
What Happened to Our Features? Visualization and Understanding of Scope
Change Dynamics in a Large-Scale Industrial Setting

Krzysztof Wnuk1, Björn Regnell1, Lena Karlsson2
1{krzysztof.wnuk,bjorn.regnell}@cs.lth.se, Lund University, Sweden

2 lena.karlsson@dnv.com, Det Norske Veritas, Sweden

Abstract

 When developing software platforms for product
lines, decisions on which features to implement are
affected by factors such as changing markets and
evolving technologies. Effective scoping thus requires
continuous assessment of how changes in the domain
impact scoping decisions. Decisions may have to be
changed as circumstances change, resulting in a
dynamic evolution of the scope of software asset
investments. This paper presents an industrial case
study in a large-scale setting where a technique called
Feature Survival Charts for visualization of scoping
change dynamics has been implemented and evaluated
in three projects. The evaluation demonstrated that the
charts can effectively focus investigations of reasons
behind scoping decisions, valuable for future process
improvements. A set of scoping measurements is also
proposed, analyzed theoretically and evaluated
empirically with data from the cases. The conclusions
by the case company practitioners are positive, and the
solution is integrated with their current requirements
engineering measurement process.

1. Introduction

Deciding which requirements to include into the
scope of an upcoming project is not a trivial task.
Requirements for complex systems may be counted in
thousands, and not all may be included in the next
development project or next release. This means that it
is necessary to select a subset of requirements to
implement in the forthcoming project, and hence
postpone the implementation of other requirements to a
later point in time [1, 12]. This selection process is
often called scoping and is considered as a key activity
for achieving economic benefits in product line
development [2]. While its importance has already
been reported in several studies, research has not yet
put broad attention to the issues of product line

scoping. In particular, following Schmid [2], we agree
that existing work in domain engineering in software
product lines focus mainly on the identification aspect
of scoping e.g. [7, 13]. On the other hand, some
researchers have already addressed the issue of
understanding underlying reasons for the inclusion of
certain requirements in a specific release [1], while
others investigated one of the root causes for changing
requirements, namely requirements uncertainty [14].

 The problem with many changes in the scoping
process for product line projects has recently been
identified by one of our industrial partners from the
embedded systems domain. This issue has been
particularly challenging for the case company, since
their current requirements management tool could not
provide a sufficient method to visualize and
characterize this phenomena. As a remedy, the Feature
Survival Chart (FSC) concept was proposed by the
authors and acknowledged by the practitioners as a
valuable support. This paper extends the contributions
of [3] with (1) findings from industrial application in
three projects and (2) scope tracking measurements.
The proposed visualization shows the decision process
of including or excluding features that are candidates
for the next release. Our technique can spot the
problem of setting too large a scope compared to
available resources as well as increase the
understanding of the consequences of setting a limited
scope early. By using graphs, we can identify which
features and which time frames to analyze in order to
find scoping issues related to uncertainties in the
estimations that decisions rely on. The charts have also
shown to be useful in finding instabilities of the
scoping process.

The proposed set of scope tracking measurements
complements the proposed visualization technique, and
they aim at further increasing the understanding of the
rationale and dynamics of scope changes. The
measurements are analyzed both theoretically and
empirically using data from three large industrial
projects that contain hundreds of high-level features

2009 17th IEEE International Requirements Engineering Conference

1090-705X/09 $25.00 © 2009 IEEE

DOI 10.1109/RE.2009.32

89

related to thousands of system requirements. We also
present findings from discussions on the results with
practitioners that ranked the usefulness of the proposed
measurements and expressed their opinions about their
value in scope management.

The paper is structured as follows: Section 2
provides background information about the context of
our industrial case study. Section 3 describes the
methodology used in this study. Section 4 explains our
visualization technique. Section 5 describes the results
from applying our technique to three industrial
projects. Section 6 defines and evaluates the proposed
measurements. Section 7 provide conclusions and
discusses their limitations.

2. The case company

Our results are based on empirical data from
industrial projects at a large company that is using a
product line approach [4]. The company has more than
5000 employees and develops embedded systems for a
global market. There are several consecutive releases
of the platform, a common code base of the product
line, where each of them is the basis for one or more
products that reuse the platform’s functionality and
qualities. A major platform release has approximately a
two year lead time from start to launch, and is focused
on functionality growth and quality enhancements for a
product portfolio. Minor platform releases are usually
focused on the platform’s adaptations to the different
products that will be launched with different platform
releases. This approach creates an additional
requirements flow, which in our case company is
handled as a secondary flow, and arrives to the
platform project usually in the middle of its life cycle.
This flow enables flexibility and adaptation
possibilities of the platform project, while the primary
flow is dedicated to address functionality of the highest
importance.

