
Supporting Decisions
on Regression Test Scoping

in a Software Product Line Context
– from Evidence to Practice

Emelie Engström

Doctoral Dissertation, 2013

Department of Computer Science
Lund University

ii

Dissertation 42, 2013
LU-CS-DISS:2013-1
ISSN 1404-1219
ISBN 978-91-980754-1-0

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Emelie.Engstrom@cs.lth.se
Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2013

c© 2013 Emelie Engström

iii

ABSTRACT

Large software organizations with a product line development approach face many
challenges regarding testing. Test managers need to make tradeoffs along three di-
mensions of repeated testing (abstraction level, time and product space) and con-
sider a range of goals and constraints. In order to keep pace with the decreased
development time for new products, which is enabled by the systematic reuse, se-
lective testing of product variants is necessary. A common industrial practise is to
base test scoping decisions on practitioners’ expertise and experience. However,
as software systems grow in size and complexity, the combinatorial explosion of
test possibilities makes it infeasible to assess the reasonableness of the decisions
without tool support.

Research on regression test selection propose several systematic strategies for
setting a proper test scope when verifying changes of previously tested code. The
goal of our research is to improve test management and reduce the amount of
redundant testing in the product line context by applying regression test selec-
tion strategies. However, despite extensive research on regression testing, gained
knowledge has not impacted on industry practices. Thus a secondary goal of our
research is to bridge the gap between research and practice in the field of regres-
sion testing. Test planning support, like any decision support system, must operate
in a complex context and need to be pragmatic, adapted to the context and evolve
incrementally within the context.

This thesis explores state of art and state of practice of regression testing and
software product line testing, and proposes and evaluates a visualization strategy to
support regression test scoping in the product line context. Two extensive system-
atic literature reviews are conducted as well as four empirical studies in close co-
operation with industry. Through visualization of relevant information at a proper
level of detail, test management in general may be supported. A visual analytics
tool for test management would also provide a framework which enables research
based and context specific regression testing improvements.

CONTENTS

Preface ix

Popular Science Summary in Swedish xi

Acknowledgements xvii

Thesis Introduction 1

Introduction 3
1 Introduction . 3
2 Background, concepts and definitions 8
3 Research methodology . 13
4 Research contributions . 20
5 Related work . 33
6 Future research directions . 37
7 Conclusion . 39
References . 40

Included Papers 55

I A Systematic Review on Regression Test Selection Techniques 57
1 Introduction . 57
2 Research Method . 59
3 Results . 65
4 Discussion . 85
5 Conclusions and future work . 88
References . 90

viii CONTENTS

II A Qualitative Survey of Regression Testing Practices 97
1 Introduction . 97
2 Method description . 99
3 Analysis of the results . 105
4 Conclusions . 110
References . 112

III Indirect Effects in Evidential Assessment: A Case Study on Regression
Test Technology Adoption 115
1 Introduction . 116
2 The regression test automation procedure 117
3 The case study . 121
4 Discussion . 125
5 Conclusion . 126
References . 128

IV Software Product Line Testing – A Systematic Mapping Study 131
1 Introduction . 131
2 Research method . 132
3 Challenges in testing a software product line 136
4 Primary studies . 137
5 Classification Schemes . 139
6 Mapping . 140
7 Discussion . 150
8 Conclusions . 151
References . 153

V Test Overlay in an Emerging Software Product Line – An Industrial
Case Study 161
1 Introduction . 162
2 Case study design . 163
3 Analysis criteria . 175
4 Quantitative data . 178
5 Existence and causes of test overlay – RQ1 and RQ2 181
6 Visualization – RQ3 . 187
7 Conclusions . 189
References . 191

VI Supporting Test Scoping with Visual Analytics 195
1 Introduction . 195
2 Case study . 196
3 Prototype visualizations . 198
4 Aspects of visual analytics . 198
5 Conclusion . 206
References . 209

PREFACE

This thesis is divided in two parts. The first part introduces the context of the
research, describes the research methodology, summarizes the findings and dis-
cusses future research directions. The second part includes the six research papers
on which the conclusions in the first part are based.

Publications Included in the Thesis
I A Systematic Review on Regression Test Selection Techniques

Emelie Engström, Per Runeson and Mats Skoglund
Journal of Information and Software Technology 52(1):14-30, 2010.

II A Qualitative Survey of Regression Testing Practices
Emelie Engström and Per Runeson
Proceedings of 11th International Conference on Product Focused Software
Development and Process Improvement (PROFES’10), June 2010.

III Indirect Effects in Evidential Assessment: A Case Study on Regression
Test Technology Adoption
Emelie Engström, Robert Feldt and Rickard Torkar
The 2nd International Workshop on Evidential Assessment of Software Tech-
nologies (EAST’12), Sept 2012.

IV Software Product Line Testing – A Systematic Mapping Study
Emelie Engström and Per Runeson
Journal of Information and Software Technology 53(1):2-13, 2011.

V Test Overlay in an Emerging Software Product Line – An Industrial
Case Study
Emelie Engström and Per Runeson
Journal of Information and Software Technology 55(3):581-594, 2013

VI Supporting Test Scoping with Visual Analytics
Emelie Engström, Mika Mäntylä, Per Runeson and Markus Borg
Technical report LU-CS-TR: 2013-252

x Preface

Contribution Statement
I am the main author of all included papers and as such responsible for running
the research, dividing the work between co-authors and conducting most of the
writing. The design of the SLR (paper I) and the industrial survey (paper II) was
made in cooperation with the second author of the two publications while the other
studies (Papers III–VI) was mainly designed by me with input from my co-authors.
Ideas of the different studies originate from many sources of which my co-authors
have their share. For example the starting point of the case study on technology
adoption (paper III) was ideas picked up in a course on test automation held by the
co-authors of that paper. I have also carried out the main part of the data collection
in all studies, however, with support from other persons in different situations, e.g.
specialists in terms of practitioners at the case companies (papers V and VI) or
the librarian for identification of primary studies in the SLR (paper I); or fellow
researchers in their participation in focus group meetings (paper II and VI) or in
sharing the work load in e.g. screening papers of the SLR (paper I) or extracting
data for visualization (paper VI). Analyses of data in all studies are primarily my
analyses, however, validated by the co-authors. In addition, I have authored or
co-authored nine papers which are related to but not included in the thesis. These
are presented in Section 5.1 in the introduction part of the thesis.

Emelie Engström
March 2013

POPULAR SCIENCE
SUMMARY IN SWEDISH

xii Popular Science Summary in Swedish

xiii

Av Emelie Engström
Instutionen för datavetenskap
Lunds universitet

De flesta av oss tar fungerande mjukvara för givet. Vi förvän-
tar oss att banken hanterar våra insättningar och uttag kor-
rekt, att bilens bromsar fungerar, att våra telefonsamtal kopp-
las rätt och att signalsystemet för tågtrafiken inte föranleder
några olyckor.

En mobiltelefon är ett exempel på
en liten, vardaglig pryl som innehåller
ett mycket stort och komplext mjuk-
varusystem. En vanlig mobiltelefon in-

nehåller ungefär 10 miljoner rader pro-
gramkod som utvecklats och testats av
flera hundra ingenjörer.

Programkoden beskriver telefonens
olika funktioner som till exempel hur

xiv Popular Science Summary in Swedish

vanliga röstsamtal kopplas upp och
genomförs, hur SMS skickas och tas
emot eller hur kontakter hanteras i kon-
taktboken.

För att kunna veta att ett mjuk-
varusystem uppfyller våra krav och
förväntningar måste tester genomföras.
Tester där den faktiska användningen
av telefonen simuleras. Varje funktion
behöver testas enskilt och i samverkan
med andra funktioner. Jag vill till exem-
pel att samtal kopplas fram även när jag
använder telefonen för att spela musik.

