Planning Game}.

Frequent Releases:
A release will always require work to a certain extent. According to SCM there
are some basic requirements that should be fulfilled: physical and functional
audit, possibility to recreate a release (its BOM) and to bug fix an old release
without disturbing the current development. In addition the possibility to “story
freeze” and to fix the final bugs before a release in parallel with implementing
new functionality to later releases is often desirable (even though XP tries to
make such time period as short as possible). The question is if all this is really
needed in XP and how can we reduce the release cost to a minimum and
automate as much as possible.

XP takes care of some of the requirements by some of the other practices:
Continuous Integration makes sure there are no large integrations that has to be
done before we release, Planning Game makes us certain of what stories should
be included in the next release, test-first makes sure we always have both unit
tests and acceptance test ready to run as functional audit. What remains is the
physical audit, i.e. to make sure we deliver all the files and documents and the
correct version of them {Physical audit in release process}. To fit into the XP
philosophy the cost of this audit should be minimized by automating it, e.g. using
scripts and build tools supporting BOM-reports.

3.2 From SCM activities
In this part of the analysis we cover the SCM activities described in chapter 2 and
analyse to which extent they are covered by the XP practices. When they are not
automatically covered by the core XP practices, we refer to SCM sub-practices
defined in chapter 4.

Configuration Identification:
In XP there is no practice about version control and thus no proposal of what
items should be configuration items. However, in practice most XP teams use
version control to synchronize concurrent development and to be able to manage
Collective Code Ownership. Applying version control requires the selection of
configuration items and a decision of how they should be structured {Define
configuration items and their structure}. To avoid unnecessary work, this should
be done early in the project. Many version control tools do not support rename
and move of configuration items very well, and a lot of restructuring will
unfortunately be time consuming and may even result in lost history log for the
moved items.

What items should be configuration items? Source code, unit tests, acceptance
tests, and stories are all items that may change and that are important and should

9

be stored in a repository, i.e. configuration items. Spike code, class-files, and
private stuff should probably not.

Configuration Control:
Most of the requirements part of configuration control is taken care of by XP.
Change requests (called stories in XP) are discussed, prioritized, planned, and
decided upon during the Planning Game, which is the XP equivalent to the
formal CCB (change control board) in SCM.

However, the demand to be able to trace the actual source code changes to the
story they implement (and vice versa) is not automatically covered. If a version
control tool is used, it is easy (at almost no extra cost) to include the story
number in the commit comment, making it possible to see why (which story) a
certain version was created {Trace changes to stories}. It is harder to implement
traceability from a certain story to the actual changes made to implement the
story. This requires both a management of stories that allows recording this extra
information, and it puts the demand on the developers to actually do this
registration when (or after) implementing the story.

Configuration Status Accounting:
Most of the status accounting activity is taken care of by the tracker keeping
track of all stories and tasks and their current state, which is information needed
by the coach and customer to follow the progress of the project. Also the
developers use this information to synchronize concurrent development.

Configuration Audit:
Functional audit can be automated thanks to test first. When the new
functionality is implemented we know that all the tests are already written, i.e.
there is no risk of not being able to do a functional test. However, XP says
nothing about practices for a physical audit, which is required for each release
according to SCM. To be able to release frequently the physical audit should be
automated, e.g. using build tools or scripts generating the BOM {Physical audit
in release process}.

Version Control:
Use a version control tool {Use a version control tool}. Awareness of what have
happened with the configuration items, integration (including merge), the long
transaction model preventing a developer to commit not integrated code into the
common repository, and branches are examples of indispensable support given
by a version control tool.

Build Management:
Sufficient tool support should be used to build both the source code and to
generate documentation. Some of this support is included in the compiler, but if
not, other dedicated tools should be used {Use a build tool}.

10

Workspace Management:
This is an important SCM functionality in an XP project making it possible to
allow Collective Code Ownership. Workspaces implement the copy-merge
model {Use copy-merge work model}, which makes it possible to work in
isolation with the entire product (or as much of it as needed), integrate with other
changes, and perform all tests before committing it to the common repository
(project release). It thus makes it possible to keep the repository clean from non
functional code according to unit tests, which is important using Collective Code
Ownership {Keep the repository clean}.