There are several groups of specialists associated
with various stages of the requirements management
process in the case company. For this case, the most
essential groups are called Requirements Teams (RTs)
that elicit and specify high-level requirements for a
special technical area, and Design Teams (DTs) that
design and develop previously defined functionality.

The company uses a stage-gate model with several
increments [5]. There are Milestones (MSs) and
Tollgates (TGs) to control the project progress. In
particular, there are four milestones for the
requirements management and design before the
implementation starts: MS1, MS2, MS3, and MS4. For
each of these milestones, the project scope is updated
and baselined. The milestone criteria are as follows:

MS1: At the beginning of each project, long-term RT’s
roadmap documents are extracted to formulate a set of
features for an upcoming platform project. A feature in
this case is a concept of grouping requirements that
constitute a new functional enhancement to the
platform. At this stage the features usually contain a
description, its market value and effort estimates. The
level of details for the features should be set up in a
way that enables judgment of its market value and
effort of implementation. Both values are obtained
using a cost-value approach [6]. The cost for
implementation and the market value of features are
the basis for initial scoping inclusion for each technical
area. The features are reviewed, prioritized and
approved. The initial scope is decided and baselined
per RT, guided by a project directive and based on
initial resource estimates in the primary receiving DT.
The scope is then maintained in a document called
Feature List, that is regularly updated each week after
a meeting of the Change Control Board (CCB). The
role of the CCB is to decide upon adding or removing
features according to changes that happen. The history
of scope changes is the input data for the visualization
technique described in this paper.
MS2: Features are refined to requirements which are
specified, reviewed and approved. One feature usually
contains ten or more requirements from various areas
in the products. The features are assigned to DTs that
will take responsibility for designing and implementing
the assigned features after MS2. The DTs also allocate
an effort estimate per feature.
MS3: The effort estimates are refined and the scope is
updated and baselined. DTs refine system requirements
and start designing.
MS4: The requirements work and design are finished,
and ready to start implementation. The final scope is
decided and agreed with the development resources.
 According to the company guidelines, most of the
scoping work should be done before reaching the
second milestone of the process. The secondary flow
starts approximately at MS2 and is connected to the
start of product projects. Both primary and secondary
flows run in parallel under the same MS criteria until
they are merged together when the secondary flow
reaches its MS4. The requirements are written in
domain-specific natural language, and contain many
special terms that require contextual knowledge to be
understood. In the early phases, requirements contain a
high-level customer-oriented description while being
refined to detailed implementation requirements at a
late stage.

90

3. Research methodology

The development of the FSC chart and
corresponding scope tracking measures was performed
in an interactive manner that involved practitioners
from the case company. The persons that participated
in the constant evolution and evaluation include one
process manager, two requirements managers and one
KPI (Key Performance Indicators) manager. This
approach involves a set of meetings and discussion
points between the researchers and the practitioners
that helped to guide the research. As a part of the
discussion, the important need to measure the
dynamics and the nature of the scope changes emerged.
After proposing and theoretically validating the
measurements, it was decided to apply them to the real
scoping data to empirically confirm the perceived
usefulness of the metrics. All ongoing projects in the
case company were investigated for possible usage of
our technique. Our criteria of interest in analyzing a
particular project include (1) the length of analyzed
project, (2) the number of features considered in the
scope of the project and (3) the possibility to visualize
and analyze significant scope changes in the analyzed

project. As a result, the three most interesting ones
were selected. Furthermore, we have used our
technique to define a set of scoping quality
measurements that we evaluated by practitioners and
validated using empirical data. Finally, we have
performed an interview study with platform project
requirements managers in order to understand the
rationale and implications for scoping decisions.

To gather data for this study, we have implemented
an exporter to retrieve the data from the scope
parameter of each feature in the Feature List
document. This information was later sorted so that
each feature is mapped into one row and each value of
the scope attribute is mapped to an integer value. After
creating graphs, a meeting with practitioners was held
in order to present and discuss results as well as
address issues for future work. As a result of this
meeting, it was decided to introduce and evaluate a set
of scope tracking measurements that may give a better
insight into the scoping process practices and may help
to assess their quality. As one of the measurements, it
was decided to include a non-numerical reason for
scope exclusion to understand their nature and
implications on the stability of the requirements

Figure 1 - Feature Survival Chart for project A.