Testning en dyr flaskhals

Traditionellt räknar man med att upp-
emot 50 procent av kostnaderna för att
utveckla mjukvara är kostnader för test-
ning. Denna andel har ökat kraftigt på
senare år på grund av att vi blivit bättre
på att återvinna mjukvara på ett struk-
turerat sätt. Vi utvecklar produkter i
familjer av liknande produkter. Dock
har vi inte lärt oss återanvända testerna
i samma utsträckning.

Målet för vår forskning är att hitta
strategier för att identifiera vilka tester
som är viktigast och vilka som är mer
eller mindre meningslösa att genom-
föra. Särskilt fokus läggs på testning
av produktfamiljer där mjukvaran åter-
används i mer än en produkt.

I en organisation som utvecklar
stora mjukvarusystem upprepas lik-
nande tester om och om igen. Först
testas varje enskild del, Därefter be-
höver delarna testas tillsammans efter-
hand som man bygger ihop systemet.
Ofta utvecklas de enskilda delarna vi-
dare efter att de inforgats isystemet och
proceduren måste upprepas. Om man
dessutom vill utveckla flera varianter av

samma system behöver alla dessa också
testas på samma sätt.

Oändliga alternativ

Inte ens ett litet system går att testa
fullständigt. Tänk dig till exempel
att du vill testa en enkel miniräknare
och börjar så smått med 0+1, 1+1
till 999 999+1 till 999 999+2 osv till
999 999+999 999. Denna systema-
tiska genomgång av olika sätt att addera
två heltal skulle kräva en biljon testfall
vilket motsvarar 30 000 år av testning,
om varje test tar 1 sekund att genom-
föra.

Många tester är inte heller nöd-
vändiga att genomföra. Det kan vara
rimligt att anta det räcker att göra nå-
gra stickprov för att säkerställa att ad-
dition av två heltal fungerar. Kanske
finns det kritiska övergångar (när an-
talet siffror i svaret inte längre får plats
i displayen) som behöver en extra kon-
troll. Alla sådana antaganden baseras på
erfarenheter av vanliga fel i mjukvara.
De bygger också på kunskap om det ak-
tuella systemet och skillnader gentemot
liknande system som vi vet fungerar.

Problem uppstår när antalet vari-
abler och alternativ blir för stort att
hantera och det inte längre går att
bedöma rimligheten i urvalen. Effek-
terna blir då antingen att mycket onödig
testning genomförs, för att vara på den
säkra sidan, eller att testningen blir
bristfällig. I många fall gäller båda.

Visualisering för bättre
fokus

Det är dessa urval som är i fokus i
avhandlingen. Målet är att kunna er-

xv

Testtäckning av ett mjukvarusystem kan till exempel visualiseras med hjälp av ett rutnät där varje ruta
motsvarar något som behöver testas och där färgerna talar om hur väl det är testat.

bjuda ett verktyg för att visualisera hur
väl den testning som genomförs täcker
kritiska delar av systemet. Testerna ska
täcka systemet utifrån flera olika per-
spektiv: Har varje kodrad testats? Har
alla funktioner testats? Tål systemet
hög belastning? är det tillförlitligt?

Avhandlingen behandlar också in-
förandet av ny teknik i en testprocess.
Det kan finnas många faktorer som gör
att det är svårt att införa nya teststrate-
gier i en organisation. Testningen i
sig är inte en isolerad företeelse utan
hänger ihop med en mängd andra fak-
torer som t.ex. hur kraven ställs och
dokumenteras, hur systemet designas
och hur utvecklarna skriver programko-
den. En förändring i den ena processen
får konsekvenser även för relaterade
processer. Därför måste förändringar
införas i små steg och både direkta och
indirekta effekter utvärderas. Vad hän-
der tillexempel med expertisen om man
ersätter den med verktyg? Finns det risk

att verktyget används på fel sätt eller att
man litar för mycket på verktyget?

Flexibla verktyg för
varierande behov

Vi utvärderade våra visualiserings
strategier genom att skapa prototyper
och låta testledare utvärdera dem i sam-
talsgrupper. Alla som deltog i studien
uppskattade det stöd verktyget gav för
att planera testning och för att kommu-
nicera beslut till andra personer i pro-
jektet. Man poängterade också vikten
av att kunna interagera med verktyget.

Det är viktigt med flexibilitet och
att testningen kan analyseras från flera
olika perspektiv. Behovet av informa-
tion varierar mellan olika abstraktion-
snivåer i ett projekt. En projektledare
behöver en övergripande vy som om-
fattar alla perspektiv med få detaljer
medan en testledare på enhetsnivå be-

xvi Popular Science Summary in Swedish

höver en mer specialiserad och detal-
jerad vy. Utmaningen ligger i att lyfta
fram rätt information i olika vyer och
att identifiera hur testresultat från tidi-
gare tester kan återanvändas.

I grunden handlar det om att spara
pengar och öka säkerheten. Systemen
kommer sannolikt att bli alltmer kom-
plexa vilket kan leda till ohanterliga

kostnader för testning alternativt lägre
kvalitet på våra mjukvarusystem. Med
ett verktyg som samlar in och anal-
yserar relevanta delar av den enorma
mängd information som finns tillgäng-
lig får ingenjörerna hjälp att fästa upp-
märksamheten på de verkligt kritiska
områdena.

Dimensioner av test

Abstraktionsnivåer: Utvecklingen av
mjukvara inom en organisation dis-
tribueras ofta mellan olika team av
utvecklare som ansvarar för en grupp
av liknande funktioner (till exempel
all hantering av kommunikation via
bluetooth). Dessa minsta bestånds-
delar testas enskilt med enhetstester.
Därefter integrationstestas de tillsam-
mans med andra komponenter av sys-
temet för att se hur de samverkar och
slutligen testas systemet i sin helhet
mot de övergripande kraven på pro-
dukten med en fullständig systemtest.
Antalet abstraktionsnivåer beror dels
på storleken på systemen och dels
på på hur man väljer att organisera
utvecklingen.

Tid: Mjukvaran uppdateras kontinuerligt och nya versioner av både komponenter och del-
system integreras in i det aktuella systemet. Förändringar i en del av systemet kan påverka
oförändrade delar och sådant som redan testats behöver testas om igen.

Rum: När mjukvaran återanvänds i flera liknande produkter återfinns dessutom flera varianter
av både komponenter, delsystem och slutgiltiga produkter. Valmöjligheter kan finnas på alla
nivåer och valen kan göras både under utvecklingen (till exempel anpassningar till olika
hårdvarukomponenter) och efteråt av användarna genom personliga inställningar.

ACKNOWLEDGEMENTS

The work presented in this thesis was partly funded by the Swedish Governmental
Agency for Innovation Systems under grant 2005-02483 for the UPPREPA project,
and partly funded by the EASE Industrial Excellence Center on Embedded Appli-
cations Software Engineering, http://ease.cs.lth.se.

I am grateful to all people who, in different ways, contributed to the completion
of this thesis. First of all, I would like to thank my supervisor Prof. Per Runeson
for excellent guidance. I appreciate your generosity and positive attitude. Thanks
also go to Prof. Björn Regnell and Dr. Carina Andersson for their co-supervision.

All studies reported in this thesis have been conducted in cooperation with
other researchers to whom I also want to express my gratitude. Dr. Mats Skoglund,
Dr. Robert Feldt, Dr. Richard Torkar, Dr. Mika Mäntylä and Markus Borg, it has
been a pleasure! I’m also grateful for all effort spent reviewing manuscripts of
the study reports as well as the thesis introduction. In addition to the many anony-
mous reviewers, I appreciate the valuable comments from Prof. Per Runeson, Prof.
Björn Regnell, Dr. Mika Mäntylä and Prof. Sebastian Elbaum.

Many industry practitioners have been involved in this research. I would like
to thank the case companies for letting us access their data, and all who have par-
ticipated in interviews, focus group meetings and questionnaires, SPIN-syd (soft-
ware process improvement network in Southern Sweden) and the SAST network
(Swedish Association for Software Testing). I would like to address a special
thanks to Dr. Magnus C Ohlsson, Dr. Greger Wikstrand, Fredrik Scheja, Johan
Hoberg, Per Beremark and Charlotta Nordmark for sharing your experiences.

