
 Elsevier Editorial System(tm) for Information and Software Technology
 Manuscript Draft

Manuscript Number:

Title: Obsolete Software Requirements

Article Type: Research paper

Corresponding Author: Mr. Krzysztof Wnuk, MSC

Corresponding Author's Institution: Lund University

First Author: Krzysztof Wnuk, Doctoral Candidate

Order of Authors: Krzysztof Wnuk, Doctoral Candidate; Tony Gorschek, Professor; Showayb Zahda,
Master of Science

Abstract: [Context] Coping with rapid change of requirements is crucial for staying competitive in
software business. Frequently changing customer needs and fierce competition are example reasons
for quick evolution of requirements that often become obsolete even before project completion.
[Objective] Although the phenomenon of obsolete requirements and the implications of not handling
them are known, there is a lack of empirical research dedicated to understanding the nature of
obsolete software requirements and their impact and role in requirements management.[Method] In
this paper, we report results from an empirical investigation with 219 respondents from different
companies, aimed at investigating the phenomenon of obsolete software requirements. [Results] Our
results contain, but are not limited to, defining the phenomenon of obsolete software requirements,
investigating how they are handled in industry today, and their potential impact. [Conclusion]
Supported by our results we conclude that obsolete software requirements constitute a significant
challenge for companies developing software intensive products, in particular in large projects, and
that the companies rarely have processes of handling obsolete software requirements. Further, our
results call for future research in creating automated methods for obsolete software requirements
identification and management, that could enable efficient management of obsolete software
requirements in large projects.

Obsolete Software Requirements

Krzysztof Wnuk

Department of Computer Science, Lund University, Ole Römers väg 3, SE-223 63 Lund,
Sweden

Tel.: +46-46 222 45 17
Fax: +46-46 13 10 21

email: Krzysztof.Wnuk@cs.lth.se

Tony Gorschek

School of Computing Software Engineering Research Lab, Blekinge Institute of
Technology, SE-371 79 Karlskrona, Sweden

Tel.: +46 455-38 58 17
Fax: +46 455-38 50 57

email: Tony.Gorschek@bth.se

Showayb Zahda

School of Computing Software Engineering Research Lab, Blekinge Institute of
Technology, SE-371 79 Karlskrona, Sweden

Tel.: +46 455-38 58 17
Fax: +46 455-38 50 57

email: shzc10@student.bth.se

Abstract

[Context] Coping with rapid change of requirements is crucial for staying
competitive in software business. Frequently changing customer needs and
fierce competition are example reasons for quick evolution of requirements
that often become obsolete even before project completion. [Objective] Al-
though the phenomenon of obsolete requirements and the implications of not
handling them are known, there is a lack of empirical research dedicated to
understanding the nature of obsolete software requirements and their impact
and role in requirements management. [Method] In this paper, we report
results from an empirical investigation with 219 respondents from different
companies, aimed at investigating the phenomenon of obsolete software re-
quirements. [Results] Our results contain, but are not limited to, defining
the phenomenon of obsolete software requirements, investigating how they

Preprint submitted to Information and Software Technology January 6, 2012

*Manuscript
Click here to view linked References

http://ees.elsevier.com/infsof/viewRCResults.aspx?pdf=1&docID=3776&rev=0&fileID=49425&msid={C895D0A2-4062-46CD-A31A-68B19DE2D45B}

are handled in industry today, and their potential impact. [Conclusion] Sup-
ported by our results we conclude that obsolete software requirements con-
stitute a significant challenge for companies developing software intensive
products, in particular in large projects, and that the companies rarely have
processes of handling obsolete software requirements. Further, our results
call for future research in creating automated methods for obsolete software
requirements identification and management, that could enable efficient man-
agement of obsolete software requirements in large projects.

Keywords: requirements management, obsolete requirements, survey,
empirical study

1. Introduction

Software, as a business, is a demanding environment where a growing
number of users, rapid introduction of new technologies, and fierce competi-
tion are inevitable [1, 2, 3]. This rapidly changing business environment is
challenging traditional requirements engineering (RE) approaches [4, 5, 6].
The major challenges in this environment are high volatility and quick evo-
lution of requirements, requirements that often tend to become obsolete even
before project completion [1, 7, 8, 9]. At the same time the product release
time is crucial [10, 11, 12] for the success of the software products, especially
in emerging or rapidly changing markets [10].

Coping with rapid change of requirements is crucial as time-to-market
pressures often make early pre-defined requirements specifications inappro-
priate almost immediately after their creation [7]. In Market-Driven Re-
quirements Engineering (MDRE) the pace of incoming requirements [2], and
requirements change, is high, and software companies have to identify which
requirements may become obsolete or outdated. Rapid identification and
handling of potentially obsolete requirements is important as large volumes
of degrading requirements threatens the requirements management. In ex-
treme cases, obsolete requirements could dramatically extend project time-
lines, increase the total cost of the project or even cause project failure - and
even the successful realization of the obsolete requirements adds little or no
product value [13, 14, 15]. Thus, the identification, handling, and removal of
obsolete requirements is central.

The phenomenon of obsolete requirements and the implications of not
handling them are known, see e.g. [16, 13, 14, 17, 18, 19, 20]. However, very

2

little research into requirements management or guidelines, see e.g. [21, 22,
23, 24, 25, 26], standards [27, 28], explicitly mentioning the phenomenon of
Obsolete Software Requirements (OSRs) has been performed. The term itself
is only partly defined and empirically anchored [17].

In this paper, we present results from an empirical study, based on a sur-
vey with 219 respondents from different companies, aimed at investigating
the phenomenon of obsolete requirements. This included, but was not lim-
ited to, defining the phenomenon based on the perceptions of practitioners
in industry. Further, the study also aims to collect data on how obsolete re-
quirements are perceived, their impact, and how they are handled in industry
today.

This paper is structured as follows: Section 2 provides the background
and related work. Section 3 describes the research methodology. Section 4
describes and discusses the results of the study. Section 5 concludes the
paper.

2. Background and Related Work

Requirements management, as an integral part of requirement engineer-
ing [9, 24], takes care of the data created in requirements elicitation and
development phases of the project and integrates this data into the overall
project flow [9]. Also, it supports later lifecycle modification of the require-
ments [9]. As changes occur during the entire software project lifetime [29],
managing changes to the requirements is a main concern of requirements
management [22, 23] for large software systems. Moreover, in some contexts
like Market-Driven Requirements Engineering (MDRE) a constant stream of
new requirements and change requests is inevitable [2]. Uncontrolled changes
to software may cause cost of the regression testing exceeding 100000 dol-
lars [9]. As pointed out by Hood [9], the absence of requirements management
may sooner or later cause outdated requirements specifications as the infor-
mation about the changes to original requirements is not fed back to the re-
quirements engineers. Moreover, requirements management process descrip-
tions in literature seldom contain managing obsolete requirements [22, 21].

Requirements creep and requirements leakage (also referred as uncon-
trolled requirements creep) [30, 31] is related to OSRs. Scope creep has also
been mentioned as having a big impact on risk and risk management in enter-
prise data warehouse projects [32]. Moreover, DeMarco and Lister also listed
scope creep as one of the five core risks during the requirements phase and

3

state that the risk is a direct indictment of how requirements were gathered
in the first place [33]. Scope creep may lead to significant scope reductions,
which in turn postpone the implementation of the planned functionality and
may in the end cause requirements becoming obsolete [8].

Despite its importance as a concept, in relation to managing requirements
for software products, the phenomenon of Obsolete Software Requirements
(OSRs) seems to be underrepresented in literature. To the best of our knowl-
edge, only a handful of articles and books mention the term obsolete require-
ments or features. Among the existing evidence, Loesch and Ploederefer [18]
claim that the explosion of the number of variable features and variants in
a software product line context is partly caused by the fact that obsolete
variable features are not removed. Murphy and Rooney [13] stress that re-
quirements have ’a shelf life’ and suggest that the longer it takes from the
requirements definition to implementation, the higher the risk of change is.
Moreover, they also state that change makes requirements obsolete as well as
that obsolete requirements can dramatically extend project timelines and in-
crease the total cost of the project. Similarly, Stephen et al. [14] list obsolete
requirements as one of the symptoms of failure of IT project for UK govern-
ment. Albeit the report does not define obsolete requirements per see, the
mentioned symptom of failure (obsolete requirements) is caused by inability
to unlock the potential offered by new technologies by timely responding to
the rapid pace of change in technology (the mentioned inability is ascribed
to obsolete requirements).

The phenomenon of Obsolete Software Requirements has not yet been
mentioned by standardization bodies in software engineering. Neither the
IEEE 830 standard [27] nor CMMI (v.1.3) [28] mention obsolete software
requirements as a phenomenon, nor are actions, processes or techniques sug-
gested in relation to handling the complexity. On the other hand, Savolainen
et al. [17] propose a classification of atomic product line requirements into:
non-reusable, mandatory, variable and obsolete. Moreover they propose a
short definition of obsolete requirements and the process of managing these
requirements for software product lines (”by marking them obsolete and
hence not available for selection into subsequent systems”). Mannion et
al. [19] propose a category of variable requirements called obsolete and sug-
gest dealing with them as described by Savolainen et al. [17].

Obsolete requirements are related to the concept of requirements volatil-
ity. SWEBOOK classifies requirements into a number of dimensions where
one of them is volatility and stability, mentioning that some volatile re-

4

quirements may render obsolete [34]. On the other hand Nurmuliani and
Zowghi [35] propose a taxonomy of requirements change where one of the
reasons for requirements changes is obsolete functionality, defined as ”func-
tionality that is no longer required for the current release or has no value for
the potential users”. For this paper, we understand requirements volatility
as a factor that influences the change of requirements and is different from
the obsolescence of requirements. Obsolescence of requirements is defined as
a situation were volatile become outdated and remain in the requirements
databases [36, 37].

Looking at previous work, the obsolescence of software artefacts has been
mentioned in the context of obsolete hardware and electronics (for exam-
ple in military, avionics or other industries). Among others, Herald et al.
propose a system of obsolescence management framework for system compo-
nents (in this case hardware, software, constraints) that is mainly concerned
with system design and evolution phases [20]. Albeit the framework contains
a technology roadmapping component, it does not explicitly mention OSRs.
Merola [15] describes the software obsolescence problem in today’s defence
systems of systems (in the software components level, also called COTS),
and stresses that even though the issue has been recognized of equal gravity
as hardware obsolescence issue, it has not reached the same level of visibility.
Merola outlines some options for managing software obsolescence, e.g. nego-
tiated with the vendor downgrading the software license, using wrappers and
software application programming interfaces or performing market analysis
and surveys of software vendors.

Due to a limited number of studies in the literature that are dedicated
to the phenomenon of OSRs, we have decided to investigate the concept
utilizing a survey research strategy. We investigate to what extent obsolete
software requirements are: 1) perceived as a real phenomenon in industry, 2)
perceived as a real problem in industry. Moreover, we investigate how OSRs
are identified and managed in practice, and what contextual factors influence
OSRs.

3. Research methodology

This section covers the research questions, the research methodology, and
data collection methods used in the study.