91

management process. All measurements were
calculated on an industrial set of three large platform
projects.

4. Feature Survival Charts

 In this section, we briefly describe our visualization
technique. The Feature Survival Chart (FSC),
exampled in Figure 1, shows scope changes over time
which is illustrated on the X-axis. Each feature is
positioned on a specific place on the Y-axis so that the
complete lifecycle of a single feature can be followed
by looking at the same Y-axis position over time. The
various scope changes are visualized using different
colors. As a result, each scope change can be viewed as
a change of the color. Based on discussions with
practitioners we decided to use this coloring scheme:
green for features considered as a part of the scope, red
for features considered as de-scoped and, if applicable,
different shades of green for primary and secondary
flows. After sorting the features according to how long
they were present in the scope, we get a graph where
several simultaneous scope changes can be seen as
‘steps’ with areas of different colors. The larger the red
areas are, the more features are de-scoped in the
particular time of the project. At the top of the graph
we can see features that we called ‘survivors’. These
features represent functionality that was included early
while lasting until the end of the scoping process. An
FSC is also visualizing overall trends in scoping. In
Figure 1 we can see that most of scoping activity
happened after MS2 in the project. (Rn.m denotes
formal releases.) Since most of the de-scoping was
done rather late in the project, we can assume that a
significant amount of effort might have been spent on
features that did not survive. Thanks to the graphs, we
can see which decisions have been made when and
how large impact on the scope they had. The five areas
marked in Figure 1 are further discussed in section
6.3.5. The FSC gives a starting point for investigating
why the decisions were made, and enables definition of
measurements that indicate quality aspects of the
scoping process.

5. Evaluation results

In this section, we present results from evaluating
our visualization technique. We present FSCs for three
large platform projects in the case company. The data
was gathered during autumn 2008 when all three
projects were running in parallel and were targeted for
product releases in 2008 or 2009. Each project was
started at different points in time. At the time when this
study was performed one of them had already passed

MS4, one had launched the first platform release and
the third had passed MS3. In Figure 1, 2 and 3 we
present one FSC respectively for three projects denoted
A, B and C. Additional information about the projects
is presented in Table 1.

All analyzed projects have more than 100 features
ever considered in the scope. For projects B and C, the
significant feature number difference is a result of
running these two projects in parallel targeted to be
released the same year. The technical areas are similar
for all projects. We can assume that the projects affect
similar groups of requirements analysts, but differ in
size, time of analysis and complexity. Project A was
analyzed during a time period of 77 weeks, during
which period two releases of the platform were
launched. The total number of scope changes in the
projects is calculated from MSA and onwards.

Project Nbr. of
features

Nbr. Of
Technical
areas

Time
Length
(weeks)

Total
number
of scope
changes

A 223 22 77 237
B 531 23 39 807
C 174 20 20 43

Table 1 - Characteristics of analyzed projects

Results indicate that we in average experience
almost one scope decision per feature for each project.
This fact indicates the need for a better understanding
of the scoping process, e.g. by visualizing scope
changes. A qualitative analysis of the graphs indicates
that for all analyzed projects the dominant trend is de-
scoping rather than scope increases. We name this
phenomena negative scoping . For all analyzed projects
we can observe negative scoping all through the
analyzed period.

Figure 2 - FSC for project B.

92

6. Scope tracking measurements

According to Basili et al. [8], measurement is an
effective mechanism for characterizing, evaluating,
predicting and providing motivation for the various
aspects of software construction processes. The same
author states that most aspects of software processes
and products are too complicated to be captured by a
single metric. Following this thread, we have
formulated questions related to external attributes of
the scoping process, which in turn is related to internal

Figure 3 - FSC for project C.

attributes and a set of five measurements divided into
time related measurements and feature related
measurements, as described subsequently.

6.1. Definition of measurements

 The goal with the measurements is to characterize
volatility and velocity of the scoping process, as well
as clarity of the reasons behind them. To address this
goal, we have defined a set of five scope tracking
measurements, which are presented subsequently. Four
out of five measurements can be calculated based on
the scope attribute value in the feature list document
and time stamps for this document, while the last
measurement needs a more qualitative approach that
requires ing additional information that complements
the graphs.