During the project, I have had the privilege to meet and get inspired by many
fellow researchers. I would like to express my gratitude to the participants in the
EASE Theme D project and in the SWELL (Swedish V&V Excellence) research
school. I am grateful to Prof. Laurie Williams and the Software Engineering
Realsearch research group at NCSU for the opportunity to visit your group last
spring. Finally, A big thanks go to my colleagues at the department of computer
science and especially the SERG (Software Engineering Research Group) for the
inspiring and developing work environment.

xviii Acknowledgements

Finally, I’m so grateful for my family and friends who supports and encourages
me irrespective of what I accomplish. It’s a true blessing to have you all in my life.
David, Miriam and Anton, you challenge my thoughts more than anyone else but
most of all you teach me what is important in life. Last but not least I want to
express my deepest gratitude to Jonas for always standing by my side.

In God we live and move and have our being - To Him be the glory!

Emelie Engström
March 2013

THESIS INTRODUCTION

INTRODUCTION

1 Introduction

1.1 Software testing of large, complex and evolving sys-
tems

Since the 1960s software has changed from being small (100 lines of code) iso-
lated control sequences handled by a few experts, to becoming large, complex,
interacting systems handled by non-experts. One example: Android, on which
many mobile phones are built, comprises more than 10 million lines of code. Sim-
ilarly, development strategies are continuously adapted to meet market demands
and manage software complexity. Iterative development [74] and software product
line engineering (SPLE) [14] are two examples of developments strategies aimed
to meet the demands for frequent and customized releases of software systems.
Both of them have major impact on test management since they force much repet-
itive testing of similar software. Iterative development leads to repeated testing in
time. SPLE adds complexity to the case by adding the dimension of variability and
thus repeated testing in space. In this thesis, SPLE refers to the systematic reuse
of software to enable efficient development of several variants or customizations
of software systems.

Software testing, i.e. dynamic execution of the software, is an essential ac-
tivity to ensure quality of a software system and to support its development by
detecting faults. However, even for a small system, extensive testing is infeasible
and a selected test scope is set to guide each test run. A common industrial prac-
tice is to base the testscoping decisions on practitioners’ expertise and experience.
As software systems grow in size and complexity the combinatorial explosion of
test possibilities makes it infeasible to assess the reasonableness of these deci-
sions without tool support. Research on test selection proposes several systematic
strategies for setting a proper test scope depending on the test situation [19, 44].
Specifically, regression test selection strategies aim at verifying changes of previ-
ously tested code (Paper I). Similarly regression testing strategies could verify the
effects of the differences between variants or customization of the software. Thus,
those strategies are in focus in this thesis in terms of solution proposals for the soft-

4 INTRODUCTION

ware product line (SPL) testing challenge. Since the testing challenge in a SPLE
context originates in several context factors, we do not isolate the problem nor the
solution to an idealistic SPLE case but rather search for a pragmatic treatment of
testing working in a complex, variability intensive and frequently changing soft-
ware development context.

The main goal of this thesis is to provide understanding of the preconditions
for SPL test scoping and to propose strategies to improve test scoping within such
context. As a means to reach that goal the area of regression testing is studied in
this thesis and three sub goals are defined.

• Bridge the gap between state of art and state of practice of regression testing.

• Understand the challenge of SPL testing.

• Find means to support regression test scoping in the SPL context.

Regression testing was proposed by Tevanlinna [125] to be applied not only
on versions but also on variants in order to reduce the amount of redundant testing
across products derived from a common software base. However, despite extensive
research on regression testing (Paper I), gained knowledge have not had effect on
industry practices (Paper II). It is essential to understand the reasons for this gap
between research and practice in order to find relevant applications of regression
testing.

The main part of this thesis is exploratory and empirical studies are conducted
in collaboration with different industrial partners. The complexity of software
development in general and of SPLE in particular motivates the research approach
as well as the general lack of such studies within the field of software engineering.

1.2 Research questions and main contributions
A first step towards bridging the gap between state of art and state of practice
of regression testing is to explore it. Thus the first two questions, RQ1 and RQ2,
posted in this thesis focus on exploring the research on regression testing as well as
the industry practice of regression testing. RQ3, focus on providing prescriptions
in line with the first subgoal. Focus is then shifted to explain regression testing
in the SPL context, RQ4 and RQ5. Finally, RQ6 focus on providing prescriptions
regarding the main goal of the research presented in this thesis. The following six
main questions are investigated:

• RQ1 What do we know about regression test selection? Regression test-
ing is a relatively well researched area within software engineering. Many
techniques have been proposed and evaluated empirically. Limited sets of
regression test selection techniques have been compared in previous reviews
of regression test selection [12, 61], showing inconclusive results. No sin-
gle solution to regression test selection fits into all situations nor could any

1 Introduction 5

single study evaluate every aspect of the effects of applying them. How-
ever, due to the significant amount of empirical studies on the topic a meta
analysis could serve to abstract and generalize knowledge. To get a more
complete view of what we empirically know about regression test selection
techniques we launched a systematic review (Paper I).

• RQ2 How is regression testing applied in industry? Despite extensive re-
gression testing research, systematic approaches are rarely applied in indus-
try. Only few empirical evaluations of regression test selection techniques
are carried out in an industrial context [36, 38, 122, 130]. Instead practices
are based on experience. To retrieve a better understanding of real world
needs and practices we conducted a qualitative survey (Paper II).

• RQ3 How to bridge the gap between state of art and state of practice of
regression testing? results from the studies reported in Papers I and II high-
lights several challenges in applying evidence based regression testing in
industry. Challenges originate in the complexity of the industrial context
and relate to the generalization and communication of findings. These chal-
lenges are summarized and analyzed in Paper III which also reports a case
study on the transfer of empirical evidence into practice (Papers I-III).

• RQ4 What do we know about SPLT? Research on SPLE started in the 90ies
and has gained a growing interest the last 10 years. Early literature on SPLs
did not spend much attention to testing [14, p278-279], but the research is-
sue is brought up after that, and much research effort is spent on a variety of
topics related to product line testing. Main challenges are the large number
of tests, the balance between effort for reusable components and concrete
products and the handling of variability. To get an overview of the chal-
lenges and current solution proposals we launched a systematic mapping
study (Paper IV).

• RQ5 What is regression testing in a SPL context? Results from our indus-
trial survey (Paper II) highlight the variation in regression testing situations.
Regression testing is applied differently in different organizations, at differ-
ent levels of abstractions and at different stages of the development process.
The common denominator is the handling of repetitive tests of similar soft-
ware. In a SPL testing is repeated over different variants in addition to the
versions. To understand the regression testing challenge in the SPL context
we studied test overlay in an emerging SPL through an in-depth case study
(Paper V).

• RQ6 How to support regression test scoping in a SPL context? Our two
exploratory studies on regression testing and software product line testing,
respectively (Papers II and IV), together with the two literature surveys on

6 INTRODUCTION

the same topics (Papers I and IV) picture the SP -testing challenge as a multi-
dimensional regression testing problem [117]. With existing regression test-
ing approaches it is possible to provide automated decision support in a few
specific cases while test management in general may be supported through
visualization of test execution coverage, the testing space and similarities
and differences between previous test executions in different dimensions.
This visualization approach is described in Paper V and evaluated in three
different industrial contexts. The evaluation is reported in Paper VI.

The main contributions of the thesis are:

• Increased accessibility to regression testing research, through a systematic
literature review, for practitioners and researchers who wants to apply re-
gression testing techniques into a specific context (Paper I) – Twenty eight
different techniques were compared and classified with respect to context
applicability, method aspects and effects.

• Increased understanding of the industrial context and needs, through a sur-
vey, with respect to regression testing (Paper II) – In most development or-
ganizations regression testing is applied continuously and at several levels
with varying goals. Challenges relate to test case selection, trade-off be-
tween automated and manual testing and design for testability.