5

3.1. Research questions

Due to a limited number of related empirical studies identified in relation
to OSRs, we decided to mainly focus on understanding the phenomenon of
OSR, and its place in the requirements engineering landscape. Thus exis-
tence, descriptive, as well as classification questions dominate the research
questions outlined in Table 1, complemented with aim [38]. Throughout the
research questions, we have used the following definition of Obsolete Software
Requirements (OSRs), based on the literature study and the survey:
”An obsolete software requirement is a software requirement (implemented
or not) that is no longer required for the current release or future releases,
and it has no value (business goals) for the potential customers or users of a
software product for various reasons.1”

3.2. Research design

A survey was chosen as the main tool to collect empirical data. A survey
enabled reaching a larger number of respondents from geographically diverse
locations [39] as well as automation of data collection and analysis, flexibility
and convenience to both researchers and participants, [38, 40, 41].

As the goal of the survey was to elicit as much information from indus-
try practitioners as possible in relation to OSRs, we opted for an inclusive
approach to catch as many answers as possible. This prompted the use of
convenience sampling [41]. The details in relation to survey design and data
collection are outlined below.

3.2.1. Survey design

The questionnaire was created based on a literature review of relevant
topics, such as requirements management, volatility, and requirements trace-
ability (see Section 2). The questions were developed iteratively; each version
of the questionnaire was discussed among the authors and evaluated in rela-
tion to how well the questions reflect the research questions and the research
goals. The resulting final questionnaire is available online [42].

The questionnaire contained 15 open and closed questions of different
format i.e. multiple choice questions or single choice questions. In case of
open questions, respondents had the possibility to provide their own answer

1For reader convenience we present the definition in this section, rather than post
results. The description of how the definition was derived is available in Section 4.

6

Table 1: Research questions

Research question Aim Example answer

RQ1: Based on empiri-
cal data, what would be
an appropriate definition
of Obsolete Software Re-
quirements (OSR)?

Instead of defining the phe-
nomenon ourselves we base
the definition on how the
phenomenon is perceived in
industry.

”An obsolete software
requirements is a re-
quirement that has not
been included into the
scope of the project for
the last 5 projects”

RQ2: What is the im-
pact of the phenomenon
of obsolete software re-
quirements on the indus-
try practice?

To investigate to what de-
gree is OSR a serious con-
cern.

”Yes it is somehow seri-
ous”

RQ3: Does requirement
type affect the likeli-
hood of a software re-
quirement becoming ob-
solete?

Are there certain types of re-
quirements that become ob-
solete more often than oth-
ers, can these types be iden-
tified?

”A market requirement
will become obsolete
much faster than a legal
requirement.”

RQ4: What methods ex-
ist, in industry practice,
that help to identify ob-
solete software require-
ments?

To enact a process to de-
tect/identify/find obsolete
software requirements or
nominate requirements that
risk becoming obsolete.

”To read the require-
ments specification care-
fully and check if any re-
quirements are obsolete”

RQ5: When OSRs are
identified, how are they
typically handled in in-
dustry?

In order to identify possi-
ble alternatives for OSR han-
dling, we first need to under-
stand how they are handled
today.

”We should mark found
obsolete requirements as
obsolete but keep them
in the requirements
database”

RQ6: What context fac-
tors, such as project
size or domain, influence
OSRs?

As a step in understand-
ing and devising solutions for
handling OSRs, it is impor-
tant to identify contextual
factors that have an influ-
ence on the phenomenon of
obsolete requirements.

”OSRs are more present
in a large projects and
for products that are
sold to an open market
(MDRE context)”

RQ7: Where in the
requirements life cycle
should OSRs be han-
dled?

To position requirements ob-
solescence in the require-
ments engineering life cycle.

”They should be a part
of the requirements
traceability task”

7

as well as select a pre-defined answer from the list. For closed questions, we
used a Likert scale from 1 to 5, where 1 corresponds to Not likely and 5 to
Very likely [43].

The questionnaire was divided into two parts, one related to OSRs (9
questions), and one to demographics (6 questions). Table 2 below shows the
survey questions, with a short description of their purpose (2nd column), the
list of relevant references (3rd column), and a link to what research question
it primarily addresses (4th column). For reasons of brevity we do not present
the entire survey in the paper. However, the complete survey questionnaire,
including the references that were used to construct the categories for the
answers is available online [42].

3.2.2. Operation (execution of the survey)

The survey was conducted using a web-survey support website called
SurveyMonkey [45]. Invitations to participate in the questionnaire were sent
to the potential audience via:

• Personal emails - utilizing the contact networks of the authors

• Social network website [46] - placing the link to the questionnaire on
the board of the SE and RE groups and contacting individuals from the
discovered groups based on their designated titles e.g. senior software
engineer, requirements engineer, system analyst, project manager, only
to name a few

• Mailing lists - requirements engineering and software engineering dis-
cussion groups [47]

• Software companies and requirements management tools’ vendors [48]

Master students and undergraduate students were excluded as potential re-
spondents as their experience was judged as insufficient to answer the ques-
tionnaire. The questionnaire was published online on the 3rd of April 2011
and the data collection phase ended after 30 days on the 3rd of May 2011.
In total, about 1700 individual invitations were sent out. The number of
complete collected responses was 219. The response rate was around 8%,
which is an acceptable level [38, 39]. The results of the survey are presented
in Section 4.

8

Table 2: Mapping between the questionnaire questions and the research questions

Question Purpose Relevant references RQ

Q1 To derive the definition of
the Obsolete Software Re-
quirements

[17, 20, 35, 15] RQ1

Q2 To investigate the impact of
the OSRs on the industry
practice

[13, 14] RQ2

Q3 To investigate how likely
the various types of require-
ments would become obso-
lete.

The list of require-
ments types was derived
from analyzing several
requirements classifica-
tions [36, 37]

RQ3

Q4 To investigate the possible
ways of identifying OSR in
the requirements documents

[18, 20] RQ4

Q5 To investigate the possible
actions to be taken against
obsolete requirements after
they are discovered

[18, 20] RQ5

Q6 To investigate if large or
smaller projects are more or
less affected by OSRs

The classification of dif-
ferent sizes of require-
ments engineering was
adopted from Regnell et
al. [44]

RQ6

Q7 To investigate if OSRs are re-
lated to the software context

[14] RQ6

Q8 To understand where in
the requirements life cycle
should OSRs be handled

Current standards for
requirements engi-
neering and process
models [27, 28] do
not consider obsolete
requirements.

RQ5,
partly
RQ7

Q9 To investigate if industry
has any process of managing
OSR

[18, 17] RQ5

9

3.3. Validity
In this section, we discuss the threats to validity in relation to research

design and data collection phases. The four perspectives on validity discussed
in this section are based on classification proposed by Wohlin et al. [49].

Construct validity. The construct validity is concerned with the relation
between the observations from the study and the theories behind the research.
The way how questions were phrased is one of the threats to construct valid-
ity. This threat was alleviated by revising the questionnaire by the authors
of this paper and an independent reviewer who is a native English speaker
and writer. In order to minimize the risk of misunderstanding or misinter-
preting the survey questions by respondents, a pilot study was conducted
on master students in software engineering. Still, the reader should keep in
mind that the data given by respondents is not based on any objective mea-
surements and thus its subjectivity affects the interpretability of the results.
The mono-operational bias [49] threat to construct validity is addressed by
collecting data from more than 200 respondents from 45 countries. Finally,
the mono-method bias [49] threat to construct validity was partly addressed
by analyzing related publications. Albeit several related publications have
been identified (see Section 2), this threat is not fully alleviated and requires
further studies. Finally, considering social threats to construct validity it is
important to mention the evaluation apprehension threat [49]. The respon-
dents’ anonymity was guaranteed.

Conclusion validity. The conclusion validity is concerned with the ability
to draw correct conclusions from the study. In order to address the reliabil-
ity of measures threat, the questions used in the study were reviewed by the
authors of this paper and one external reviewer, a native English speaker.
The low statistical power threat [49] was addressed by using as suitable sta-
tistical test as it was possible on the given type of data. Before running the
tests, it was tested if the assumptions of the particular test were not vio-
lated. However, since multiple tests were conducted on the same data, the
risk of type-I error increases and using for example the Bonferroni correction
should be discussed here. Since the correction was criticized by a number
of authors [50, 51] it remains an open question if it should be used. There-
fore, we report the p-values of all performed tests in case the readers want
to evaluate the results using the Bonferroni correction or other adjustment
techniques [50]. Finally, the random heterogeneity of subjects [49] threat
should be mentioned here as this aspect was only partly controlled. How-
ever, this low heterogeneity of subjects allows us to state conclusions of a

10

greater external validity.
Internal validity. Threats to internal validity are related to factors that

affect the causal relationship between the treatment and the outcome. The
instrumentation threat [49] to internal validity was addressed by reviews of
the questionnaire and the pilot study. The maturation threat to internal
validity was alleviated by measuring the time needed to participate in the
survey in the pilot study (15 minutes). The selection bias threat to internal
validity is relevant as non-random sampling was used. Since the respon-
dents were volunteers, their performance may vary from the performance of
the whole population [49]. However, the fact that 219 participants from 45
countries with different experience and industrial roles answered the survey
minimizes the effect of this threat.

External validity. The threats to external validity concern the ability
to generalize the result of research efforts to industrial practice [49]. The
survey research method was selected to assure as many responses as possible,
generating more general results [38, 52, 41] than a qualitative interview study.
Moreover, the large number of respondents from various countries, contexts
and professions contributes to generalizability of results.

4. Results and Analysis

The survey was answered by 219 respondents. In case of questions that
enabled multiple answers, we calculated the results over the total number of
answers, not respondents. For questions that used a Likert scale, we present
the results using average rating and the percentage received by each answer
on the scale. The results are presented in percentage form and complemented
by the number of answers or respondents (when relevant). Statistical analysis
(where relevant) was performed using chi-square test [53], and the complete
results from the analysis are listed online, including contingency tables for
some of the answers [54].

4.1. Demographics

Figure 1 depicts the top 10 respondent countries (out of 45)2. The full
list of the countries is available in [55]. The US and the UK constitute about

2The actual category names have been changed for readability purposes. The original
names are mentioned using italics in the paper and are available in the survey question-
naire [42]

11

Figure 1: Top 10 countries among respondents

30% of the total respondents. 54% of the respondents came from Europe.
The main roles of the respondents in their organization can be seen in

Figure 2. About one quarter of the respondents (24.9% or 54 respondents)
described their role as requirements engineers, analysts or coordinators.

The second biggest category, Other (with 30 answers), include roles such
as System Engineers, Software Quality Assurance, Process Engineers, Busi-
ness Analysts. The third biggest category was Researchers or Academics
(11.5% of all answers). Software project managers and Software Architect or
Designer roles got the same number of respondents (22 respondents each).
Twelve respondents declared their main role as Software Product Manager,
which is a relatively high number, as product managers are generally few
in an organization. This would seem to indicate that middle and senior
managers overall represented a substantial part of the respondents.

Looking at the type of the business domain of the respondents, Figure 3
gives an overview. A total of 32.8% stated the IT or Computer and Software
Services. The second largest group of answers is Engineering e.g. automo-
tive, aerospace, energy (12.5%). These were followed by Telecommunication
(10.7%) and Consultancy (9.3%).

The sizes of the respondents’ organizations are depicted in Figure 4. We

12

Figure 2: Main role of respondents

can see that more than half of the respondents work in large companies (>501
employees).

Looking at the average duration of typical project in the respondents’
organizations (see Figure 5), about half of the respondents (∼45%) were
involved in projects that lasted for less than a year and a quarter of the
respondents were involved in projects that lasted between one and two years.
One quarter indicated projects typically lasting more than two years.