6.1.1 Time-related scope tracking measurements: In
this category we have defined one measurement:
Number of positive and negative scope changes per
time stamp/baseline (M1). We define a positive scope
change as an inclusion of a feature into the scope of the
project, while a negative change indicates exclusion
from the project. We assume that the scope ideally
would stabilize in the late phase of the project in order
to avoid expensive late changes.

6.1.2 Feature related measurements: In this category
we have defined the following measurements that also
can be averaged for the whole platform project:
Time to feature removal (M2) – the time from the
feature was introduced until it was permanently
removed. The measurement can of course only be
calculated for the features that have not survived until
the end of the requirements management process. The
interpretation of this measurement can be as follows: it
is a matter of quality of the requirements management
process to remove features that will not be included
into the projects due to various reasons as early as
possible. This approach saves more resources for the
features that will be included into the scope, and
increases the efficiency of the scoping process. The
pitfall related to this measurement is the uncertainty
whether features included into the scope at the end of
the requirements management process will not be
excluded later due to various reasons. On the other
hand, even taking this fact into consideration, we still
believe that we successfully can measure M2 and get
valuable indications of the final scope crystallization
abilities.
Number of state changes per feature (M3)– this
measurement is a reflection of the measurement M1.
By calculating this measurement for all features and
visualizing results in the form of a distribution, we can
see the fraction of complex decisions among all
decisions. The interpretation of this measurement is
that the fewer changes per feature in a project, the
more ‘stable’ the decision process is and less extra
effort has to be spent on complex decisions making the
project less expensive to manage. As already
mentioned, high values for this measurement indicate
complex and frequently altered decisions.
Time to birth (M4) – for each feature that has not yet
appeared in the scope, we calculate the delay time
which is proportional to the number of baselines of the
scope document. In our calculations, we took into
consideration the fact the feature list document was
baselined irregularly, and we based our calculations on
the number of days between the baselines. This
measurement describes the activity of the flow of new
features in time. Here, similarly to M1, we have to
decide what is our starting point in the project. Our
interpretation assumes that we take MS1 as a starting
point. In an ideal situation we expect few features with
a long time to birth, since late additions to the scope
create turbulence in the project.
Reason for scoping decision (M5). As the last
measurement described in this study, we define reasons
for scoping decisions. This measurement will be
calculated as a non-numerical value and it can not be
automatically derived from our graphs. As already
mentioned in M1, inclusion of a new functionality is a

93

different change compared with an exclusion of a
functionality. Due to limited access to practitioners, we
focused on analyzing removal of functionality. To
calculate M5, we mapped each feature to its reason for
inclusion, reason for exclusion and existing CCB
records.

6.2. Theoretical analysis of measurements

 In this section, we present results from a theoretical
analysis of the proposed measurements. We have used

 two approaches: “key stage of formal measurement”
[9] and the theoretical validation [10]. By following the
key stages of formal measurement, we constructed
empirical and mathematical systems and defined a
mapping between these two systems. The attributes of
an entity can have different measurements associated
to them, and each measurement can be connected to
different units. Some properties, for example mapping
between real world entities to numbers and the fact that
different entities can have the same attribute value, are
by intuition satisfied for all defined measurements. In
Table 2 we present defined attributes and relations. We
also relate defined measurements with internal and
external attributes of the requirements decision
process. As we can see in Table 2, the defined set of
measurements is addressing stability, velocity,
volatility and understandability of the scoping process
for platform projects. Although four out of five defined

measurements are realized as objective numbers,
conclusions drawn from them about subjective
attributes of requirements management decision
process are a matter of interpretation. The subjective
interpretation of the results derived by our
measurements is a complex task which requires a deep
domain knowledge and additional information about
the history of the project. We have extended our
knowledge by interacting with requirements managers
working with platform projects in order to derive
values for M5.

6.3. Empirical application of measurements

 In this section, we present results from an empirical
evaluation of measurements defined in section 6.1. We
have evaluated M1-M4 in three large platform projects
described in section 5, and M5 in one large project. To
increase the possibilities of drawing conclusions, we
have decided to present time-related measurements as a
function of time, while feature-related measurements
are presented in the form of distributions for each
evaluated project.