• A demonstration of how to transfer empirical evidence on regression testing
into practice, in terms of a case study (Paper III) – Advice for practition-
ers are summarized regarding the identification of preconditions, identifi-
cation of relevant research and evaluation of effects. Research challenges
involve accounting for indirect effects of adopting a new technology as well
as matching the communication of empirical evidence with a relevant con-
text description.

• An overview of the state of art in software product line testing, through a
systematic mapping study (Paper IV) – Sixty four publications on software
product line testing were analyzed and classified with respect to research
focus, type of contribution and type of research.

• Increased understanding of the industrial prerequisites for regression testing
in a software product line context, through a case study (Paper V) – To avoid
redundancy in such complex and variability intensive context tool support
is needed. Factors causing a high degree of test overlay are: distribution of
test responsibilities, poor documentation and structure of test cases, parallel
work and insufficient delta analysis.

• A visualization strategy to support regression test scoping in a software
product line context, based on a case study and evaluated in focus groups

1 Introduction 7

Figure 1: Overview of the contributions of the thesis.

(Paper V and VI) – Test execution history data were extracted and trans-
formed to test coverage items (TCI:s), represented as sets of dimension and
attribute values. TCI:s were further mapped to tiles of a mosaic window
were the spatial position encodes the dimension variables and colors encode
attribute values. All study participants confirmed potential usefulness of the
visual analytics in support of test scoping as well as for communicating de-
cisions with managers and subordinate testers.

The relationships between the various contributions are illustrated in Figure 1.

1.3 Outline of thesis

This thesis is composed of six papers and divided into two parts. The first part
summarizes the contributions of the six papers, and the second part contains the
papers in their entirety.

The thesis introduction is organized as follows. Chapter 2 describes the context
of the research and Chapter 3 describes the research methodology. A summary of
the findings are presented in Chapter 4 and of related work in Chapter 5. Chapter
6 discusses future research directions and Chapter 7 concludes the work.

In the paper section, six papers are included. The first three papers research the
solution space, regression testing, from different perspectives. Paper I reviews the
literature on regression testing, Paper II surveys industrial practices of regression

8 INTRODUCTION

testing and Paper III studies regression test technology adoption. Paper IV and
V research the problem domain, SPL testing. Paper IV reviews the literature and
Paper V studies the industrial context. Paper V elaborates on how visualization
may support regression test decisions in the SPL context. The implementation and
evaluation of these ideas are reported in Paper 6.

Papers I, IV and V are published in the Journal of Information and Software
Technology (IST) and Papers II and III are published and presented at the inter-
national conference on Product Focused Software Development and Process Im-
provement (PROFES) and the international workshop on Evidential Assessment
of Software Technologies (EAST), respectively. Paper VI is submitted to a practi-
tioner oriented journal.

2 Background, concepts and definitions

2.1 Software product line engineering

In SPLE mass customization is achieved through systematic reuse of artifacts
throughout the development process. A software product line is defined as fol-
lows by Clements and Northrop:

“A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of
a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.”

[22]

Commonality denotes the shared set of features while variability denotes the
possible specializations, the variants. Pohl et al [99] further distinguish between
the domain engineering process, in which the commonality and variability of the
product line are defined and realized, and the application engineering process, in
which the product variants, the applications, of the product line are defined and
realized, see Figure 2.

The product line engineering concept is not unique for software engineering.
Several examples of product lines are reported earlier in other engineering do-
mains such as: Volkswagen cars [131], Xerox copiers [96], Swiss army knives
and Swatch watches [128]. SPLE attempts to transfer the benefits of product line
engineering, which enables both mass production and customized products, to the
software engineering context.

However, in contrast to other engineering domains, the cost focus for SPLE is
on the development process rather than the production. Hence, trade-offs relate
to the increased effort in developing more generic artifacts versus the decreased
effort in deriving new variants. Research on SPLE started in the 1990ies, and has

2 Background, concepts and definitions 9

Figure 2: Domain and application engineering processes for software product line
products, according to Pohl et al. [76], reprinted with permissions from Springer-
Verlag.

attained growing interest over the last 10 years. Several benefits of applying SPLE
have been reported, such as reduced lead times, costs and maintenance as well as
increased flexibility [49, 79].

Testing is still a bottleneck in SPLE. A common situation is product develop-
ers spending much time in testing each product variant as reported by Kato and
Yamaguchi [63]. A few good examples are published on how the testing may
be efficiently conducted [59], (Paper IV), but mostly, experience reports focus on
other aspects than the testing [79].

2.2 Software testing

Basic testing concepts

Testing software involve several test activities: test planning, test case design, test
execution and analysis of test results which are carried out differently at differ-
ent stages of the development process (e.g. unit test, integration test and system
test), see Figure 3. Test planning involves the specification of goals and choice
of strategies for the testing. Test case design aims at specifying a set of test cases
based on available information about the system, preferably in accordance with the
previously defined goals and strategies. The specified set of test cases constitutes
together with the software under test (SUT) the input to the test execution. Results
from the test execution are analyzed to assess quality, identify faults and plan fur-

10 INTRODUCTION

ther testing. In addition to the primary test activities a range of support activities
may take place as well (e.g. test suite maintenance or test tool development).

Figure 3: The different test activities. Primary activities are the planning of test,
design of test cases, execution of test cases and analysis of results. these activities
are carried out differently at different stages of the testing i.e. the levels of test
(e.g. unit, integration or system).

Regression testing

Regression testing is conducted in order to verify that changes to a system has not
negatively impacted on previously functioning software. The purpose is to detect
regression, or decay of the system. IEEE standards define regression testing as:

“Selective retesting of a system or component to verify that modi-
fications have not caused unintended effects and that the system or
component still complies with its specified requirements."

[55, 56]

A common regression testing approach is to reuse previously executed test
cases and the main focus of regression testing research is how to maintain, se-
lect and prioritize among the existing test cases. In their survey on regression
test techniques, Yoo and Harman [137] summarize definitions of regression test
case selection, prioritization and minimization which were originally introduced
by Rothermel and Harrold [47, 111, 114, 115] as follow:

2 Background, concepts and definitions 11

Regression test selection, aims at identifying a subset of test cases that
is sufficient to verify the effects of a given set of changes.

Regression test prioritization techniques rank test cases in their pre-
dicted order of contribution to the fault detection rate based on some
criteria e.g. risk, coverage or test execution history.

Test suite minimization, or reduction, optimizes a test suite with re-
spect to redundancy.

[137]

Out of these three groups the selection techniques are most researched [137].
The first paper on regression testing was published 1977 by Fischer [40] and until
the beginning of 1990’s regression testing research focused exclusively on the de-
velopment of selection techniques. The concept of minimization was introduced
1993 by Harrold et al. [47] and prioritization techniques 1999 by Rothermel et
al. [115]. The interest in prioritization techniques have been growing since, and
since 2008 more papers have been published on regression test prioritization than
on regression test selection [137].

An interest in evaluations and comparisons of regression testing techniques
began with a publication on cost models by Leung and White 1991 [76] and an
increasing trend of empirical evaluations in the form of evaluative case studies and
comparative experiments started 1997 through Baradhi and Mansour [5], Rother-
mel and Harrold [112] and Wong et al. [134]. The empirical evidence base on
regression test selection is systematically reviewed in this thesis (Paper I).

However, there is a gap between research and practice of regression testing.
Only few empirical evaluations of regression testing techniques are carried out in
a real industrial context. Techniques are context dependent and evaluations lack
support for generalization between contexts. Moreover, while researchers mostly
focus on selection, prioritization and minimization, there are other important issues
too. Rooksby et al. [110] argue for the need for investigation and characterization
of real world work, based on experiences from testing in four real projects. They
conclude that improvements of current testing practices are meaningful in its spe-
cific local context and “cannot be brought about purely through technically driven
innovation”. Real-world needs and practices are investigated in this thesis (Paper
II) through a qualitative survey as well as the application of empirical evidence
in practice (Paper III) in a case study on the procedure of improving regression
testing based on empirical evidence.