Concurrency Control:
XP does not explicitly force any concurrency control, but the only realistic
choice is the copy-merge model, see workspace management above. Turn-taking
and split-combine do not work together with Collective Code Ownership.

Change Management:
Configuration control, {Trace changes to stories}, and configuration status
accounting increase the group awareness of what changes are currently
implemented and by whom, and it also makes it easier to trace what has been
done earlier. However, the developers themselves can further increase the group
awareness and help fellow developers to later understand why certain changes
were made to the code by writing proper commit comments {Write proper
commit comments}. A comment should normally include: what change you
made and why, e.g. what refactoring, or which task you implemented. Do not
write details of how you made the change, it should be “obvious” from reading
the code. Using a version tool {Use version control} makes it possible to
compare versions and view the diff, i.e. what was changed.

Release Management:
In XP it should be possible to release frequently. Continuous Integration ensures
that the latest development is always integrated and committed to the common
repository and test-first makes it possible to always do a functional audit. Still,
support for physical audit remains, see configuration audit above {Physical audit
in release process}. To be able to release with short notice and with little effort
the release process, including the packaging of all included items, should be
automated and optimized (slim) {Automate and optimise the release process}.

4. Design

In this chapter, we define the SCM sub-practices we found needed during the
analysis above and put them into the XP context. For each sub-practice we
analyse what other sub-practices and XP practices it supports and what are
required to make it work.

11

Incremental refactoring:
Definition: Break down large refactorings into smaller steps (increments) and
commit each increment directly when integrated and tested.
Motivation: The developer making the refactoring can better control the change
and more easily reverse mistakes. It utilizes Continuous Integration and
minimizes the risk of complex merge conflicts between refactoring and other
committed changes. For all the other developers, each commit makes it possible
for them to integrate into their workspaces and thus avoid a large merge at the
end of the entire large refactoring.
Supports: Refactoring (since we reduce the drawback of large refactorings),
Continuous Integration (since each increment can be integrated).
Requires: Refactoring generally requires Collective Code Ownership and Coding
Standards.

Impact analyse refactorings:
Definition: An impact analysis of possible (merge) conflicts with other stories in
the current iteration should be done for large refactorings (written as stories).
Motivation: Reduces the number of hard merge conflicts due to refactorings. It
also increases the developers’ awareness of planned and ongoing large
refactorings.
Supports: {Impact analyse stories as part of Planning Game}, Planning Game,
{Use copy-merge model}, Collective Code Ownership.
Requires:

Use copy-merge work model:
Definition: Use the copy-merge work model, i.e. all developers have their own
private workspace with the entire (necessary) code base in which they can
implement tasks, integrate, and test before committing their changes back to the
common repository. Use long-transaction model.
Motivation: To give tool support for the commit and automatically verify that all
the tested code can be committed without any merge has to be done in the
common repository the long-transaction model can be used.
Supports: {Keep the repository clean}, Refactoring, Collective Code Ownership.
Requires: {Use a version control tool}.

Impact analyse stories as part of Planning Game:
Definition: Do an impact analysis of the planned stories and include the cost of
possible merge conflicts in cost estimate for each story.
Motivation: Results in a more precise cost prediction of stories as input to the
Planning Game, and gives knowledge of how the total cost can be reduced by
moving stories between iterations to avoid merge conflicts.
Supports: Collective Code Ownership, {Use copy-merge work model}.
Requires: Planning Game, {Impact analyse refactorings}.

12

Physical audit in release process:
Definition: Include a physical audit in the release process, both for demo and
production releases. Should be automated to cope with “Frequent Releases”.
Motivation: To avoid small mistakes in the release process (e.g. to forget to
include a configuration file in the release package) that may make the release
unusable. Reduces the efforts needed to release.
Supports: Frequent Releases (if automated).
Requires:

Define configuration items and their structure:
Definition: Choose which items should be configuration items and create a
structure for them. Should be done early in the project.
Motivation: Most version control tools do not support move or rename of stored
items. To early create a structure reduces the need of these operations. (Note this
is a major drawback of most tools especially for XP projects where changes
should be embraced not hindered.)
Supports: {Use a version control tool}, {Automate and optimise the release
process}.
Requires: {Use a version control tool}.