The development methodologies and processes used by the respondents
were also investigated. Since this question allowed for the possibility of pro-
viding multiple answers, the results are calculated over the number of re-
sponses. The results are depicted in Figure 6. Agile development tops the
list of answers with approximately a quarter (23.6%), and in the second place
we find incremental and evolutionary methodology (18.8%). Surprisingly, wa-
terfall is still common and widely used (17.7%). In the Other category, most
of the respondents reported that they mixed several methodologies, or that
they had their own tailored methodology.

The last question in the demographics part investigates the type of re-

13

Figure 3: Types of business domains of respondents

quirements engineering the respondents are involved in (see Figure 7). Since
this question also enabled multiple answers, the results are calculated based
on the total number of answers. Bespoke or Contract driven requirements en-
gineering received 44.2% of all the answers. Market-driven requirements en-
gineering received 29.5%, while Open source only 5.1%. Outsourced projects
appeared in 19.9% of the answers.

4.2. Defining obsolete requirements (RQ1)

Defining the term Obsolete Software Requirement (OSR) is central to the
understanding of the phenomenon. The categories used in this question are
inspired by the definitions of OSR found in literature (see Section 2), and are
defined in the context of the current release. The answers from all respon-
dents are depicted in Figure 8. Since the question enables multiple answers,
the results are calculated for all the answers not respondents. The answer
selected primarily by our respondents (29.9% of all answers, see Figure 8 de-

14

Figure 4: Size of respondents’ organization

Figure 5: Average duration of typical projects from our respondents

fines OSR as ”no longer required for the current release for various reasons”.
This result is in line with the definition of obsolete functionality provided by
Zowghi et al. [35]. Further, 21% of the answers were given to the definition

15

Figure 6: Development processes and methodologies

of an OSR as a requirement that: ”has no value for the potential users in
the current release”. This category is similar to the definition of obsolete
software applications provided by Merola [15], as applications taken off the
market due to decrease in product popularity or other market factors.

A total of 33 responses (7.7%) were in the Other category. Out of these,
8 respondents (∼ 25%) suggested that an OSR is not necessarily confined
to the current release, but it also goes to future releases. Also, respondents
stressed that an OSR is a requirement that has lost its business goal or value.

As a result, all points considered, the following definition of an OSR was
formulated:

”An obsolete software requirement is a software requirement
(implemented or not) that is no longer required for the current
release or future releases, and it has no or little business value
for the potential customers or users of a software product, for
various reasons.”

16

Figure 7: Types of Requirements Engineering

Figure 8: Respondents’ definition of an OSR

As a next step we performed statistical analysis to investigate if there were
relationships between the selected definition of OSRs and the respondents’
roles, the size of organizations and the development methodologies used.
Overall, the relationships turned out not to be statistically significant due
to violations of the chi-square test assumptions (some answer alternatives
had too few respondents, see Table A.2 in [54]). However, significant results
could be observed (using chi-square test) between the top 5 methodologies

17

(see Figure 6) and the results for choice of OSR definition (p-value 0.011,
see Table A.2a in [54]). Respondents that reported using a Rational Unified
Process (RUP) methodology less frequently selected the definition of OSRs as
(1) no longer required for the current release (31.3% of all answers comparing
to over 50%) or (2) never used or implemented in the product (34.4% of all
answers comparing to over 40%) than respondents that reported utilizing
any of the remaining four methodologies. Moreover, the RUP respondents
provided more answers in the Other category, and indicated that OSRs can
be e.g. ”a requirement that evolved in concept but not in documentation”
or ”an abstract requirement to showcase the technical capability to the end
user”. Finally, only three RUP respondents defined an obsolete software
requirement as a requirement that is rejected to be included into the current
release, while the respondents that selected the other top four methodologies
selected this answer more frequently, around 20% of answers. This would
seem to indicate that the consensus or perception as to what an obsolete
software requirement is achieved with the help of the RUP methodology is
more stable than achieved with the help of other methodologies.

Since the RUP methodology considers iterative development with con-
tinuous risk analysis as a core component of the method [56], the number of
refused or rejected requirements should in this case be low, which confirms
our results. Moreover the majority of the RUP respondents also reported to
work with bespoke or contract-driven projects, where the number of changes
after the contract is signed is limited and usually extensively negotiated.
Thus it appears to be possible that the RUP respondents could avoid re-
jected or refused requirements and could manage to achieve more precise
and stable agreements with their customers [56] which in turn could result
in fewer OSRs.

Further analysis reveals that the definition of OSRs is not significantly
related to the size of the companies, the length of the typical project, or
the domain (p-values in both cases greater than 0.05). Domain and project
length could be seen as qualifiers of OSR’s, e.g. projects running over long
periods could suffer increased requirements creep [8]. However, this would
most probably not be visible in the definition of OSRs, rather in the impact
of OSRs, which is investigated in the next section.

4.3. The potential impact of OSRs (RQ2)

When queried about the potential impact of OSRs on their product de-
velopment efforts a total of 84.3% of all respondents considered OSR to be

18

Figure 9: Impact of OSRs on industry practice

Serious or Somehow serious (see Figure 9). This indicates that among the
majority of our respondents OSRs seems to have a substantial impact on
the product development. Our result confirms previous experiences (see e.g.
Murphy and Rooney [13], Stephen et al. [14] and Loesch and Ploederefer [18]).
A total of 6% of the respondents considered OSRs as a Very serious issue,
while 10% of the respondents (21 respondents) deemed OSR as a Trivial
matter.

In an attempt to further decompose and test context variables (e.g. com-
pany size, respondents’ roles and development methodologies) we performed
chi-square tests (see Table A.1 in [54]) between the context variables and to
what degree OSRs where considered having a substantial impact. The tests
resulted in p-values greater than 0.05, which indicates that no statistically
significant relationships between the analyzed factors could be seen. We can
however ascertain that a clear majority of the respondents deemed the phe-
nomenon of OSRs to be a relevant factor to be taken into consideration in
development efforts.

19

Looking at the 21 (10%) respondents that considered OSRs to be Triv-
ial, about 58% of them worked with requirements or in project management
roles. This would seem to indicate that those respondents, contrary to soft-
ware development roles, have less difficulty in managing OSRs, especially
since the analysis of the answers to questionnaire question 9 (see [54] and
Section 4.9) revealed that 10 respondents that considered OSRs to be Triv-
ial also confirmed having a process of managing OSRs. Thus, it appears to
be a logical conclusion that the negative influence of OSRs on the product
development could be alleviated by designing and introducing an appropri-
ate process of managing OSRs (more about the current processes discovered
among out respondents can be found in Section 4.9).

Further analysis of the respondents who considered OSRs as Trivial in-
dicated that more than 80% of them worked for large companies with >
101 employees. Since large companies often use more complex process mod-
els [57], in contrary to small companies that might have budget constraints
to hire highly quality professionals and their processes are typically informal
and rather immature [58], we could assume that the issue of managing OSRs
could have been already addressed in this case.

Further analysis of the Trivial group indicated that almost half of them
(47.6%) worked in the IT or computer and software services domain, In the
service domain, the main focus of requirements engineering is to identify the
services that match system requirements [59]. In case of insufficient match
of new requirements with the old system, product development may simply
select a new more suitable service. This in turn might imply that the OSRs
are discarded by replacing the old service with the new one. Further, the
typical product lifetime for IT systems is usually shorter than for engineering-
focused long-lead time products [60] (e.g. aerospace industry), which in turn
could minimize the number of old and legacy requirements that have to be
managed. The possible conclusion from our analysis is that OSRs are less of
a critical issue in IT and service oriented domains.

Among the respondents that considered OSRs Very serious (13 respon-
dents) the majority (53.8%) worked in large companies and used agile, ad-
hoc or incremental methodologies (61.6%). This result seems to indicate
that OSRs are also relevant for agile development and not reserved for only
more traditional approaches like waterfall. Murphy et al. [13] stressed that
the traditional (waterfall) requirements process seriously contributes to the
creation of obsolete requirements by creating a ”latency between the time
the requirements are captured and implemented”. This latency should be

20

less in agile projects (shorter iterations and deliveries). This might indicate
that either the latency is present in agile projects as well, or that latency is
not the primary determinant of OSRs. It should be observed that 69.2% of
the respondents that considered OSRs as Very serious reported having no
process of handling OSRs, which could indicate why OSRs were considered
a Very serious problem.

The cumulative cross tabulation analysis of the respondents who con-
sidered OSRs Somehow serious, Serious or Very serious (total 196 respon-
dents, 89%) confirmed the severe impact of OSRs on large market-driven
and outsourced projects (see the results in Section 4.7.2). Moreover, 76.8%
of those respondents reported that they had no process/method/tool for
handling OSRs. Additionally 72.3% of respondents who considered OSRs
Somehow serious, Serious or Very serious used manual ways to identify
OSRs. It is also interesting to observe that these results, between the re-
spondents who declared the following: Agile software development or In-
cremental/evolutionary development methodologies, and Waterfall develop-
ment, only differ very slightly. Respondents using Waterfall development
(and considered OSRs Serious or Somehow serious or Very serious) were
somewhat more prone to dismiss the impact of OSRs compared to respon-
dents using Agile software development or Incremental/evolutionary method-
ologies. This would seem to indicate that, because waterfall-like processes
usually restrict late or unanticipated changes, and focusing on extensive doc-
umentation [61, 7, 62], the impact of OSRs in those processes could be min-
imized. However, it says nothing about to what extent the realized features
were useful or usable for the customers. That is some waterfall projects may
not have perceived OSRs to be a major issue for the project, but maybe for
the product per se, which is a classic question of value perception in relation
to perspective as described by Gorschek and Davis [63].

The type of requirements engineering context factor (see Figure 7) only
minimally influenced the overall results for this questionnaire question. Re-
spondents who reported to work with Bespoke or contract driven require-
ments engineering graded OSRs slightly less serious than respondents who
reported to work with MDRE, which seems to indicate that OSRs are a
problem in both contract driven (where renegotiation is possible [2]) and
market-driven (where time to market is dominant [2]) projects. However,
the difference could also indicate that there is a somewhat alleviating factor
in contract-based development. That is, contract based development aims
at delivering features and quality in relation to stated contract, thus getting

21

paid for a requirement even if it is out of date at delivery time. In a MDRE
context however the product might fail to sell if the requirements are not
fulfilled and the features out of date [2].

4.4. Requirements types and OSRs (RQ3)

The respondents were asked to choose what types of requirements were
most likely to become obsolete (Likert scale, 1 = Not likely, and 5 = Very
likely). The pre-defined ”types” were derived from Harker et al. [36] and
McGee and Greer [37].

Figure 10: Types of OSRs likely to become obsolete

According to the results depicted in Figure 10, OSRs seem to belong to the
categories of Incorrect/misunderstood requirements (mean 3.88), Inconsistent
requirements (mean 3.74), and Ambiguous requirements (mean 3.72). From
a becoming obsolete standpoint, the level and quality of specification should
not matter per se. However, if quality of requirement’s specification is seen
as an indicator of a lack in investment (in analysis and specification) or a
specific requirement several possible scenarios could emerge. For example,
practitioners in industry might have a gut feeling that certain requirements
will become OSRs, thus they are not worth the effort. Another possibility is
that OSRs are harder (require more effort/knowledge) to specify than others,
although, it could just as well indicate that most requirements are specified
badly, thus also OSRs. To answer this, further investigation is needed. The

22

only thing we can say for sure is that requirements becoming obsolete seem
to suffer from inadequacies in terms of correctness, consistency, and further
seem to be ambiguously specified.