6.3.1. Number of positive and negative scope
changes per time stamp/baseline (M1). All three
projects turned out to have many scope changes over
time. In Figure 4 we can see many fluctuations of M1
values both on the positive and negative side rather late
in analyzed projects. This result can be explained by a

Measur
ement

Entity Internal
attribute

External
attribute

Measure Domain Scale Empirical
relation

Mathem
atical
relation

M1 Feature
List

Size and direction
of scope changes
over time.

Stability of the
scoping process

of scope
inclusions
at the timestamp
of scope
exclusions
at the timestamp

Feature
List

Ratio negative,
positive, bigger
smaller, equal
to, addition,
subtraction,
division

<,>,=,+,-
, etc.

M2 Feature The time that was
needed to remove
the feature from
the scope

Velocity of the
final scope
crystallization
process

days needed to
make a final
decision about
feature exclusion

Feature Ratio bigger, smaller,
equal to,
addition,
subtraction,
division

<,>,=,+,-
, etc.

M3 Feature Number of scope
decisions per
feature

Volatility and
dynamics of the
scope decisions.

#scope changes for
non-survivors
needed to remove
them from the
scope.

Feature Ratio bigger, smaller,
equal to,
addition,
subtraction,
division

<,>,=,+,-
, etc.

M4 Feature Time when a
feature was
included into the
scope of the
project

Volatility of
the scope
decisions.

of days from the
beginning of the
project until a
feature was included

Feature Ratio bigger, smaller,
equal to,
addition,
subtraction,
division

<,>,=,+,-
, etc.

M5 Changes
to feature

Rationale for
removing features
from the scope

Clarity of the
reasons for
scope decisions

Reasons for scope
exclusions

Scope
changes

Nom
inal

equal and
different

<>,=

Table 2 - Results from a theoretical analysis of proposed measurements, by # we mean ‘number of’

94

stage-gate model for requirements management
projects resulting in high peaks of changes around
project milestones. On the other hand, we experience
more than four peaks for each project, which is more
than the number of milestones in the requirements
management process. The distinction of positive and
negative changes makes it possible to see in Figure 4
that inclusions of new functionality into the project
may be correlated with exclusions of some other
functionality. The baseline number represents the
version of the scope document. The best example is the
peak of inclusions for Project A around baseline 38,
which immediately resulted in a peak of exclusions. In
this example we can also see that the magnitude of the
change in both directions is similar.
6.3.2. Time to remove a feature (M2). For this
measurement, we present results in the form of
distributions. The distribution presented in Figure 5 is
showing that many features were removed after a
certain number of days in the scope. Our results reveal
three different approaches for removing the features
from the scope. For project A we can see an initial
scope reduction rather early, then a quite constant
number of

Figure 4 - Number of positive and negative changes as a
function of a baseline number (M1).

removed features, and suddenly, after about 300 days
from the project start, large scope reductions. For
project B we can see that many features were removed
in rather short intervals in time, and also that some
significant scope reductions that occurred after 150

days in the project. On the other hand, project C is
behaving more stable in this matter, having only one
large peak of removed features around 60 days from
the project launch. This type of graph can be useful in
assessing how good the process is in crystallizing the
final scope of the platform project.
6.3.3 Number of state changes per feature (M3).
For this measurement, we present the results in the
form of distributions. As we can see in Figure 6, most
features required only one decision in the project. This
decision usually was an exclusion from the project
scope, but in some cases more than one decision per
project was needed. This fact indicates that features
were shifted between the primary and the secondary
flow of requirements, or that the management had to
reconsider previously made commitments. For a better
understanding of more complex decisions, this
measurement can be limited to the number of scope
changes needed to remove the feature from the scope
of the project. This measurement may give valuable
insights about the complexity of decision-making. We
have calculated a derived measurement, and the results
are available online [11].
6.3.4 Time to birth (M4). Empirical application of M4
presented as a distribution over time revealed that
some projects have a large peak of new functionality
coming into the scope of the project after 100 days
from the beginning. In two out of three analyzed cases
we experienced large scope extensions at various
points in the project timeline. The biggest limitation of
this measurement is the fact that the used process
allows for a secondary flow of requirements which
automatically can create large peaks of births at a
certain time. We can notice this fact in Figure 7 as a
peak of births around day 150 day for project B, and
around day 220 for project A. Although the mentioned

Figure 5 – Distributions of time to remove the feature
(M2).