Regression testing is a frequent and costly activity in industry. Still indus-
try practice on regression testing is mostly based on experience alone and not on
systematic approaches. Onoma et al. [92] observe that regression testing is used
extensively in industry, companies develop their own regression testing tools to
automate the process and in some companies it is not a critical issue to minimize

12 INTRODUCTION

the set of test cases to rerun. Some types of tests (e.g. customers’ acceptance tests
or safety standard fulfilling test) are often not subject to minimizations. Current
trends in software engineering, such as software reuse over a family of products,
constantly evolving software due to market and technology changes and specifi-
cation free development, increase the need for and put specific requirements on
regression testing. Today most testing could be regarded as regression testing.
Berner et al. [8] observed that almost all test cases in a project were executed at
least five times and 25% of the test cases were executed far more than 20 times in
a project.

2.3 Software product line testing

Even though new testing challenges arise within the product line context, such
as handling variability, combinatorial explosion of test and the trade-off between
spending test effort in commonality testing versus variant testing (Paper IV), most
traditional practices are still valid. Practices for testing object oriented systems
and regression are especially useful in the product line context [92, 125]. Some
general testing strategies may be particularly advantageous in, and adapted to, the
software product line context, such as model based [94] and combinatorial [24]
testing strategies.

Software product line testing can be described as a three-dimensional regres-
sion testing problem [117]. Developing a software product line, there are three
main dimensions of software evolution to handle: 1) The hierarchical composition
of the software system: the level of integration, 2) the evolution over time and
3) the derivation of variants. Figure 4 illustrates how testing is repeated over these
three dimensions. The first dimension addresses the different phases of testing,
described in Section 2.2, similar to a traditional V-model (e.g. unit testing, inte-
gration testing and system testing). At each of these levels, the test goals may be
different, and typically correlated to the choice of test approach (e.g. functional
test goals at unit level and non-functional at system level). The second dimension
is the traditional regression testing perspective, described in Section 2.2, on which
most research on regression testing is focused [137]. The third dimension is what
makes the difference between software product line testing and traditional single
system testing, the testing over variation in space. Variants may be derived by
switching a parameter, changing a component or developing a new product from
scratch (which is not the case in SPLE). If there are small internal differences
between variants the testing may be performed with similar approaches as for re-
gression testing. Basic testing trade-offs regard the balance of test effort over the
different testing phases in a development project. Regression testing may be ap-
plied at all levels, and strategic decisions include: at which level, how often and
how much need to be retested. In the SPL context, these decisions interact with
the strategy on which variants to test, and to what extent.

3 Research methodology 13

Figure 4: Overview of testing dimensions in software product line engineering.

This thesis focuses on decisions at an operational level, i.e. decisions on how to
set the scope in a situation, with given constraints regarding cost and context, based
on information from previous testing at other levels of the V-model, of earlier
builds and other variants. Paper V investigates the complexity of these decisions
through an in-depth case study in an emerging SPL organization and Paper VI
proposes and evaluates a visual analytics strategy to support the decisions.

3 Research methodology

The main goal of this thesis work, similar to most research in software engineer-
ing, is of prescriptive character rather than descriptive, i.e. we want to solve a
problem: How to improve software product line testing?, which would call for a
an applied research strategy. The following sections begin with a discussion of
applied research in general, then continue with an overview of current focus and
methodology in software engineering research and finally the process and methods
used in this thesis work are discussed.

3.1 Applied research

van Aken [1] uses the term “design science” to distinguish between the research
in applied sciences, such as medicine and engineering, from the “explanatory sci-
ences”, such as physics and sociology, and “formal sciences”, such as philosophy
and mathematics. The main differences between the three relate to the nature of

14 INTRODUCTION

the outcome and to how the research is justified. Formal sciences build systems
of propositions which are validated by internal consistency. Explanatory sciences
describe, explain and predict observable phenomena with propositions which are
accepted as true by the community based on provided evidence. Design science
provide heuristic prescriptions for improvement problems. The context dependent
nature of these prescriptions calls for pragmatic validation, i.e. it is impossible
to conclusively prove its effects. Both explanatory and applied research rely on
empirical methods to gain knowledge.

Finding a relevant solution to a problem requires an understanding of the prob-
lem to be solved, as well as an understanding of the effects of applying a proposed
solution. Prescriptions need to be founded in both formal and explanatory theories.
Many software engineering researchers claim a lack of relevant theory in software
engineering [45] in general and there is room for more formal and explanatory
research within this discipline despite its applied nature.

I have posted six research questions in this thesis, see Section 1.2, four of them
are of explanatory type, while two have a design aspect, see Table 1. Explanatory
questions may be of different kinds, depending on how much we already know
about a specific topic or phenomenon: exploratory, descriptive, explanatory and
predictive. Exploratory questions are useful in cases when a problem is not clearly
defined. Descriptive questions may complement exploratory questions and aim
at factually and systematically describing the characteristics of a problem. While
exploratory questions are answered qualitatively, descriptive answers may also in-
volve statistics. In this thesis exploratory and descriptive questions have been
posted to better understand both the solution space (RQ1 and RQ2) and the ap-
plication domain (RQ4 and RQ5). Explanatory questions follow the descriptive
questions and seek to find casual relationships. In Table 1 I have classified the
research questions in this thesis and the type of outcome corresponding with them.

3.2 Software engineering research

Software engineering research is an emerging discipline which has not yet es-
tablished a commonly accepted pattern of methodology. Montesi et al. [86, 87]
studied software engineering research by classifying and describing article types
published in conferences and journals in the software engineering discipline and
also in the discipline of biology and education. They found that methodology in
software engineering research is not reported as frequently as in other disciplines.
Instead, relevance for practice, novelty, and originality were the most important
requirements for publication.

Many attempts to import research methodology guidelines from other domains
to improve quality in software engineering research have been made: Kitchenham
et al. [68] introduced guidelines for empirical research in software engineering
based on guidelines from the medical research discipline. Kitchenham et al. have
also provided guidelines for how to conduct experiments [68] as have Wohlin et

3 Research methodology 15

al. [133] based on social science practices. Easterbrook et al. [33] compare five
classes of research methods which they believe are most relevant to software engi-
neering: controlled experiments (including Quasi-Experiments); case studies (both
exploratory and confirmatory); survey research; ethnographies and action research
and provide guidelines for the choice of method. Runeson and Höst [118] provide
a comprehensive guide to case study research in software engineering, compiled
from methodology guidelines from other disciplines, mainly social sciences.

Along with the debate on quality of research and which methodology to use
goes the debate on what focus software engineering research should have. Colin
Potts [101] addressed 1993 the lack of problem focus in contrast to solution focus
in software engineering research and argues for more of industry-as-laboratory
research to balance the at the time more common research-then-transfer focus.
This he argues would sacrifice revolution but gain steady evolution. The debate is
still ongoing and the message in Briands’ analysis of software engineering research
today [15] is very much the same.

3.3 Research process and methods

Hevner describes a design science process including six steps [51, chapter 3.6]:
1) problem identification and motivation, 2) definition of the objectives for a solu-
tion, 3) design and development, 4) demonstration, 5) evaluation and 6) commu-
nication. Throughout the process knowledge is interchanged both with the knowl-
edge base and the environment [50].

In this thesis the rationale behind the research was an intuitively sound pro-
posal to use regression testing strategies to improve testing in a software product
line context. However, regression testing in practice means something different
from regression testing in research and I chose as a starting point for my research
to achieve more knowledge about this gap, believing it be fundamental for the
relevance of any solution proposal based on regression testing strategies. As a
continuation I chose to focus on gaining knowledge about the SPL testing context.