Interestingly, functional requirements, coming from domain experts, were
considered less likely to become obsolete than requirements coming from
customers, end users, and developers respectively. One explanation could be
that domain experts possess the knowledge and experience of the domain,
thus their requirements may be less likely to change [64]. On the other
hand, since the customers are the main source of software requirements and
the main source of economic benefits to the company, their requirements
are crucial for the success of any software project [65], implying that this
category needs to be kept up to date and thus more likely to become obsolete.
Another possible explanation could be that customer requirements are not as
well (unambiguously) specified as internal requirements [65, 22], resulting in
a tendency of those requirements to become obsolete faster/more frequently.

Customer requirements becoming obsolete in excess to internal domain
expert requirements is confirmed by Wnuk et al. [8], who reported that stake-
holder priority dictates removal and postponement of the realization of re-
quirements, and domain experts are often part of the prioritization of all
requirements. On the other hand, Kabbedijk [66] reported that change re-
quest from external customers are more likely to be accepted than change
requests from internal customers, which might imply that some customer re-
quirements are handled as change requests instead of as requirements input to
development projects. In both cases, the authors reported high volatility of
requirements, which is in line with the study by Nurmuliand and Zowghi [35]
who related obsolete requirements with requirements volatility.

According to our respondents, requirements related to standards, laws
and regulations are the least likely to become obsolete, which seems logical,
as the lifetime of legislation and standards is often long in comparison to cus-
tomer requirements. Furthermore, the low average score for the Requirements
related to third party components e.g. COTS (even lower than for the require-
ments related to the company’s organization and policies) also seems to be
logical, especially in relation to the results for RQ2 (see Section 4.3) where
almost half of the respondents who considered OSRs to be Trivial worked
with IT or Computer and software services domain (we assume after Bano
and Ikram [59] that COTS are used in the software service domain). More-
over, the results for the respondents who worked with Outsourced projects
(question 15 in [42]) are in accordance with the overall results. Also, the

23

differences between the respondents who worked with Outsourced, MDRE
and Bespoke or contract driven requirements engineering projects in relation
to the degree of obsolescence of COTS requirements are subtle. This may
suggest that other aspects, not investigated in this study, could influence the
results. Finally, albeit OSRs seems to be unrelated with one of the main
challenges of COTS systems, i.e. the mismatch between the set of capabili-
ties offered by COTS products and the system requirements [67], the nature
of the COTS selection process, e.g. many possible systems to consider and
possible frequent changes of the entire COTS solution when the current gets
outdated, may help to avoid OSRs and their negative impact on the products.

Further analysis of the influence of the context factors indicates that
the respondents’ domains, company size, and methodologies have minimal
impact on the results. Not surprising, more respondents who worked with
projects running over longer timespans graded Functional requirements origi-
nated from end users as Very likely to become obsolete than respondents who
worked with short projects (8.7% of respondents who worked with projects
<1 year and 25.7% respondents who worked with projects > 1 year). One
explanation could be that long projects, if deprived direct and frequent com-
munication with their customers, and exposed to rapidly changing market
situations, can face the risk of working on requirements that are obsolete from
the users’ point of view. This interpretation is to some extent supported by
the results from RQ7 (see Table 4) where the respondents graded MDRE con-
texts (characterized by limited possibilities to directly contact the end users
and continuously arriving requirements [2]) or Outsourced projects (where
communication is often done across time zones and large distances [68]) as
more affected by OSRs than bespoke contexts. Moreover, the success of
Market-driven projects mainly depends on the market response to the pro-
posed products [2], which if released with obsolete functionality may end
up simply not bought by the customers. Thus, we believe that it is impor-
tant to further investigate additional factors that could render Functional
requirements originated from end users obsolete.

4.5. Methods to identify OSRs (RQ4)

More than 50% of the answers pointed out that manual ways of discover-
ing OSRs are being the primary method (see Figure 11). At the same time,
the context factors such as the different methodologies, types of RE, length
of the projects, roles of respondents or the domain that respondents worked
in turned out not to significantly affect the top answer for this question. A

24

Figure 11: Methods used to identify OSRs

total of 13.29% of all answers indicated having a predefined status in their
requirements handling systems for OSRs. Furthermore, 11.19% of all an-
swers (32 answers) were given to the category I never found them or I never
thought of finding them. Finally, less than 10% of all answers (24 answers)
indicated the existence of any sort of automation in terms of identification
of OSRs.

The answers from respondents who indicated using automated ways of
discovering OSRs provided some names for the automated techniques, e.g.
”customized system based on JIRA that takes OSRs into account by using
special view filters”, ”traceability using DOORs to analyze for orphan and to
track and status obsolete requirements”, or ”a tool called Aligned Elements
to detect any inconsistencies including not implemented requirements”. This
would indicate that some tool support is present, however tool efficiency and
effectiveness was not part of the study.

Further analysis indicated that the majority of respondents using tools of
some sort worked with companies > 501 employees (62%). This seems reason-
able as large companies usually have more money for tool support [58], and
can even request especially tailored software from the requirements manage-
ment tool vendors. The fact that automated methods to identify OSRs are
rare among the smaller companies calls for further research for lightweight
and inexpensive methods of OSRs identification that can more easily be
adapted in those companies.

On the other hand, more than half (15) of the respondents from the
automated group also indicated that they identify OSRs manually. One ex-

25

planation could be that automated methods are used together with manual
methods, e.g. after the respondents actually manually mark requirements as
obsolete or perform other preliminary analysis that enables automated sort-
ing. Searching, tagging or filtering capabilities in their requirements man-
agement tools are most likely dominant and seen as automated in relation
to OSRs, but this task is done in an ad-hoc manner and not integrated with
their requirements management process. Thus the level of ”automation”
needs further investigation.

The reasonably high number of answers given to the category I never
found them or I never thought of finding them is intriguing and needs further
investigation. A total of 93.8% (30) of the respondents from this group also
indicated having no process of managing OSRs, which seems logical as the
inability to find OSRs could be related to the lack of processes of managing
OSRs. Further, the majority of these respondents (that indicated never
finding OSRs) worked with projects shorter than 12 months, and one fourth
of them indicated having an ad-hoc process of managing requirements. The
relatively short project times were not an indication of OSRs nor being an
issue as >80% of these same respondents indicated OSRs as being a Serious
or Very serious issue. The absence of a defined and repeatable process might
be a better indicator for not identifying OSRs in this case. In addition, in
relation to the respondents who never thought of finding OSRs, waterfall was
represented in more than 11% of the cases, while only about 6% worked in
an agile manner.

Using statistical analysis, organizational size and development method-
ology was not a statistically significant factor in terms of how OSRs were
identified or found (see Table A.5 in [54] for details). However, a statistically
significant relationship was identified in relation to the top five methodologies
used by our respondents, and ways how OSRs were identified (chi-square test
p<0.004, see Table A.5a in [54] for details). This result could be explained
by the following: (1) respondents who worked with waterfall methodology
more often admitted to never find OSRs (11%) than respondents who worked
with agile methodologies (3.8%), (2) more respondent who worked with RUP
methodology (34%) selected the option I have a predefined status called ob-
solete than respondents who worked with agile methodology (10%). Looking
further, we could also see that the majority of the respondents who worked
with RUP or Prototyping methodologies also worked with companies with
>201 employees. This would seem to indicate that for within the two men-
tioned methodologies it is possible to implement tool support for identifica-

26

tion of OSRs.
When it comes to analyzing the influence of the types of requirements

engineering used, the results showed that the respondents who work with
Bespoke or contract driven requirements engineering didn’t use predefined
categories for OSRs, that is, it was not part of their standard procedure
to sort our OSRs, which could be logical as the majority of the respondent
who admitted to never finding OSRs worked with bespoke or contract-driven
projects (see the analysis above). Finally, automatic methods for findings
OSRs turned out to be unpopular among the respondents who worked with
open sources projects (only one respondent mentioned it).

For the context factor of project length, the results indicate that longer
projects have more automated ways of identifying OSRs (the difference is
about 5% of the votes) than shorter projects. This seems reasonable as
longer projects usually invest more into project infrastructure and project
management tools and processes. However, a large part of the longer projects
respondents also indicated manual methods of identifying OSRs (about 60%
of all answers for projects >1year). In comparison, subjects working typically
in shorter projects used more tool supported automated methods (about 52%
of all answers for projects <1 year). Thus the respondents working in longer
projects did see the point of, and did try to, identify OSRs to a larger extent
than the ones working in shorter duration projects, although manual methods
dominated.

The analysis of the influence of the respondents’ roles on the results re-
vealed only minimal differences. Interestingly however the roles of project
and product managers where the only respondents who had no answers in
the I never found them category, indicating that they always find OSRs. Fur-
ther, the management roles had the highest score for manual identification of
OSRs. This result might indicate that management is to some extent more
aware of the need for finding OSRs as they may severely impede the project
efforts, however tool support is often lacking.

4.6. Handling of identified obsolete software requirements (RQ5)

More than 60% of the answers indicated that the respondents (results
for multiple answer questions are calculated based on all the answers) kept
the OSRs but assign them a status called ”obsolete” (see Figure 12). This
might indicate that OSRs are a useful source of the information about the
history of the software product for both requirements analysts and software
development roles. Moreover, 21.85% of all answers (66) suggested moving

27

Figure 12: Methods used to manage identified OSRs

OSRs into a separated section in requirements documents. These views were
the most popular among the respondents regardless of their role, method-
ology, domain, size, project length and context reported. The interpreta-
tion that could be derived from this result is that the most suitable way to
manage identified OSRs is to classify them as obsolete, supplying rationale,
and move them into a separated section/document/SRS. However, main-
taining traceability links between OSRs and other requirements could prove
work intensive, especially if end-to-end traceability is required [57]. Wnuk
et al. [44] discusses scalable methods for managing requirements information
where effective grouping of requirements (e.g. placing semantically similar
requirements in the same module) could enable more efficient maintenance
of large structures of requirements (although OSRs where not mentioned
specifically).

Most of the answers in the other category (∼6%, 20 answers) suggested
either removing OSRs, or keeping them, but moving to a separated section
or module in the database. Only ∼9% of answers (26) suggested deleting
the OSRs from the requirements database or document, which suggests that
most respondents think OSRs should be stored for reference and traceabil-
ity reasons. Keeping OSRs appears to be inconsistent with recommended
practice for reducing the complexity of large and very large projects [44, 69],
and handling information overload as highlighted by Regnell et al. [44]. The
desired behavior in large and very large project would seem to indicate the
removal of unnecessary requirements to decrease the complexity of the re-

28

quirements structure and traceability links. One possible avenue for further
investigation is to evaluate what value keeping OSRs provides.

Out of the group who opted for OSRs deletion upon identification, the
majority of the answers came from respondents who worked with large com-
panies (>501 employees, 77%) and long projects (>12 months, 53.9%). More-
over, a majority of these respondents considered OSRs to be Serious or Some-
how serious (see Section 4.3). On the contrary, respondents that worked in
smaller companies opted to keep OSRs.

Analysis revealed a lack of statistical significant relationships between
the answers for this question (see Figure 12) and the respondents’ roles,
domains, organizational size, as well as methodologies used (see Table A.6
in [54]). However, some indications could be observed. Respondents working
in the engineering domain seemed to prefer the deletion of OSRs compared
to respondents from other domains. One possible explanation could be that
since the projects in the engineering domain are highly regulated, and often
require end-to-end traceability [57], keeping OSRs in the scope could clut-
ter the focus threatening to impede requirements and project management
activities.