‐25

‐15

‐5

5

15

25

35

0 10 20 30 40 50 60 70

N
u
m
b
e
r
o
f
in
cl
u
si
o
n
s
an

d
 e
xc
lu
si
o
n
s

Baseline number of the scope document

Number of inclusions and exclusions of over
baselines

Project A ‐ Inclusions Project A ‐ Exclusions
Project B ‐ Inclusions Project B ‐ Exlusions
Project C ‐ Inclusions Project C ‐ Exclusions

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

N
u
m
b
e
r
o
f
re
m
o
ve
d
 f
ea
tu
re
s

Number of days

Time to remove the feature distributions for
analyzed projects

Project A Project B Project C

95

 Figure 6 - Distribution of number of changes per feature
(M3).

peaks are not necessarily revealing any unplanned
behavior, Figure 7 reveals that smaller but still
significant scope inclusions appeared for project B
both before and after the biggest peak of incoming
features.

Figure 7 - Time to birth distributions (M4).

6.3.5 Reason for scoping decision (M5). Since M5 is
defined as a non-numerical measurement in order to
apply it to our industrial data set and gather results, we
held a meeting with two requirements managers
responsible for managing project scoping information.
Each of the requirements managers was responsible for
one scoping project. In this paper, we focus on project
A since it was the most interesting in terms of late
scope changes. Before the meeting, we prepared five
scope-zones which we assumed to be the most
interesting to analyze, see Figure 1. During the
interview, a responsible requirements manager checked
the reasons for a particular scope change. The reasons

were analyzed both per individual feature, as well as
per set of changes in order to identify possible
dependencies between various decisions.
Results for scope changes for project A. As we can
see in Figure 1, we decided to include changes from
both before and after MS4. The results are presented
below:
Zone 1 – A significant scope reduction after MS3:
This zone shows a large scope reduction that happened
between MS3 and MS4 in the platform project. The
analysis revealed that this zone includes two reasons
for de-scoping. The first one is the strategic reason and
the other one is the cancellation of one of the products
from the product line project.
Zone 2 – A large scope inclusion after MS4: This
zone shows a large set of features introduced to the
scope of the project after MS4. The reasons for this
change turned out to be an ongoing work to improve
performance requirements. Because of this reason, it
was decided shortly after MS4 to include these features
into the scope.
Zone 3 – A large scope inclusion together with a
parallel scope exclusion: This zone represents a
desired behavior of the process used in the company.
The large scope inclusions show a new flow of
requirements related to one of the platform releases.
Our responders confirmed that all three sets of features,
separated from each other on the graph, represent an
introduction of a new requirements flow. The focus for
the analysis in this case was to examine if there was
any relation between inclusion of new requirements
and exclusion of other requirements at the same time.
The set of de-scoped features turned out not to be
related to the big scope inclusion. As described by the
interviewed requirements manager, the main reasons
for these scope changes were defined as “stakeholder
business decision”, which means that the previously
defined plan was changed to accommodate other
aspects of the product portfolio.
Zone 4 – Some incremental scope inclusions
introduced very late in the project: As we can see in
Figure 1, this zone covers many of the incremental
scope inclusions by the end of the analyzed time. Since
late scope extensions may put reliability at risk, we
investigated why they occurred and found out that
there are many reasons behind this phenomena. One of
the large changes, that involved four features, was
caused by administrative changes in the requirements
database. Some additional five features were included
into the scope as a result of a late product gap analysis.
A gap analysis is a task that requirements managers
perform in order to ensure that the scheduled product
features are covered by the corresponding platform
project. Finally, seven features introduced into the

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9

N
u
m
b
e
r
o
f
fe
at
u
re
s

Number of changes

Number of scope changes per feature

Project A Project B Project C

0

20

40

60

80

100

0 100 200 300 400 500

N
u
m
b
e
r
o
f
fe
at
u
re
s

Time to birth (days)

Time to birth distributions

Project A Project B Project C

96

scope turned out to be a result of late negotiations with
one of the customers.
Zone 5 – Late removal of previously accepted
features: In this zone, we analyze removal of the
features that were analyzed in zone 2. We have asked
our responders why initially accepted features later
were de-scoped. They replied that despite these
features were initially approved, a new decision had to
be made mainly due to a lack of available development
resources. We also performed a quantitative analysis of
reasons for de-scoping in project A. The results are
presented in Figure 8. We have analyzed 120 de-
scoping decisions that belong to project A. The result
is shown in percentages in Figure 8, summing up to
100%. As we can see, 33% of the de-scoping decision
were caused by a stakeholder’s business decision, and
29% by a lack of resources, while 9% of the decisions
were caused by changes in product portfolios. Our
largest category, stakeholder business decision is
similar to the category mentioned by Wohlin et al. [1].
called “Stakeholder priority of requirement”.