Trace changes to stories:
Definition: Each change set, typically each commit, should be traceable to the
story and task it implements.
Motivation: It further emphasizes the by XP proposed work model to implement
only one specific task at a time.
Supports: Continuous Integration, Collective Code Ownership.
Requires: {Use version control tool including functionality to manage meta-data,
e.g. commit comments}.

Write proper commit comments:
Definition: Write commit comments describing why you made the changes and,
at a high level, what changes you made. Do not write detailed descriptions of the
changes, they should be understood reading the code alone.
Motivation: To increase the awareness between fellow developers, and to make it
easier to understand and make changes to code written by other developers.
Supports: Collective Code Ownership, {Use copy-merge work model}.
Requires: {Use a version control tool supporting commit comments}.

Automate and optimise the release process:
Definition: Make it possible to automatically create a release, i.e. to package and
send (or burn) the correct version of all needed files and documents.

13

Motivation: To release often and to be able to release on short notice is
prioritized in XP and should thus be supported as much as possible, decreasing
the cost for a single release.
Supports: Frequent Releases, on-site customer.
Requires: {Physical audit in release process}.

Use a version control tool:
Definition: Use a version control tool to store the common configuration items.
Let all developers synchronize with this common repository.
Motivation: It is important that all developers trust the repository and dare make
changes to the code. Version control both helps to synchronize concurrent
changes and makes it possible to undo mistakes. It also enables different
strategies of how to parallelize development, management of “story-freeze” close
to release, and maintenance of old releases.
Supports: {Use copy-merge work model}, Continuous Integration, Frequent
Releases, Collective Code Ownership, {Trace changes to stories}, {Write proper
commit comments}.
Requires:

Use a build tool:
Definition: Use a build tool to build the executing product from the source code,
but also to generate documentation (API, e.g. using java doc).
Motivation: To integrate often and to always test the product implies that it has to
be built often. A build tool makes this less demanding. Also generating
documentation reduces the cost of a release.
Supports: Continuous Integration, Frequent Releases.
Requires: Coding Standard.

Keep the repository clean:
Definition: The code checked in to the common repository should always work,
i.e. it must always have been compiled and all unit tests should run without
errors.
Motivation: All developers continuously integrate their workspace with the
repository, i.e. an error in the repository will very fast propagate to all the
developers destroying their build.
Supports: Frequent Releases, Collective Code Ownership, Continuous
Integration, {Use copy-merge work model}.
Requires: {Use a version control tool}, Continuous Integration, Testing.

14

5. Implementation and experience

For the past three years, our department has used XP in a team-programming
course for undergraduate students to introduce software engineering. The course
is divided in a theory part to teach the XP methodology and a project part where
the students practice team development using XP.

The theory part consists of seven lectures and four lab sessions. The lectures
cover the 12 standard XP practices and the lab sessions introduce techniques and
tools to support these practices.

The project part of the course is carried out in teams of 8-12 developers. Each
team also has two coaches who guide the team members through the
development process. The project is divided in 6 iterations, each consisting of 2
hours of team planning, 4 hours individual spike-time, and 8 hours team program
development. Spike-time is used to experiment and study relevant topics for the
user-stories currently being developed. During the 8 hours team development the
entire team is located in one room, implementing customer supported stories
while practising the techniques taught in the theory part of the course. For more
details, please see [HBM03].

Many things have to be taught to the students, so the time available for SCM is
limited to one 2-hour lecture and one 2-hour computer lab. The lecture is placed
early in the course as the first in-depth study of selected XP practices, preceded
only by a brief introduction to the 12 XP practices and software engineering in
general. The computer lab that follows the lecture increases the students’
understanding of the SCM-related practices and introduces tool support for basic
SCM using CVS [Berliner90]. Two more lab exercises, supporting other lectures,
use the CVS tool but focus on tools, techniques and practices for Test First and
Refactoring respectively. Even though these labs are not strictly SCM-related,
they do, however, increase the students' skills in using CVS.

So after the course part, all students were aware of – and had used – the
following SCM-related sub-practices: {Use a build tool}, {Use a version control
tool}, {Use copy-merge work model}, {Keep the repository clean} and
{Incremental refactoring}. During the project part everyone used the first three
sub-practices right from the start. Quite a few groups were reluctant to adopt the
sub-practices {Keep the repository clean} and {Incremental refactoring}, and
only did that after experiencing the problems of not doing so.