Type of requirements engineering factor turned out to have a minimal
impact, however, one observation that is worth mentioning is that more an-
swers were given to the option of removing OSRs among the respondents who
worked with Bespoke or contract driven requirements engineering (12.3%)
than respondents who worked in MDRE (9.2% of answers). This appears to
be logical as in bespoke projects obsolete requirements could be discarded
after the contract is fulfilled, while for market-driven projects they could
be kept and later used during requirements consolidation task, where new
incoming requirements could be examined against already implemented or
analyzed requirements which include OSRs [70] .

4.7. Context factors and obsolete software requirements (RQ6 and RQ7)

4.7.1. Obsolete software requirements and project size

The respondents were asked to indicate to what extent the phenomenon
of OSRs would potentially (negatively) impact a project, and if project size
had anything to do with the likelihood of negative impact. The respondents
used a Likert scale from 1 (Not likely impact) to 5 (a Very likely impact).
The results are presented in Tables 3 and 4 below. The size classification is
graded in relation to amount of requirements and interdependencies, inspired
by Regnell et al. [44].

29

Table 3: OSRs effect on project size (215/219 respondents)

(1)

Not

likely

(2)

Some-

what

likely

(3)

Likely

(4)

More

than

likely

(5)

Very

likely

Rating

Aver-

age

Small-scale (∼10
of req.)

35.3%
(76)

35.8%
(77)

13.5%
(29)

7.0%
(15)

8.4%
(18)

2.17

Medium-scale
(∼100 of req.)

9%
(19)

31.6%
(67)

41.5%
(88)

16.0%
(34)

1.9%
(4)

2.70

Large-scale
(∼1000 of req.)

3.8%
(8)

17.1%
(36)

31.3%
(66)

32.7%
(69)

15.2%
(32)

3.38

Very large-scale
(>10000 of req.)

8.1%
(17)

12.8%
(27)

16.6%
(35)

23.7%
(50)

38.9%
(82)

3.73

Column 7 in Table 3 presents the average rating for each project size,
where we can see a connection between OSRs effect and project size, that is
the larger the project the more likely a negative effect of OSRs as indicated by
the respondents. Looking at Table 3, for Small-scale requirements projects
most respondents deemed OSR impact as Not likely (35.3%) or Somewhat
likely (35.8%). However, moving up just one category to Medium-scale re-
quirements projects (hundreds of requirements) the respondents indicated
the impact as being Likely (41.5%). The trend continues with More than
likely (32.7) for Large-scale requirements projects, and Very likely for Very
large-scale requirements projects (38.9%). The results confirm the viewpoint
of Herald et al. [20], who listed OSRs as one of the risks in large integrated
systems.

One interesting observation is that the results could be seen as potentially
contradictory with the results from questionnaire question 2 (see Section 4.3),
that is respondents who worked in larger companies (over 100 employees)
graded the overall impact of OSRs slightly less than respondents from smaller
companies. This could suggest that larger companies do not nessecaraly have
larger (number of requirements) projects, or, that there are other factors that
influence the impact of OSRs.

30

Table 4: How likely OSRs affect various project types (215/219 respondents)

(1)

Not

likely

(2)

Some-

what

likely

(3)

Likely

(4)

More

than

likely

(5)

Very

likely

Rating

Aver-

age

Bespoke projects 14.4%
(31)

32.1%
(69)

26%
(56)

16.3%
(35)

11.2%
(24)

2.78

Market-driven
projects

6.5%
(14)

20%
(43)

35.8%
(77)

23.3%
(50)

14.4%
(31)

3.19

Outsourced
projects

2.3%
(5)

16.4%
(35)

35.7%
(76)

27.2%
(58)

18.3%
(39)

3.43

When it comes to the influence of methodology used by our respondents,
we report that the respondents who used Agile software development method-
ology primarily graded OSRs as only Likely to affect Large-scale require-
ments projects, while respondents who used Waterfall methodology primar-
ily graded the impact of OSRs as More likely. Interestingly, this result seems
to contradict the results for RQ2 (see Section 4.3), where the majority of
respondents who considered OSRs Very serious worked in large companies
and used agile or incremental methodologies. This might indicate that the
size of the project is not more dominant than the size of the company, and
the methodology used. This requires further investigation.

The respondents who worked with bespoke or contract driven require-
ments engineering primarily graded the effect of OSRs on Large-scale re-
quirements projects as Likely. On the contrary, the respondents who worked
with Market-driven projects primarily graded the impact of OSRs on Large-
scale requirements projects as Very Likely. This result confirms the results
for RQ2 (see Section 4.3) where OSRs were also graded less serious by re-
spondents who worked in bespoke contexts. Finally, for the Very large-scale
requirements projects our respondents primarily graded the impact of OSRs
as Very likely regardless of context factors.

31

4.7.2. Obsolete software requirements and project types

The respondents were also asked to rate how likely it was that OSRs af-
fected various project types (on a scale from 1 to 5, where 1 is Not likely,
and 5 is Very likely). The results for the average rating (column 7 in Ta-
ble 4) indicate that Outsourced projects are the most likely to be affected by
OSRs (average rating 3.43). One possible explanation for this result could
be the inherited difficulties of frequent and direct communication with cus-
tomers and end users in Outsourced projects. Moreover, as communication
in Outsourced projects often needs to be done across time zones and large
distances [68, 71], the risk of requirements misunderstanding increases, and
as we have seen (see Section 4.4), inadequately specified requirements run a
higher risk of becoming OSRs.

The high average rating for the Market-driven projects (average scope
3.19) can be explained by the inherited characteristics of the MDRE con-
text where it is crucial to follow the market and customer needs and the
direct communication with the customer may be limited [2]. This in turn
can result in frequent scope changes [8] that may render requirements obso-
lete. Finally, it is worth mentioning that the gap between the Market-driven
projects and Bespoke projects (average score 2.78) is wider than between
Outsourced (average scope 3.43) and Market-driven projects (average score
3.19). One possible explanation could be that both Market-driven projects
and Outsourced projects suffer similar difficulties in directly interacting with
the end users or customers [2, 68] and thus the risk of requirements becoming
obsolete could be higher.

The results for all the categories and scales are presented in columns 2
to 6 in Table 4. Our respondents primarily graded the impact of OSRs on
Market-driven projects and Outsourced projects as Likely and only Somehow
likely for Bespoke projects. Interestingly, the answer Very likely did not
receive top scores for any of the three types of projects. This would seem to
indicate that the ”project type” factor is less dominant in relation to OSRs
than the ”size” of the project discussed earlier in this section.

Since the statistical analysis between the results from the question and
the context variables revealed no significant relationships, we performed de-
scriptive analysis of the results. The respondents who indicated having a
managerial role (32.7%) primarily graded the impact of OSRs on the Market-
driven projects as More than likely, while the requirements analysts primarily
graded this impact as only Likely. Similarly to this result are the results for

32

RQ2 (see Section 4.3), where the managers primarily considered that OSRs
are Serious while the answer from requirements analysts was predominantly
Somehow serious. The comparison is however not straight forward as in
case of RQ2 respondents were grading all types of requirements projects, not
only Bespoke projects. Finally, the opinions of software development and
management roles are inline when grading the impact of OSRs on bespoke
projects (the majority of the respondents from both roles graded the impact
as Somehow likely).

In relation to project duration, interestingly, respondents who worked
with smaller companies (<200 employees) more often graded the effect of
OSRs on Bespoke projects, Market-driven projects or Outsourced projects as
Likely or even Very likely. The majority of the respondents who worked
for companies with > 201 employees selected the Somehow likely answer for
the Bespoke projects and Market-driven projects. This result confirms the
previous analysis (see Section 4.7.1) by indicating that size is not the only
factor that impacts the seriousness of OSRs. It can also be speculated that
the phenomenon of OSRs might be more clear in smaller organizations where
less specialization makes outdated requirements more of a ”everybody’s con-
cern”, while in lager organizations, with high specialization, the view of ”not
my job” might play a factor [57].

4.8. Where in the requirements life cycle should OSRs be handled (RQ7)

Figure 13: Requirements lifecycle stages for addressing OSRs

The results for this question are presented in Figure 13 below as per-
centages of the total number of answers (717) since the question enabled

33

multiple answers. The list of phases or processes in the requirements engi-
neering lifecycle was inspired by Nurmuliani and Zowghi [35] (called phases
from now on). According to our respondents OSRs should first of all be
handled during Requirements analysis, Requirements validation and Require-
ments changes phases (each with about 14% of the answers). This result is
to some extend in line with the study by Murphy and Rooney [13], SWE-
BOOK [34] and Zowghi et al. [35] who report that change leads to volatility,
and volatility in its turn leads to obsolescence. However, the results from
our survey, where less than 5% of the answers indicate that OSRs should be
manged as a part of the requirements volatility handling seems to support a
distinction between volatility and the phenomenon of OSRs as such. That
is, volatility may be related to OSRs, however, it needs to be handled con-
tinuously during analysis and validation, as a part of change management in
general.

The high numbers of answers given to Requirements analysis (14.5%)
and Requirements specification (9.2%) phases confirm the suggestions made
by Savolainen et al. [17] to manage OSRs in the requirements analysis phases.
The low score of Requirements elicitation phase answer (6.42% of all answers)
contradicts with the viewpoint of Merola [15] who suggested managing ob-
solete software by continuous and timely market tracking and market trends
changes identification. This might seem to indicate that our respondents
have difficulties in understanding how OSRs could be managed e.g. by find-
ing and dismissing OSRs faster due to continuous elicitation depending on
the accepted definition of OSRs.

Respondents working with Agile software development methodologies pre-
ferred to handle OSRs as a part of the Requirements changes phase, while
respondents working in a Waterfall manner preferred the Requirements vali-
dation phase. This seems logical, as a part of agile methodology is to embrace
change [4], while waterfall philosophy sees it as to be ”handled” more for-
mally as steps in development (focusing on the specification and validation
phases) [23].

Type of requirements engineering context (see Figure 7) did not seem to
matter, i.e. analysis, validation, and changes phases seemed to be dominant
for MDRE and Bespoke or contract driven requirements engineering alike.
However, looking at company size and project duration, respondents from
larger companies with longer projects focused on handling OSRs in specific
phases, i.e. analysis and validation. This result seems reasonable as large
projects usually require more extensive requirements analysis due to e.g.

34

larger number of stakeholders involved and possible higher complexity of the
system to be developed [44, 57, 69].

4.9. Existing processes and practices regarding managing OSRs (RQ5)

When queried about the existing processes and practices regarding man-
aging OSRs, 73.6% of all respondents (159) indicated that their requirements
engineering process does not take OSRs into consideration. This result can
be interpreted as a clear evidence of lack of methods regarding OSRs in in-
dustry, and confirms the need for developing methods for managing OSRs.
At the same time, some processes for managing OSRs exist (as indicated by
26.4% (57) of our respondents). Below a list of processes/methods used by
our respondents:

• Reviews of requirements and requirements specifications (19 respon-
dents)

• Using tools and marking requirements as ”obsolete” (6 respondents)

• Requirements traceability (6 respondents)

• Discussing and prioritizing requirements with customers in agile con-
text (4 respondents)

• Mark obsolete requirements as ”obsolete” (4 respondents) - these re-
spondents did not indicate if using the tool or not.