Figure 8 - Quantitative analysis of reasons for removing
features from the scope of the Project A.

Therefore we can assume that the dominant reason for
both inclusions and exclusion of certain requirements
in a specific release does not differ significantly.
Furthermore, criteria such as requirements volatility
and resource availability seem to appear both in our
study and in [1].

Rank Responder 1 Responder 2 Responder 3

1 M2 M2 M5
2 M5 M5 M1
3 M1 M4 M2
4 M4 M1 M4
5 M3 M3 M3

Table 3 – Results from practitioners' ranking of proposed
measurements.

 As an additional validation step, we asked three
practitioners working with scoping to rank the
proposed measurements. As a criterion for ranking, we
chose usefulness in understanding the scoping
processes and in defining future improvements. The
measurement ranked as number one is considered to be
the most useful one, while the one ranked in position
five is the least useful one. The results are presented in
Table 3. As we can see in Table 3, M3 was ranked as
the least useful, while M2 and M5 were placed in the
top three positions for all responders.

7. Conclusions

According to Basili et al. [8], software engineers
and managers need real-time feedback in order to
improve construction processes and products in
ongoing projects. In the same manner, the organization
can use post mortem feedback in order to improve the
processes of future projects [17]. Furthermore,
visualization techniques used in software engineering
have already proven to amplify human cognition in
data intensive applications, and support essential work
tasks [15]. Our visualization technique provides
feedback about ongoing scoping activities as well as a
visualization of past project scoping activities.
Measurements presented in this paper are
complementing our visualization technique by
quantitative characterization and qualitative rationale
for scoping decisions. The results in terms of
usefulness of the proposed visualization technique and
scope tracking measurements were acknowledged by
practitioners involved in their development as valuable
since they confirm the volatility of the scope and
provide a tool to analyze the various aspects of this
phenomenon. The results were then used by the case
company to adjust the process towards more flexibility
in scope setting decisions, and a clearer scope
responsibility. Our solution has confirmed to
outperform the previously used table-based textual
method to track the scope changes in the case
company. It gives a better overview of the scoping
process of the whole project on a single page size
graph. The industrial evaluation has indicated that our
method can be applied to large scale projects, which
demonstrates the scalability of the method. Finally, the
managers at the case company decided that our
visualization technique should be implemented as a
standard practice and is currently in widespread usage
at the case company. Even if the characteristics of
scope changes found may be particular to this case
study, we believe that the manner in which these
graphs together with measurements are used to

0%

5%

10%

15%

20%

25%

30%

35%

A
lr
e
ad

y
im

p
le
m
e
n
te
d

D
e
p
e
n
d
e
n
t
o
f
su
p
p
lie
r

su
p
p
o
rt

Lack of
reasources

O
th
e
r

P
o
rt
fo
lio

 c
h
an

ge
s

R
e
p
la
ce
d
 o
r
re
n
am

e
d

U
n
cl
e
ar
 f
e
at
u
re
 o
r

re
q
u
ir
e
m
e
n
tsP
e
rc
e
n
ta
ge
s

Reasons for descope

Reasons for scope exclusion

97

increase the understanding of the performance of the
scoping process is generally applicable.
 Limitations. As for any empirical study, there are
threats to the validity. One threat is related to the
mapping between measurements and external
attributes. In software engineering we often want to
make a statement of an external attribute of an object.
Unfortunately, the external attributes are mostly
indirect measurements and they must be derived from
internal attributes of the object [16]. We are aware that
our mapping can be one of several possible mappings
between internal and external attributes. We address its
correctness by evaluating external attributes with
practitioners in the case company. Another threat is
related to the generalization of our results. Although
the company is large and develops technically complex
products, it cannot be taken as a representative for all
types of large companies and hence the results should
be interpreted with some caution. Finally, theoretical
validation is context dependent and thus needs to be
redone in every new context.
 Further work. Additional studies of scope
dynamics visualization in other cases would further
increase our understanding of their usefulness.
Enhanced tool support with the possibility of zooming
interactively may be useful, as well as depiction of size
and complexity of features by visualizing their relation
to the underlying system requirements. How to
optimize usability of such a tool support, and the
search for new possibilities while observing
practitioners using the visualization techniques, are
also interesting matters of further research.