The prescription in sight for this thesis work was a method to improve SPL
testing. The initial proposal was rather vague, to use a regression testing approach,
and the initial research task aimed at concretizing it. The design process in this
thesis work included searches for applicable strategies in research (Paper I) and
practice (Paper II) as well as identification of requirements in terms of SPLT chal-
lenges identified in literature (Paper IV) and practice (Paper V) and regression test
challenges identified in practice (Papers II and III). No single existing technique
was found to meet the identified challenges and the visual analytics proposal com-
bines properties from several approaches. It was developed through experimenta-
tion with three different sets of authentic test data and evaluated in three different
focus groups (Paper VI).

16 INTRODUCTION

Table 1: Categorization of the research questions and activities reported in this thesis. All questions
have been investigated with empirical methods. Four out of six questions (I, II, IV and V) are of
explanatory type while two are of design type. The explanatory questions have been further categorized
in: exploratory, descriptive and explanatory questions.

Question Paper Type of ques-
tion

Type of re-
search

Type of outcome

RQ1 I Exploratory,
Descriptive

Secondary re-
search

Empirical knowledge

RQ2 II Descriptive Survey Empirical knowledge
RQ3 I, II, III Design Action-

research,
Analytical

Heuristic prescription

RQ4 IV Exploratory,
Descriptive

Secondary re-
search

Empirical knowledge

RQ5 V Descriptive,
Explanatory

Cases study Empirical knowledge

RQ6 III, V, VI Design Cases study,
Analytical,
pragmatic
validation

Heuristic prescription

Table 1 lists which methods I have used to retrieve answers for each research
question. Details on how the different studies were carried out can be found in
each paper respectively.

3.4 Validity

validity of each study is reported in each of the included papers. In this chapter
I discuss the validity of the overall research process and outcomes in relation to
the main goal: improving testing in a software product line context. I discuss
validity from three different perspectives according to three-cycle model for design
science [50]: Design, rigor and relevance.

The design cycle

Hevner and Catterjee model the design cycle as the heart of a design science re-
search project [50]. The design cycle describes how the research iterates between
the construction and evaluation of artifacts and its refinement based on this feed-
back. Here a balance must be maintained between construction work and evalua-
tion work.

The research presented in this thesis includes a large share of knowledge seek-
ing in relation to the novelty of the prescriptive outcome of the research. The ben-
efits of information visualization to support decisions are not new knowledge [18,

3 Research methodology 17

124] even though it has not been applied in this context for this purpose before.
This imbalance between construction work and evaluation work relates to the dis-
orientation in the field of software engineering [45] as well as the gap between
research and practice [15]. To build a relevant basis of knowledge this gap needs
to be bridged. Although the prescriptions in this thesis are pragmatic and intu-
itive, they are novel both from a research and an industrial perspective. Theory
on regression testing and SPL testing tend to overlook the complexity of the in-
dustrial context while practitioners do not have the tools to formalize it. Neither
do researchers and practitioners speak the same language. Although not included
in this thesis, the design process also involved industrial evaluations of regression
testing strategies proposed in literature [36, 38]. None of these techniques were
further refined by us to meet the SPL challenge but the experiences of the evalu-
ations provided valuable insight to the problem and guided our design decisions
towards the pragmatic prescriptions.

The prescriptions involve several elements which are derived from the ex-
ploratory, descriptive and explanatory studies. For example, the test coverage
item model for data transformation is based on our observations of implicit test-
ing goals in Paper V, and guidelines for regression test improvement derive from
the survey on regression testing practice in Paper II and include the classification
of techniques in Paper I. However, the displacement of focus towards explanatory
research places the research somewhere between design science and explanatory
science i.e. prescriptions are general and need to be further refined in the appli-
cation context. In addition to general prescriptions, the outcome of those studies
adds to the general knowledge base in software engineering.

Relevance

Design science should improve the environment in which it is applied. Relevance
is assured if research activities address business needs [52]. The cost share of
testing in software development [21] and increasing size and complexity of sys-
tems motivate the need for improved testing in general. Companies applying SPLE
strategies report decreased development costs and shortened lead times [30,79,99].
It is a promising approach which is applied more and more to handle the complex-
ity of variability and size in software systems. Testing strategies have to adapt
to it. In large software organizations with a product line development approach,
selective testing of product variants is necessary in order to keep pace with the
available time to market for new products.

However, a prescription is not relevant per se if adapted to the SPLE but must
be validated in the context. SPLE is to some extent an idealistic model of software
development which is rarely fully implemented in industry. Hevner et al. define
business needs as: the goals, tasks, problems, and opportunities as they are per-
ceived by people within the organization [52]. Throughout this thesis work, collab-
oration with industrial partners have been central and all primary studies (Papers

18 INTRODUCTION

II, III, V and VI) involve people within the organizations, through interviews, fo-
cus groups and surveys. None of the organizations represents a fully implemented
SPL but all of them struggle with handling of variability and an exponentially
growing testing task. Context is clearly reported from a product line perspective
in all studies to enable analytical generalzsation [136] as far as possible.

The two main prescriptive outcomes of this thesis work are 1) a proposal on
how to visualize historical test information to support test scoping decisions (Pa-
pers V and VI) and 2) a procedure guiding the practical adoption of regression
testing evidence (Paper III). The visualization proposal was designed to meet the
challenges identified in field and piloted on real data from three different test orga-
nizations. Furthermore it was tested and evaluated off-line by three focus groups
of practitioners.

Thus, the visualization prescription is relevant in cases where large amounts
of test cases are executed and there is a need to cut testing costs or to improve
test efficiency, especially if there is a risk for test overlay due to organizational
distribution of similar tests. The benefits of visualization is limited by the quality
of the documented data. In all three cases to which the visualization was applied
there were relevant data to visualize which could be extracted from databases or
MS word documents. Relevance is also limited by the test process and strategy. To
benefit from the visualization, the test process should involve repetitive testing and
the test strategy allow for reduction of the test scope. The number of testing com-
binations in such variability intensive contexts is extensive and decision support
for scoping is needed.

Rigor

Rigor relates to the way in which research is conducted [52]. It applies to ev-
ery part of the research process: from our definition of questions, to the selection
of and commitment to a method and to the interpretation and communication of
results. In this thesis the above mentioned aspects of rigor have been carefully
considered in all studies. Threats to validity are considered and reported in each
study with respect to the construct of the study, reliability and internal and exter-
nal validity [118, 133, 136]. Rigor in design science needs to be balanced with
individuals’ creativity and expertise in a domain. It defines the limit of produced
knowledge and is closely related to relevance i.e. the level of detail in the abstract
model of the gained knowledge should be sufficient but not too high. Limitations
of the knowledge is here discussed in relation to the main contributions listed in
section 1.2.

The main limitation of the two secondary studies (Paper I) and (Paper IV) is
related to the scope of the studies and the quality of primary studies. In the sys-
tematic literature review on regression test selection the synthesis of results was
inconclusive due to the diversity of techniques, goals and evaluation strategies
among the primary studies. Still, the presentation of the results enables analytical

3 Research methodology 19

generalization and provides guidance for practitioners and researchers in select-
ing a regression test selection strategy and evaluating its effectiveness. However
the scope of the study does not cover regression testing techniques other than se-
lection techniques or empirical evaluations published later than 2006. How this
limitation in scope affects the validity of the outcome depends on the recent activ-
ity in the field. Yoo and Harman surveyed the field of regression testing research
until 2009 [137] and visualize some trends: 1) Interest in regression testing contin-
ues although it has decreased since 2007. 2) The scale of empirical studies seems
to remain limited. 3) The share of selection papers decreases and instead the pri-
oritization have been in focus the last years. In summary: practitioners can use the
results of Paper I to get an understanding of the topic and a fairly representative
assessment of the state of art in regression test selection but should also consider
prioritization techniques as a possible means for regression test improvement.