• During the requirements management process by identifying OSRs (3
respondents)

• Moving OSRs into a separated section in the SRS (3 respondents)

• Through change management process (2 respondents)

• During the requirements analysis process (1 respondent)

• Having a proprietary process (1 respondent)

The identified ”categories” of processes/methods above overlap with pre-
vious results from the survey. For example, the process of managing OSRs
by requirements reviews overlap with the most popular way to identify OSRs
(see Figure 11 in Section 4.5), as indicated by our respondents. This would

35

seem to indicate that manually reviewing requirements is dominant. Whether
or not this is sufficient is another question which needs to be investigated fur-
ther. Moreover, the results confirm what was reported in Section 4.5 that
automated methods for identification and management of OSRs are rare.
Therefore, further research of scalable automatic methods for identification
and management of OSRs is needed.

Some respondents provided names of descriptions of processes/methods
used for managing OSRs. Among the reported are:

• Projective analysis through modeling - considered as a promising ap-
proach to study the complexity pertaining to systems of systems [72],
but requires a skilled ”process modeler” to seamlessly use the modeling
paradigm. If and how the method could be applied for smaller projects,
and particularly for identification and management of OSRs remains
an open question. Also, the technique is used during the requirements
analysis phase which has been considered a good phase of management
of OSRs by our respondents (see Figure 13).

• Hierarchical requirements’ tables - specifying requirements on different
abstraction levels is one of the fundamental techniques of requirements
engineering that helps various stakeholders to understand requirements
better [22]. Considered as one of the requirements specification tech-
niques, this technique could be promising according to our respondents
(see Figure 13). However, this method can be used to control OSRs to
a certain degree as overview of requirements mass can be achieved to
some extent through abstraction [65]. However, given huge amounts of
requirements scalability of the method could be a problem.

• Project governance - considered as supporting project control activi-
ties considering the environment in which project management is per-
formed [73]. By having a wider time scope than ordinary project man-
agement, project governance could, according to our interpretation, be
supportive in the continuous task of identification and management of
OSRs.

• Requirements tracking with risk management - although we consider
tracking and risk management [22] as separated activities, combining
them for the purpose of managing OSRs is an interesting alternative
potential. In particular, the role of risk management in identification

36

and management of OSRs should be further investigated, as the soft-
ware risk management literature seem to not mention OSRs as one of
the software risks [74].

• Requirements-based test plans - aligning requirements with verification,
although challenging, could be considered critical in assuring that the
developed software fulfills customers’ needs. Creating test plans based
on requirements that are up-to-date and properly reflect changing cus-
tomer needs is appreciated as good practice in software projects [75].
We are however unsure to what degree the practice of writing test plans
based on requirement could help in identification and management of
OSRs. The fact that test plans are based on requirements is to us in-
dependent of the fact that these requirements may simply be obsolete.

• Commenting obsolete code and updating requirements documents ac-
cordingly - this technique of managing OSRs could be considered promis-
ing and should help to keep the requirements aligned with the newest
version of the code. However, the technique seems to only consider
implemented requirements that could be directly traced to code level.
Considering the fact that many requirements (especially quality re-
quirements) are cross-cutting and require implementation in several
places [22] in the source code, in our opinion, it could be challenging
to correctly map changes in the code to changes in requirements. This
could be part of a solution, however lacks the possibility to identify and
remove OSRs prior to implementation.

• Using requirements validation techniques to identify if requirements are
no longer needed - validating requirements is fundamental for assuring
that the customer needs were properly and correctly understood by the
development organization [22]. In our opinion, this technique should
be used together with customers who can confirm if the requirements
are relevant. Our respondents also would like OSRs to be managed
during requirements validation phase (see Figure 13). However, if re-
quirements reviews are conducted in isolation from ”customers”, by
e.g. requirements analysts, they could have difficulties in identifying
which requirements are, or are about to become obsolete. This is fur-
ther aggravated if the development organization operates in a MDRE
context.

37

Looking at the context factors of organizational size, development method-
ology, and respondent role, although no statistical significant correlations
could be observed, some interesting points warrant mention. Respondents
from smaller companies (<50 employees) to a larger degree had explicit prac-
tices for handling OSRs as compared to respondents from larger companies.
This seems reasonable when looking at the methods for managing OSRs
provided, where manual review methods were most frequent. Quispire [58]
mentioned that processes used in small software enterprises are often manu-
ally based and less automated.

Respondents who worked with MDRE projects (see Figure 7) more of-
ten reported having processes that take OSRs into consideration (34.3%),
than respondents who worked with Bespoke or contract driven requirements
engineering (26.5%) or Outsourced projects (15.8%) respectively (almost sig-
nificant results with a p-value of 0.059, see Table A.8a in [54]). One possible
explanation for this could be high and constant requirements influx in MDRE
contexts [2, 44], combined with frequent changes to requirements dictated by
rapidly changing market situation. This in turn is resulting in more require-
ments becoming obsolete, forcing the use of methods to manage OSRs.

Further statistical tests (reported in Table A.8 in [54]) indicated a sta-
tistical significance between the roles of respondents and the existence of
processes to manage OSRs (p = 0.0012). There was also a moderate associa-
tion (Cramer’s V = 0.345) between the respondents’ roles and the existence
of requirements engineering processes that take OSRs into account. From
the cross-tabulation table between the respondents’ roles and the existence
of OSRs handling process (Table A.9 in [54]) we can see that the respondents
who worked in management positions (project and product managers) were
more likely to utilize OSRs handling method, as compared to respondents
who worked in software development roles (e.g. developers).

Further, the presence of a method/process that considers OSRs seems
to decrease the negative impact of OSRs among our respondents, as 50%
of the respondents who deemed OSRs Trivial confirmed to have a process
of managing OSRs (see Section 4.3). Moreover, as requirements engineers
as well as product and project managers usually work more with require-
ments engineering related tasks than software development roles, it appears
to be logical that more methods of managing OSRs are reported among the
management roles.

38

4.10. Summary of results

The results from the study could be summarized in the following points:

• Our respondents defined an OSR (RQ1) as: ”a software requirement
(implemented or not) that is no longer required for the current release
or future releases, and it has no or little business value for the potential
customers or users of a software product, for various reasons.” This
definition seems to be homogeneous among our respondents (with a
small exception for the respondents who used RUP methodologies).

• OSRs constitute a significant challenge for companies developing soft-
ware intensive products, with the possible exception of companies in-
volved in the service domain. The phenomenon of OSRs is considered
serious by 84.3% of our respondents (RQ2). At the same time 73.6%
of our respondents reported having no process of handling obsolete
software requirements (RQ5).

• Requirements related to standards and laws are the least likely to be-
come obsolete, while inconsistent and ambiguous requirements are the
most likely to become obsolete (RQ3). Moreover, requirements origi-
nating from domain experts were less likely to become obsolete than
requirements originating from customers or (internal) developers.

• OSRs identification is predominantly a manual activity, and less than
10% of the respondents reported having any automated functionality -
which suggests research opportunities in creating automated methods
for OSR identification and management (RQ4).

• The identified OSRs should, according to more than 60% of the survey
answers, be kept in the requirements document or the database, but
tagged as obsolete. Deleting OSRs is not a desired behavior (RQ5).
Most respondents opted for keeping the OSRs for purposes of refer-
ence and traceability, which seems to indicate that the identification of
OSRs is not the only action, but a wish to potentially use the OSRs to
minimize double work (e.g. specifying new requirements that are same
or similar as already identified OSRs). This is especially relevant in
the MDRE context where ”good ideas” can resurface as proposed by
e.g. internal developers.

39

• Although there exist methods and tool support for the identification
and handling of OSRs, a clear majority of the respondents indicated no
use of methods or tools to support them, rather, ad-hoc and manual
process seemed to dominate (RQ5). Moreover, even when the identi-
fication of OSRs was deemed central (e.g. for respondents working in
longer duration projects), only some tool support and automation was
present (for mostly bespoke projects), but even here manual processes
and routines dominated (see Section 4.5).

• Project managers and product managers indicate that they always find
OSRs in their work (see Section 4.5), even if many of the respondents
don’t actively look for them.

• OSRs are more likely to affect Large-scale requirements and Very large-
scale requirements projects (RQ6). Larger projects (hundreds of re-
quirements) tend to have larger issues related to the presence of OSRs,
and there seems to be a correlation between impact severity and project
size (amount of requirements). OSRs seem to have a somewhat larger
impact on projects in a MDRE context as compared to bespoke or
contract driven development (see Section 4.7.2). However, for very-
large projects (over 10 000 requirements) all respondents, independent
of context factors, agree that the potential impact of OSRs was sub-
stantial.

• According to the respondents, OSRs should first of all be handled
during the Requirements analysis and Requirements validation phases
(RQ7). At the same time, less than 5% of the answers indicate that
OSRs should be managed as a part of requirements volatility handling
which supports the distinction between volatility and the phenomenon
of OSRs as such. Finally, our respondents suggested that Requirements
elicitation is not the best phase to manage OSRs.

• Latency may not be the main determinant of OSRs becoming a prob-
lem, rather the results point to the lack of methods/routines for ac-
tively handling OSRs as a central determinant. This would imply that
claimed low latency development models, like agile, has and can have
problems with OSRs.

40

5. Conclusions and Further Work

Although the phenomenon of obsolete software requirements and its neg-
ative effects on project timelines and the outcomes have been reported in a
number of publications [9, 13, 14, 15, 7], little empirical evidence exists that
explicitly and exhaustively investigates the phenomenon of OSRs.

In this paper, we report results from a survey conducted among 219 re-
spondents from 45 countries exploring the phenomenon of OSRs by: (1)
eliciting a definition of OSRs as seen by practitioners in industry,, (2) ex-
plore ways to identify and manage OSRs in requirements documents and
databases, (3) investigating the potential impact of OSRs, (4) explore effects
of project context factors on OSRs, and (5) define what types of requirements
are most likely to become obsolete.

Our results clearly indicate that OSRs are a significant challenge for com-
panies developing software systems - OSRs were considered serious by 84.3%
of our respondents. Moreover, a clear majority of the respondents indicated
no use of methods or tools to support identification and handling OSRs, and
only 10% of our respondents reported having automated support. This in-
dicates that there is a need for developing (automated) methods or tools to
support practitioners in the identification and management of OSRs. These
proposed methods need to have effective mechanisms for storing requirements
tagged as OSRs, enabling the use of the OSRs mass as decision support for
future requirements and their analysis. This could potentially enable au-
tomated regression analysis of active requirements, continuously identifying
candidates for OSRs, and flagging them for analysis.

Although manually managing OSRs is currently the dominant procedure,
which could be sufficient in small projects, research effort should be directed
towards developing scalable methods for managing OSRs - that scale to re-
ality which is often characterized by large amounts of requirements and a
continuous substantial influx of new requirements. The reality facing many
product development organizations developing software intensive systems to-
day is that OSRs are a problem, and as the amount and complexity of soft-
ware increases so will the impact of OSRs.

References

[1] M. DeBellis, C. Haapala, User-centric software engineering, IEEE Ex-
pert 10 (1) (1995) 34 –41. doi:10.1109/64.391959.

41

http://dx.doi.org/10.1109/64.391959

[2] B. Regnell, S. Brinkkemper, Market-driven requirements engineering for
software products, in: A. Aurum, C. Wohlin (Eds.), Engineering and
Managing Software Requirements, Springer Berlin Heidelberg, 2005, pp.
287–308.

[3] T. Gorschek, S. Fricker, K. Palm, S. Kunsman, A lightweight innova-
tion process for software-intensive product development, Software, IEEE
27 (1) (2010) 37 –45. doi:10.1109/MS.2009.164.

[4] B. Ramesh, L. Cao, R. Baskerville, Agile requirements engineering prac-
tices and challenges: an empirical study, Inf. Syst. J. 20 (5) (2010) 449–
480.