Acknowledgements. This work is supported by VINNOVA
(Swedish Agency for Innovation Systems) within the
UPITER project. Special acknowledgements to Thomas
Olsson for valuable contributions on scope tracking
measurements and to Lars Nilsson for valuable language
comments.

8. References

[1] C. Wohlin, A. Aurum, “What is Important when Deciding
to Include a Software Requirements in a Project or
Release?”, 2005 International Symposium on Empirical
Software Engineering, ISESE 2005, Institute of Electrical and
Electronics Engineers Computer Society, Piscataway, NJ
08855-1331, United States, 2005, pp. 246-255.
[2] K. Schmid, “A Comprehensive Product Line Scoping
Approach and Its Validation”, 24th International Conference
on Software Engineering (ICSE 2002), Institute of Electrical
and Electronics Engineers Computer Society, Orlando, FL,
United States, May 19-25 2002, pp. 593-603.
[3] K. Wnuk, B. Regnell, L. Karlsson, ” Visualization of
Feature Survival in Platform-Based Embedded Systems
Development for Improved Understanding of Scope

Dynamics”, Third International Workshop on Requirements
Engineering Visualization (REV’08), Barcelona, 8th
September 2008.
[4] Pohl, C., G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques, Springer-Verlag, New York USA, 2005.
[5] R.G. Cooper, “Stage-Gate Systems: A New Tool for
Managing New Products”, Business Horizons, May-June
1990, pp. 44-54.
[6] J. Karlsson, K. Ryan , “Cost-value approach for
prioritizing requirements”, IEEE Software, IEEE, Los
Alamos, Sept-Oct 1997, pp. 67-74.
[7] T. Kishi, N. Noda and T. Katayama, ”A Method for
Product Line Scoping Based on Decision-Making
Framework”, Proceeding Second International Conference,
SPLC 2002, Springer Berlin / Heidelberg, San Diego, CA,
USA, August 19–22, 2002, pp. 53-65.
[8] V. R. Basili, H. Dieter Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environments ”,
IEEE Transactions on Software Engineering, Vol 14(6),
USA, June 1988, pp. 758-773.
[9] Fenton, N.E., and Pfleeger, S.L., Software Metrics - A
Rigorous & Practical Approach 2nd Edition, International
Thomson Publishing, Boston, MA, 1996.
[10] B. Kitchenham, S.L. Pfleeger and N. Fenton, “Towards
a Framework for Software Measurement Validation”, IEEE
Transactions on Software Engineering, Vol 21(12), USA,
December 1995, pp. 929-944.
[11] Distributions of derived M3 can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/RE_09/Number
OfChangesNeededToRemoveTheFeature.bmp
[12] D. Greer, G. Ruhe, “Software release planning: an
evolutionary and iterative approach”, Information and
Software Technology, Vol 46(4), Elsevier, 2004, pp. 243-
253.
[13] J. Savolainen, M. Kauppinen and T. Mannisto,
“Identifying key requirements for a new product line”,
Proceedings - 14th Asia-Pacific Software Engineering
Conference APSEC 2007, IEEE Computer Society, Nagoya,
Japan, 2007, pp. 478-485.
[14] C. Ebert, J. De Man, “Requirements Uncertainty:
Influencing Factors and Concrete Improvements”,
Proceedings - 27th International Conference on Software
Engineering, ICSE 2005, IEEE Computer Society, Saint
Louis, MO, United States, 2005, pp. 553-560.
[15] G. Botterweck, S. Thiel, D. Nestor, S. bin Abid, C.
Cawley, “Visual Tool Support for Configuring and
Understanding Software Product Lines”, Proceedings - 12th
International Software Product Line Conference, SPLC
2008, IEEE Computer Society, Limerick, Ireland, 2008, pp.
77-86.
[16] Wohlin C., Runeson P., Host M., Ohlsson M.C., Regnell
and A. Wesslen, “Experimentation in Software Egnineering
An Introduction”, Kluwer Academic Publishers, USA, 2000.
[17] L. Karlsson, B. Regnell, T. Thelin, "Case Studies in
Process Improvement through Retrospective Analysis of
Release Planning Decisions", International Journal of
Software Engineering and Knowledge Engineering, Vol
16(6), 2006, pp. 885-915.

98