The focus of the mapping study (Paper IV) is slightly different from the SLR
since no synthesis of empirical results has been done. Instead the maturity of
the research topic has been assessed and an overview of the research activity is
provided. This overview is valid as long as the selection of primary research is
representative and classifications are correct. The selection of primary research
was carefully carried out using multiple search strategies. In addition both internal
and external validation of the selected set of primary studies confirm its repre-
sentativeness. Another similar study was conducted independently of ours and the
two studies were compared to assess the reliability of the method [132]. This com-
parison highlights the lack of agreement in the community regarding classification
of research types. Thus generalization of the conclusions should be made with
care. However, generalization is supported through the transparency in the report
regarding classifications. Our interpretation of the used classification scheme is
described and the classification of each paper is explicit.

The other four studies (Papers II, III, V and VI) are carried out in close co-
operation with industry which limits the knowledge in terms of interpretation,
representativeness and generalization. Interpretation refers to the ability to have
a common understanding of a phenomenon across different contexts, which could
be both academia-industry and industry-industry. Especially in Papers II and V
there are claims of contributing to increased understanding of the industrial con-
text. In both cases a conceptual framework was developed in cooperation with the
practitioners, introduced to all participants of the studies and reported in the final
publications. Representativeness refers to how well the subject under study repre-
sents the object of study e.g. are the emerging product lines we have had access
to good representatives for the real product line context or do the participants in
the studies represent the populations in mind? Selection of subjects to study are
based on a combination of availability and inclusiveness (some criteria need to
be fulfilled), no attempts have been made to randomize samples. Generalization
deals with the same questions but tackles them when drawing conclusions from a
study rather than in the design phase. In all study reports careful case and context

20 INTRODUCTION

descriptions are provided to support generalization. In addition, our own interpre-
tations in the explanatory studies (Papers II and V) are conservative to minimize
the risk of over interpretation of the data. Two studies provide prescriptive out-
comes (Papers III and VI) regarding the regression test improvement procedure
and regarding visualization as decision support. None of these prescriptions have
been evaluated in the field but both derive from existing knowledge and both are
evaluated off-line. In both cases prescriptions are general and thus apply to all
relevant cases as described above. However, the set of relevant cases may include
specific cases where other more specific prescriptions are applicable.

4 Research contributions

This section summarizes the contributions of the thesis, categorized according to
the three sub goals stated in 1.1: 1) Bridging the gap between regression testing
state of art and state of practice, 2) Understanding the challenge of SPL testing
and 3) Improving regression test scoping in the software product line context. The
relationships between the various contributions are illustrated in Figure 1.

4.1 Bridging the gap between regression testing state of
art and state of practice

Papers I–III review the literature on regression test selection, surveys the state of
practice and reports experiences from transferring empirical evidence into practice
respectively.

A systematic review on regression test selection techniques

The main contributions of the systematic literature review (Paper I) are:

• A classification scheme for regression test selection techniques intended to
make research results more accessible to practitioners within the field

• Overview and classification of regression test selection techniques which are
evaluated in the literature

• Overview and qualitative analysis of reported evidence on regression test
selection techniques

• Overview of metrics and strategies used for evaluation of regression test
selection strategies

Several observations regarding relevance and applicability of evidence were
made when analyzing the data of the systematic review. Firstly, most techniques
are not evaluated sufficiently for practitioners to make decisions based on research

4 Research contributions 21

alone. Techniques are context dependent and in many cases evaluations are made
only in one specific context. Few studies are replicated, and thus the possibility to
draw conclusions based on variations in test context is limited. Moreover, often
only one aspect is evaluated for a technique. Among the studies included in the
systematic review, only 30% of the empirical evaluations considered both fault
detection capabilities and cost reduction capabilities.

Secondly, standards for conducting empirical studies differ greatly just like
the novelty of proposals. Some techniques could be regarded as novel at the time
for their publications while others are variants of already existing techniques. In
addition to this, some techniques are presented in a rather general manner, leaving
much space for differences in implementation of a technique under study.

Thirdly, the evidence base is inconsistent. In cases where comparisons be-
tween techniques were possible, e.g. due to replications, there was not very strong
evidence for differences between techniques and some results were even contra-
dictory. To improve the situation there is a need for the research community to
identify and focus studies on general regression testing concepts rather than on
variants of specific techniques, to more systematically replicate studies in different
contexts and gradually scale up the complexity and to identify and report important
variation factors in the regression testing context.

A qualitative survey of regression testing practices

Paper II focus on industry practice of regression testing which is often based on
experience, rather than systematic approaches. Through the means of focus group
discussions and a questionnaire we wanted to identify challenges and good prac-
tices in industry. A total of 46 software engineers from 38 different organizations
participated in the study. Results are qualitative and of great value in that they
highlight relevant directions for future research. Results pinpoint the variation in
regression testing situations and are summarized here under the main headings of:
What?, When?, How? and Challenges?.

What? Regression testing involves repetitive tests and aims to verify that pre-
viously working software still works after changes to other parts. Focus can be
either reexecution of test cases or retest of functionality. As for testing in gen-
eral, the goal of the regression testing may differ between different organizations
or parts of an organization. The goal may be either to find defects or to obtain
a measure of the quality of the software. An additional goal may be to obtain a
guide for further priorities in the project. Different kinds of changes to the system
generate regression testing. Mentioned in the focus group and confirmed by the
majority of the respondents were: new versions, new configurations, corrections,
changed solutions, new hardware, new platforms, new designs, and new interfaces.
The amount and frequency of regression testing is determined by the assessed risk,

22 INTRODUCTION

the amount of new functionality, the amount of fixes, and the amount of available
resources.

When? Regression testing is carried out at different levels (e.g., unit, integra-
tion, and system level) and at different stages of the development process. It was
found that some organizations regression test as early as possible while other re-
gression test as late as possible in the process, and some claimed that regression
testing is continuously carried out throughout the whole development process.

How? Tests used for regression testing may be a selection of developer’s tests,
a selection of tester’s tests, a selection of tests from a specific regression test suite,
or new test cases are designed. Strategies for regression test selection included:
complete retest, combine static and dynamic selection, complete retest of safety
critical parts, select test cases concentrating on changes and possible side effects,
ad hoc selection, smoke test, prioritize and run as many as possible, and focus on
functional test cases. A project may include several different regression testing
activities. Both manual and automatic regression testing are applied.

Challenges The focus group had an open discussion about both weaknesses
and strengths in their regression testing practices. Some problems were common
to most of the participants (e.g. lack of time and resources to regression test and
insufficient tool support) while others were more specific. The main challenges
relate to: test suite maintenance – much of the testing is redundant and there is
a lack of traceability from tests to requirements; test case selection – it is hard to
assess the impact of changes and to prioritize testing with respect to product risks
and fault detection ability; testability – there is a need for design guidelines consid-
ering testability, modularization of the software, and clearer dependencies to ease
regression test scoping; the tradeoff between automated and manual regression
testing – automated regression testing causes problems, in terms of maintenance
of test scripts, and manual testing is time and resource consuming; and presenta-
tion and analysis of test results – in many cases verdict reporting is inconsistent
and often there is no time to do a thorough analysis. For each of the challenges
covered in the discussion there were participants who had no solutions in place
and participants who were satisfied with, and thus recommended, their solutions
and tools.

A case study on regression test technology adoption

Paper III focus on the transfer of empirical evidence into practice. An industrial
case study was carried out [36] to evaluate the possibility to improve regression
testing in one test organization at Sony Ericsson Mobile Communications based
on research results. In Paper III we analyze the procedure undertaken to identify
the problem, search for relevant research and evaluate the effects of applying a

4 Research contributions 23

Figure 5: Overview of the EBSE approach described by Dybå et al. [32] and the
Automation approach described by Parasuraman et al. [95].

solution. Our analysis was based on frameworks from the evidence based software
engineering (EBSE) paradigm [32] and automation literature [95]. The two models
complement each other in their different foci, see Figure 5. While the focus of the
EBSE model is on the assessment of empirical evidence, the automation model
is focused on the practical effects of introducing the changes. The automation
model distinguishes between different types and levels of automation and suggests
primary and secondary evaluation criteria to be applied iteratively while adjusting
the decisions on type and level of automation. The EBSE model is more general,
i.e. it applies not only to automation but to any type of process improvement, and
guides the procedure of matching real problems with empirical evidence as well
as evaluating the quality of existing evidence and the performance of a suggested
improvement.