[5] T. Gorschek, M. Svahnberg, A. Borg, A. Loconsole, J. Börstler, K. San-
dahl, M. Eriksson, A controlled empirical evaluation of a requirements
abstraction model, Inf. Softw. Technol. 49 (2007) 790–805. doi:http:

//dx.doi.org/10.1016/j.infsof.2006.09.003.
URL http://dx.doi.org/10.1016/j.infsof.2006.09.003

[6] T. Gorschek, P. Garre, S. B. M. Larsson, C. Wohlin, Industry evaluation
of the requirements abstraction model, Requir. Eng. 12 (2007) 163–190.
doi:10.1007/s00766-007-0047-z.
URL http://dl.acm.org/citation.cfm?id=1391227.1391230

[7] L. Cao, B. Ramesh, Agile requirements engineering practices: An em-
pirical study, Software, IEEE 25 (1) (2008) 60 –67. doi:10.1109/MS.

2008.1.

[8] K. Wnuk, B. Regnell, L. Karlsson, What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting, in: Requirements Engineering Conference, 2009.
RE ’09. 17th IEEE International, 2009, pp. 89 –98. doi:10.1109/RE.

2009.32.

[9] C. Hood, S. Wiedemann, S. Fichtinger, U. Pautz, Requirements Man-
agement The Interface Between Requirements Development and All
Other Systems Engineering Processes, Springer, Berlin, 2008. doi:

10.1007/978-3-540-68476-3.
URL http://dx.doi.org/10.1007/978-3-540-68476-3

42

http://dx.doi.org/10.1109/MS.2009.164
http://dx.doi.org/10.1016/j.infsof.2006.09.003
http://dx.doi.org/10.1016/j.infsof.2006.09.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2006.09.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2006.09.003
http://dx.doi.org/10.1016/j.infsof.2006.09.003
http://dl.acm.org/citation.cfm?id=1391227.1391230
http://dl.acm.org/citation.cfm?id=1391227.1391230
http://dx.doi.org/10.1007/s00766-007-0047-z
http://dl.acm.org/citation.cfm?id=1391227.1391230
http://dx.doi.org/10.1109/MS.2008.1
http://dx.doi.org/10.1109/MS.2008.1
http://dx.doi.org/10.1109/RE.2009.32
http://dx.doi.org/10.1109/RE.2009.32
http://dx.doi.org/10.1007/978-3-540-68476-3
http://dx.doi.org/10.1007/978-3-540-68476-3
http://dx.doi.org/10.1007/978-3-540-68476-3
http://dx.doi.org/10.1007/978-3-540-68476-3
http://dx.doi.org/10.1007/978-3-540-68476-3
http://dx.doi.org/10.1007/978-3-540-68476-3

[10] J. Chen, R. Reilly, G. Lynn, The impacts of speed-to-market on new
product success: the moderating effects of uncertainty, Engineering
Management, IEEE Transactions on 52 (2) (2005) 199 – 212. doi:

10.1109/TEM.2005.844926.

[11] C. Wohlin, M. Xie, M. Ahlgren, Reducing time to market through op-
timization with respect to soft factors, in: Engineering Management
Conference, 1995. ’Global Engineering Management: Emerging Trends
in the Asia Pacific’., Proceedings of 1995 IEEE Annual International,
1995, pp. 116 –121. doi:10.1109/IEMC.1995.523919.

[12] P. Sawyer, Packaged software: Challenges for re, in: Proceedings of the
Sixth International Workshop on Requirements Engineering: Founda-
tions of Software Quality (REFSQ 2000), 2000, pp. 137–142.

[13] D. Murphy, D. Rooney, Investing in agile: Aligning agile initiatives with
enterprise goals, Cutter IT Journal 19 (2) (2006) 6 –13.

[14] J. Stephen, J. Page, J. Myers, A. Brown, D. Watson, I. Magee, System
error fixing the flaws in government it, Tech. Rep. 6480524, Institute for
Government, London (2011).

[15] L. Merola, The cots software obsolescence threat, in: Commercial-off-
the-Shelf (COTS)-Based Software Systems, 2006. Fifth International
Conference on, 2006, p. 7 pp. doi:10.1109/ICCBSS.2006.29.

[16] C. Hood, S. Wiedemann, S. Fichtinger, U. Pautz, Requirements Man-
agement: The Interface Between Requirements Development and All
Other Systems Engineering Processes, Springer-Verlag Berin, 2008.

[17] J. Savolainen, I. Oliver, M. Mannion, H. Zuo, Transitioning from prod-
uct line requirements to product line architecture, in: Computer Soft-
ware and Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, Vol. 1, 2005, pp. 186 – 195 Vol. 2. doi:10.1109/COMPSAC.
2005.160.

[18] F. Loesch, E. Ploedereder, Restructuring variability in software prod-
uct lines using concept analysis of product configurations, in: Software
Maintenance and Reengineering, 2007. CSMR ’07. 11th European Con-
ference on, 2007, pp. 159 –170. doi:10.1109/CSMR.2007.40.

43

http://dx.doi.org/10.1109/TEM.2005.844926
http://dx.doi.org/10.1109/TEM.2005.844926
http://dx.doi.org/10.1109/IEMC.1995.523919
http://dx.doi.org/10.1109/ICCBSS.2006.29
http://dx.doi.org/10.1109/COMPSAC.2005.160
http://dx.doi.org/10.1109/COMPSAC.2005.160
http://dx.doi.org/10.1109/CSMR.2007.40

[19] M. Mannion, O. Lewis, H. Kaindl, G. Montroni, J. Wheadon, Repre-
senting requirements on generic software in an application family model,
in: Proceedings of the 6th International Conerence on Software Reuse:
Advances in Software Reusability, Springer-Verlag, London, UK, 2000,
pp. 153–169.
URL http://dl.acm.org/citation.cfm?id=645546.656064

[20] T. Herald, D. Verma, C. Lubert, R. Cloutier, An obsolescence manage-
ment framework for system baseline evolution perspectives through the
system life cycle, Syst. Eng. 12 (2009) 1–20. doi:10.1002/sys.v12:1.
URL http://dl.acm.org/citation.cfm?id=1507335.1507337

[21] K. E. Wiegers, Software Requirements Second Edition, Microsoft Press,
Redmond, WA, USA, 2003.

[22] S. Lauesen, Software Requirements – Styles and Techniques, Addison–
Wesley, 2002.

[23] G. Kotonya, I. Sommerville, Requirements Engineering, John Wiley &
Sons, 1998.

[24] I. Sommerville, P. Sawyer, Requirements Engineering: A Good Practice
Guide, John Wiley & Sons, 1997.

[25] A. Lamsweerde, Requirements Engineering: From System Goals to UML
Models to Software Specifications, John Wiley, 2009.

[26] A. Aurum, C. Wohlin, Engineering and Managing Software Require-
ments, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[27] IEEE, IEEE recommended practice for software requirements specifi-
cations, 830-1998, http://standards.ieee.org/findstds/standard/
830-1998.html (September 1997).

[28] S. E. Institute, Capability maturity model integration (cmmi), ver-
sion 1.3, http://www.sei.cmu.edu/cmmi/solutions/info-center.

cfm (last visited, December 2011).

[29] C. Hood, S. Wiedemann, S. Fichtinger, U. Pautz, Change management
interface, in: Requirements Management, Springer Berlin Heidelberg,
2008, pp. 175–191.

44

http://dl.acm.org/citation.cfm?id=645546.656064
http://dl.acm.org/citation.cfm?id=645546.656064
http://dl.acm.org/citation.cfm?id=645546.656064
http://dl.acm.org/citation.cfm?id=1507335.1507337
http://dl.acm.org/citation.cfm?id=1507335.1507337
http://dl.acm.org/citation.cfm?id=1507335.1507337
http://dx.doi.org/10.1002/sys.v12:1
http://dl.acm.org/citation.cfm?id=1507335.1507337
http://standards.ieee.org/findstds/standard/830-1998.html
http://standards.ieee.org/findstds/standard/830-1998.html
http://www.sei.cmu.edu/cmmi/solutions/info-center.cfm
http://www.sei.cmu.edu/cmmi/solutions/info-center.cfm

[30] S. Robertson, J. Robertson, Mastering the requirements process, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[31] C. Iacovou, A. Dexter, Turning around runaway information technology
projects, Engineering Management Review, IEEE 32 (4) (2004) 97 –112.
doi:10.1109/EMR.2004.25141.

[32] I. Legodi, M.-L. Barry, The current challenges and status of risk man-
agement in enterprise data warehouse projects in south africa, in: Tech-
nology Management for Global Economic Growth (PICMET), 2010 Pro-
ceedings of PICMET ’10:, 2010, pp. 1 –5.

[33] T. DeMarco, T. Lister, Risk management during requirements, IEEE
Software 20 (5) (2003) 99–101.

[34] IEEE Computer Society, Software Engineering Body of Knowledge
(SWEBOK), Angela Burgess, EUA, 2004.
URL http://www.swebok.org/

[35] D. Zowghi, N. Nurmuliani, A study of the impact of requirements volatil-
ity on software project performance, Asia-Pacific Software Engineering
Conference 0 (2002) 3. doi:http://doi.ieeecomputersociety.org/

10.1109/APSEC.2002.1182970.

[36] S. Harker, K. Eason, J. Dobson, The change and evolution of require-
ments as a challenge to the practice of software engineering, in: Re-
quirements Engineering, 1993., Proceedings of IEEE International Sym-
posium on, 1993, pp. 266 –272. doi:10.1109/ISRE.1993.324847.

[37] S. McGee, D. Greer, A software requirements change source taxonomy,
in: Software Engineering Advances, 2009. ICSEA ’09. Fourth Interna-
tional Conference on, 2009, pp. 51 –58. doi:10.1109/ICSEA.2009.17.

[38] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian, Selecting empiri-
cal methods for software engineering research, in: F. Shull, J. Singer,
D. I. K. Sjberg (Eds.), Guide to Advanced Empirical Software Engineer-
ing, Springer London, 2008, pp. 285–311.

[39] J. Singer, S. E. Sim, T. C. Lethbridge, Software engineering data col-
lection for field studies, in: F. Shull, J. Singer, D. I. K. Sjberg (Eds.),

45

http://dx.doi.org/10.1109/EMR.2004.25141
http://www.swebok.org/
http://www.swebok.org/
http://www.swebok.org/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/APSEC.2002.1182970
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/APSEC.2002.1182970
http://dx.doi.org/10.1109/ISRE.1993.324847
http://dx.doi.org/10.1109/ICSEA.2009.17

Guide to Advanced Empirical Software Engineering, Springer London,
2008, pp. 9–34.

[40] C. Dawson, Projects in Computing and Information Systems: A Stu-
dent’s Guide, Addison Wesley, 2005.

[41] R. A. P. L. M. Rea, Designing and Conducting Survey Research: A Com-
prehensive Guide, Jossey-Bass, San Francisco, CA, 94103-1741, 1005.

[42] K. Wnuk, The survey questionnaire, http://fileadmin.cs.lth.se/

serg/ExperimentPackages/Obsolete/AppendixB_SurveyQuestions.

pdf (last visited, December 2011).

[43] Wikipedia, Likert scale, http://en.wikipedia.org/wiki/Likert_

scale (last visited, December 2011).

[44] B. Regnell, R. B. Svensson, K. Wnuk, Can we beat the complexity of
very large-scale requirements engineering?, in: Proceedings of the 14th
international conference on Requirements Engineering: Foundation for
Software Quality, REFSQ ’08, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 123–128.