There was no formal SCM education at all during the project time apart from
what the teams decided to do on their own. Most teams used some of the spike
time to gain further knowledge of SCM (primarily the CVS tool). This
sometimes resulted in tutorials or checklists used by all team members. Through

15

the coaches they also had access to – and sometimes also help in implementing –
the rest of the SCM-related sub-practices.

The following SCM-related sub-practices were used by one or more individual
groups: {Automate and optimise the release process}, {Physical audit in release
process} and {Write proper commit comments}. Groups that used these sub-
practices found them very helpful and with a high return-on-investment –
especially for the first two sub-practices. Groups that did not implement these
sub-practices had problems with releases but did not foresee a return-on-
investment from implementing them.

Not all sub-practices were used. We consider that to be due to special
characteristics of our student projects. They go on for only six weeks, so they do
not encounter big problems if they do not {Write proper commit comments} or
{Trace changes to stories}. Furthermore, the application is small and the stories
are well defined, so they can ignore the consequences of not doing properly
{Impact analyse refactorings} and {Impact analyse stories as part of Planning
Game}.

6. Conclusions

In this paper, we have shown that some of the concepts and principles, that are
very fundamental to SCM and seemed to be absent from XP, are indeed present.
They are called by different names (like stories instead of change requests and
Planning Game instead of change control board), but the contents and philosophy
remain the same.

From our analysis it appeared that those XP practices that could seem dangerous
and impossible from an SCM perspective: Collective Code Ownership and
Frequent Releases, are indeed practicable. To a large degree they are supported
by the standard XP practice Continuous Integration, but there are some additional
requirements that have to be implemented for those two practices to be safe from
an SCM perspective.

Furthermore, we showed in the analysis that some of the SCM requirements,
both from a traditional and from a developer perspective, are indeed
implemented by the existing XP practices. For those requirements that are not
implemented by the standard XP practices, we have designed a number of SCM
sub-practices that will ensure their implementation and we show how the added
sub-practices together with the standard practices support and require each other.

Thus we can conclude that, when our new SCM sub-practices are added to XP’s
standard practices, XP is a both sound and complete development method with
respect to SCM requirements. Our experience with using a sub-set of our new

16

SCM sub-practices on XP projects confirms that. Some of the new sub-practices
were not used initially, but adopted after they suffered the consequences. Other
sub-practices were not used at all, due to these XP projects being small and
having a very short lifetime.

For the upcoming iteration of XP projects we plan to give all students knowledge
and experience with sub-practices {Physical audit in release process} and
{Automate and optimise the release process} through compulsory spikes. In
addition, we have plans for investigating further sub-practice {Incremental
refactoring} and its interactions with versioning in collaboration with a couple of
individual groups.

7. References

[AB01]: Ulf Asklund, Lars Bendix: Configuration Management for Open Source
Software, Technical Report, R-01-5005, Department of Computer Science,
Aalborg University, Denmark, January 2001.
[Babich86]: Wayne A. Babich: Software Configuration Management –
Coordination for Team Productivity, Addison-Wesley, 1986.
[Beck99]: Kent Beck: Embracing Change with Extreme Programming, IEEE
Computer, October, 1999.
[Beck00]: Kent Beck: Extreme Programming Explained: Embrace Change,
Addison-Wesley, 2000.
[Berlack92]: H. Ronald Berlack: Software Configuration Management, John
Wiley & Sons, 1992.
[Berliner90]: Brian Berliner: CVSII: Parallelizing Software Development, in
proceedings of USENIX Winter 1990 Conference, Washington D.C., 1990.
[chromatic03]: chromatic: Extreme Programming Pocket Guide, O’Reilly, 2003.
[HBM03]: Görel Hedin, Lars Bendix, Boris Magnusson: Introducing Software
Engineering by means of Extreme Programming, in proceedings of the 25th
International Conference on Software Engineering, Portland, Oregon, May 3-10,
2003.
[JAH01]: Ron Jeffries, Ann Anderson, Chet Hendrickson: Extreme
Programming Installed, Addison-Wesley, 2001.
[Leon00]: Alexis Leon: A Guide to Software Configuration Management, Artech
House, 2000.
[MP97]: Tim Mikkelsen, Suzanne Pherigo: Practical Software Configuration
Management – The Latenight Developer’s Handbook, Prentice-Hall, 1997.