[45] S. Monkey, Survey monkey webpage, http://www.surveymonkey.net

(last visited, December 2011).

[46] Linkedin, The linkedin website, http://www.linkedin.com/ (last vis-
ited, December 2011).

[47] K. Wnuk, The full list of mailing lists can be accessed at,
http://fileadmin.cs.lth.se/serg/ExperimentPackages/

Obsolete/ListOfDiscussionGroups.pdf (last visited, December
2011).

[48] K. Wnuk, The full list of tool vendors can be accessed at,
http://fileadmin.cs.lth.se/serg/ExperimentPackages/

Obsolete/ListOfVendors.pdf (last visited, December 2011).

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering: an introduction, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2000.

46

http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/AppendixB_SurveyQuestions.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/AppendixB_SurveyQuestions.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/AppendixB_SurveyQuestions.pdf
http://en.wikipedia.org/wiki/Likert_scale
http://en.wikipedia.org/wiki/Likert_scale
http://www.surveymonkey.net
http://www.linkedin.com/
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/ListOfDiscussionGroups.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/ListOfDiscussionGroups.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/ListOfVendors.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/ListOfVendors.pdf
keczi
Highlight

keczi
Highlight

keczi
Highlight

[50] A. Arcuri, L. Briand, A practical guide for using statistical tests to
assess randomized algorithms in software engineering, in: Proceeding of
the 33rd International Conference on Software Engineering, ICSE ’11,
ACM, New York, NY, USA, 2011, pp. 1–10. doi:http://doi.acm.org/
10.1145/1985793.1985795.
URL http://doi.acm.org/10.1145/1985793.1985795

[51] S. Nakagawa, A farewell to Bonferroni: the problems of low statistical
power and publication bias, Behavioral Ecology 15 (6) (2004) 1044–1045.

[52] T. C. Lethbridge, S. E. Sim, J. Singer, Studying software engineers:
Data collection techniques for software field studies, Empirical Software
Engineering 10 (2005) 311–341, 10.1007/s10664-005-1290-x.
URL http://dx.doi.org/10.1007/s10664-005-1290-x

[53] S. Siegel, N. J. Castellan, Nonparametric statistics for the behavioral
sciences, 2nd Edition, McGraw-Hill, 1998.

[54] K. Wnuk, The appendix with analysis can be accessed at,
http://fileadmin.cs.lth.se/serg/ExperimentPackages/

Obsolete/AppendixA_Analysis.pdf (last visited, December 2011).

[55] K. Wnuk, The full list of countries can be obtained at,
http://fileadmin.cs.lth.se/serg/ExperimentPackages/

Obsolete/COUNTRIES.pdf (last visited, December 2011).

[56] IBM, The description of the method can be found at, http://www-

01.ibm.com/software/awdtools/rup/ (last visited, December 2011).

[57] B. Berenbach, D. J. Paulish, J. Kazmeier, A. Rudorfer, Software & Sys-
tems Requirements Engineering: In Practice, Pearson Education Inc.,
2009.

[58] A. Quispe, M. Marques, L. Silvestre, S. Ochoa, R. Robbes, Require-
ments engineering practices in very small software enterprises: A diag-
nostic study, in: Chilean Computer Science Society (SCCC), 2010 XXIX
International Conference of the, 2010, pp. 81 –87. doi:10.1109/SCCC.

2010.35.

47

http://doi.acm.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/http://doi.acm.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1007/s10664-005-1290-x
http://dx.doi.org/10.1007/s10664-005-1290-x
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/AppendixA_Analysis.pdf
http://fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/AppendixA_Analysis.pdf
http:// fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/COUNTRIES.pdf
http:// fileadmin.cs.lth.se/serg/ExperimentPackages/Obsolete/COUNTRIES.pdf
http://www-01.ibm.com/software/awdtools/rup/
http://www-01.ibm.com/software/awdtools/rup/
http://dx.doi.org/10.1109/SCCC.2010.35
http://dx.doi.org/10.1109/SCCC.2010.35

[59] M. Bano, N. Ikram, Issues and challenges of requirement engineering
in service oriented software development, in: Software Engineering Ad-
vances (ICSEA), 2010 Fifth International Conference on, 2010, pp. 64
–69. doi:10.1109/ICSEA.2010.17.

[60] M. Kossmann, A. Gillies, M. Odeh, S. Watts, Ontology-driven require-
ments engineering with reference to the aerospace industry, in: Appli-
cations of Digital Information and Web Technologies, 2009. ICADIWT
’09. Second International Conference on the, 2009, pp. 95 –103. doi:

10.1109/ICADIWT.2009.5273953.

[61] I. Sommerville, Software Engineering, Addison–Wesley, 2007.

[62] W. Curtis, H. Krasner, V. Shen, N. Iscoe, On building software process
models under the lamppost, in: Proceedings of the 9th international
conference on Software Engineering (ICSE 1987), 1987, pp. 96–103.

[63] T. Gorschek, A. M. Davis, Requirements engineering: In search of the
dependent variables, Inf. Softw. Technol. 50 (2008) 67–75. doi:10.

1016/j.infsof.2007.10.003.
URL http://dl.acm.org/citation.cfm?id=1324618.1324710

[64] S. Easterbrook, What is requirements engineering?, http://www.

cs.toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf (July
2004).

[65] T. Gorschek, C. Wohlin, Requirements abstraction model, Requir. Eng.
11 (2005) 79–101. doi:10.1007/s00766-005-0020-7.
URL http://dl.acm.org/citation.cfm?id=1107677.1107682

[66] J. Kabbedijk, B. R. K. Wnuk, S. Brinkkemper, What decision charac-
teristics influence decision making in market-driven large-scale software
product line development?, in: Product Line Requirements Engineering
and Quality 2010, 2010, pp. 42 –53.

[67] R. Kohl, Changes in the requirements engineering processes for cots-
based systems, Requirements Engineering, IEEE International Confer-
ence on 0 (2001) 0271. doi:http://doi.ieeecomputersociety.org/

10.1109/ISRE.2001.948575.

48

http://dx.doi.org/10.1109/ICSEA.2010.17
http://dx.doi.org/10.1109/ICADIWT.2009.5273953
http://dx.doi.org/10.1109/ICADIWT.2009.5273953
http://dl.acm.org/citation.cfm?id=1324618.1324710
http://dl.acm.org/citation.cfm?id=1324618.1324710
http://dx.doi.org/10.1016/j.infsof.2007.10.003
http://dx.doi.org/10.1016/j.infsof.2007.10.003
http://dl.acm.org/citation.cfm?id=1324618.1324710
http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf
http://www.cs.toronto.edu/~sme/papers/2004/FoRE-chapter01-v7.pdf
http://dl.acm.org/citation.cfm?id=1107677.1107682
http://dx.doi.org/10.1007/s00766-005-0020-7
http://dl.acm.org/citation.cfm?id=1107677.1107682
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISRE.2001.948575
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISRE.2001.948575

[68] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, B. Fitzgerald, Global
software development challenges: A case study on temporal, geo-
graphical and socio-cultural distance, in: Global Software Engineer-
ing, 2006. ICGSE ’06. International Conference on, 2006, pp. 3 –11.
doi:10.1109/ICGSE.2006.261210.

[69] S. Buhne, G. Halmans, K. Pohl, M. Weber, H. Kleinwechter, T. Wier-
czoch, Defining requirements at different levels of abstraction, in: Re-
quirements Engineering Conference, 2004. Proceedings. 12th IEEE In-
ternational, 2004, pp. 346 – 347. doi:10.1109/ICRE.2004.1335694.

[70] J. Natt Och Dag, T. Thelin, B. Regnell, An experiment on linguistic
tool support for consolidation of requirements from multiple sources in
market-driven product development, Empirical Softw. Engg. 11 (2006)
303–329. doi:10.1007/s10664-006-6405-5.
URL http://dl.acm.org/citation.cfm?id=1120556.1120562

[71] D. Šmite, C. Wohlin, T. Gorschek, R. Feldt, Empirical evidence in global
software engineering: a systematic review, Empirical Softw. Engg. 15
(2010) 91–118. doi:http://dx.doi.org/10.1007/s10664-009-9123-
y.
URL http://dx.doi.org/10.1007/s10664-009-9123-y

[72] W. Anderson, P. J. Boxer, L. Brownsword, An examination of a struc-
tural modeling risk probe technique, Tech. Rep. CMU/SEI-2006-SR-017,
Software Engineering Institute, Carnegie Mellon University (2008).

[73] M. Bekker, H. Steyn, The impact of project governance principles on
project performance, in: Management of Engineering Technology, 2008.
PICMET 2008. Portland International Conference on, 2008, pp. 1324
–1330. doi:10.1109/PICMET.2008.4599744.

[74] B. Boehm, Software risk management: principles and practices, Soft-
ware, IEEE 8 (1) (1991) 32 –41. doi:10.1109/52.62930.

[75] K. Pohl, Requirements Engineering: Fundamentals, Principles, and
Techniques, 1st Edition, Springer Publishing Company, Incorporated,
2010.

49

http://dx.doi.org/10.1109/ICGSE.2006.261210
http://dx.doi.org/10.1109/ICRE.2004.1335694
http://dl.acm.org/citation.cfm?id=1120556.1120562
http://dl.acm.org/citation.cfm?id=1120556.1120562
http://dl.acm.org/citation.cfm?id=1120556.1120562
http://dx.doi.org/10.1007/s10664-006-6405-5
http://dl.acm.org/citation.cfm?id=1120556.1120562
http://dx.doi.org/10.1007/s10664-009-9123-y
http://dx.doi.org/10.1007/s10664-009-9123-y
http://dx.doi.org/http://dx.doi.org/10.1007/s10664-009-9123-y
http://dx.doi.org/http://dx.doi.org/10.1007/s10664-009-9123-y
http://dx.doi.org/10.1007/s10664-009-9123-y
http://dx.doi.org/10.1109/PICMET.2008.4599744
http://dx.doi.org/10.1109/52.62930

Figure1
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49408&guid=8e6bb783-bb67-431b-8c46-5a003953e871&scheme=1

Figure2
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49409&guid=eb87286c-51b0-4c86-a1f0-09d09e6c65d5&scheme=1

Figure3
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49410&guid=3b432345-978e-40d0-a08a-5d9c7d697809&scheme=1

Figure4
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49411&guid=68d8ec14-5bde-4a64-9628-95be61be0c08&scheme=1

Figure5
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49412&guid=2347b7ab-843b-4467-bfbc-6bf6c7618582&scheme=1

Figure6
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49413&guid=7d96637e-6675-411a-ac22-49006c29b078&scheme=1

Figure7
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49414&guid=5c43f75f-3f55-4143-949a-2c760f56c64b&scheme=1

Figure8
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49415&guid=53ae7f10-38e1-49a2-ae3a-7b5ff80ebd94&scheme=1

Figure9
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49424&guid=9c693392-cd7e-472a-9f95-1350b0e25ce4&scheme=1

Figure10
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49417&guid=61fdc2a5-a4d6-4263-93f9-da37727a6f9f&scheme=1

Figure11
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49418&guid=dcca8b82-0936-41e6-8f4b-ff3207cb9ea1&scheme=1

Figure12
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49419&guid=b6794a8c-d9aa-4b6e-86ef-40bffb86e4da&scheme=1

Figure13
Click here to download high resolution image

http://ees.elsevier.com/infsof/download.aspx?id=49420&guid=829aa75e-581d-43f8-8e8d-5c32e8682cdc&scheme=1