Results from this case study pinpoint the need for more detailed methods for
evaluating indirect effects of automation changes and matching the communication
of empirical evidence with the description of the industrial context where automa-
tion is under consideration. Indirect effects may for example be skill degradation
and overtrust in the tool. However, indirect effects may as well be positive such
as increased consistency in documentation and cross learning between distributed
teams. Our study provides examples of how to apply existing general guidelines
as well as of how to create subarea specific guidelines for the different tasks of the
automation procedure. The results are here summarized related to the three main
tasks of the regression test improvement procedure as defined in Figure 5: iden-
tification of preconditions (E1 and A1), identification of relevant research (E2-3)
and evaluation of effects (E4-5 and A2-4).

24 INTRODUCTION

Identification of preconditions: Our case study demonstrates the benefits of
using structured methods and frameworks to define the scope and effect targets of
the improvement as well as the need for even more detailed support for identifying
which trade-offs and context constraints need to be considered in the search for a
solution. We used interviews to gather information on the problem which helped
us extract the meaning of “improving regression testing” in the current context
into a list of four concrete effect targets. Furthermore, the context information
was structured according to an existing framework [97] for context description in
software engineering. This general framework offered some support in identifying
relevant context constraints for the selection of technique, identifying indirect ef-
fects of the automation change, and communicating the results of the evaluation.
However, it did not support the more detailed search and comparison of regression
testing techniques on the same level of abstraction as they are reported in literature.

Identification of relevant research: The search for relevant techniques sho-
uld be driven by scope of automation, effect targets and context constraints. Our
case study pinpoints the mismatch between empirical evidence and industrial needs.
Effect targets identified in our case study correlate with general needs in industry
and are partly addressed by research. However, constraints in the industrial context
and current practices delimited the selection considerably.

Evaluation of effects: Automation changes may have both direct and indirect
effects. Direct effects may be evaluated against the effect targets; in the case of re-
gression testing detailed evaluation frameworks for evaluating cost and efficiency
exist [111,115]. Indirect effects involve effects of the changed, added and removed
tasks caused by the automation change. These effects are harder to evaluate and no
specific guidelines were available for that purpose. Our case study exemplifies the
application of existing general frameworks as well as the development of context
specific checklists to support analytical evaluation of indirect effects.

4.2 Understanding the challenge of SPL testing

Papers IV–V review the literature on software product line testing, study software
product line testing in practice through an in depth case study and models the
testing tradeoffs needed in such a context.

A systematic mapping study on software product line testing

The main contribution of the systematic mapping of research on software product
line testing (Paper IV) are:

• Overview and classification of research on software product line testing

4 Research contributions 25

• Overview and quantitative analysis regarding type of research, type of con-
tribution and focus of research

The main focus of the research in software product line testing is the vast
amount of possible tests that may be run. Research proposals deal with questions
on how to handle the variability, the combinatorial explosion of tests, and how
to balance test efforts between testing of common components and the configured
product variants, as well as between different phases of testing. Research topics in-
clude: test organization and process, test management, testability, test approaches
at different levels of tests and test automation.

Test organization and process: Research on test organization and process
focus on the testing framework, seeking answers to how the testing activities and
test assets should be mapped to the overall product line development, and also how
product line testing should be organized overall. McGregor points out the need for
a well-designed process and discusses the complex relationships between compo-
nents and products, and different versions of both components and products [82].
He argues for a structure of test assets and documentation in alignment with the
structure of the constructed products. Pohl et al. present four principal strategies
for the trade-off between domain and application testing [99]: P1) test everything
at the domain level, P2) test everything at application level, P3) test a sample at
domain level, and the full application testing and P4) test common part at domain
level and variability at application level.

Tevanlinna et al. [125] addressed the problem of dividing product line test-
ing into two distinct instantiations of the V-model, and concluded that testing is
product oriented and no efficient techniques for domain testing exist. Instead they
distinguish between four different test reuse strategies: R1) product by product
testing (no reuse), similar to P2; R2) incremental testing, test at application level
what is changed between the current product and previously tested products; R3)
reusable assets instantiation, focus testing on the domain level, similar to P4; and
R4) division of responsibility – testing is seen from an organizational point of
view.

Test management: Research on SPL test management includes test planning
and assessment, fault prediction, selection of test approaches, estimates of the ex-
tent of testing and test coverage. Test planning frameworks: Tevanlinna [125]
presents a tool called RITA (fRamework Integration and Testing Application) to
support testing of product lines. Kolb presents a conceptual proposal for risk-based
test planning and test case design [69] and McGregor and Im outline a conceptual
proposal that address the fact that product lines vary both in time and space [84].
Cost/benefit assessment models: Zeng et al. identify factors that influence SPL
testing effort, and propose cost models accordingly [139]. Jaring et al. propose
a model, VTIM (Variability and Testability Interaction Model) to support man-

26 INTRODUCTION

Combinatorial testing

Regression
testing

Model-based
testing

System – components,
versions and variants

System under
test

Test
suite

Test
cases

Test
results

Req's

Figure 6: Scope of combinatorial testing, model-based testing and regression
testing.

agement of trade-offs on the binding point for a product line instance [58]. They
illustrate the model on a large-scale industrial system. Test approaches: Three
different test approaches seem to be particularly beneficial for testing a software
product line: combinatorial testing approaches, model-based testing approaches
and regression testing approaches [24, 83, 88, 125]. Figure 6 illustrates the scope
of the three approaches. Model-based testing strategies focus on the creation of
test cases and seeks to automatically generate test cases from explicit test models.
Regression testing strategies focus on the selection of existing test cases for execu-
tion based on analysis of test cases and test objects. Combinatorial strategies deals
with both creation and selection of test cases.

Testability: McGregor discusses testability, referring to characteristics of the
software products that help testing [82]. Trew identifies classes of faults that can-
not be detected by testing and claim the need for design policies to ensure testabil-
ity of an SPL [127]. Kolb and Muthig discuss the relationship between testability
and SPL architecture and propose to improve and evaluate testability [70].

Test approaches at different levels of test: Most research is spent on sys-
tem and acceptance testing and the most frequent goal is automatic generation of
test cases from requirements. Requirements may be model based, mostly on use
cases [106], formal specifications [85], or written in natural language [6]. sys-
tem and acceptance testing: Hartmann et.al present an approach based on existing
UML based tools and methods [48]. Reuys et al. define the ScenTED approach

4 Research contributions 27

to generate test cases from UML models [107], which is further presented by
Pohl and Metzger [100]. Bertolino and Gnesi introduce PLUTO, product line use
case test optimization [9–11]. Bashardoust-Tajali and Corriveau extract tests for
product testing, based on a domain model, expressed as generative contracts [6].
Geppert et al. present a decision model for acceptance testing, based on decision
trees [41]. The approach was evaluated on a part of an industrial SPL. Li et al.
utilize the information in execution traces to reduce test execution of each prod-
uct of the SPL [77]. Integration testing: The ScenTED method is proposed also
for integration testing in addition to system and acceptance testing [109]. Reis
et al. specifically validate its use for integration testing in an experimental eval-
uation [106]. Kishi and Noda propose an integration testing technique based on
test scenarios, utilizing model checking techniques [67]. Li et al. generate in-
tegration test from unit tests, illustrated in an industrial case study [78]. Unit
testing: Different approaches to create test cases based on requirements includ-
ing variabilities are proposed with a focus on how to cover possible scenarios. In
ScenTED [108], UML-activity diagrams are used to represent all possible scenar-
ios. Nebut et al. [89] use parameterized use cases as contracts on which testing
coverage criteria may be applied. Feng et al. use an aspect-oriented approach to
generate unit tests [39].

A case study on test overlay in an emerging software product line

Paper V studies one aspect of software product line testing in depth, test overlay,
through the means of an industrial case study. The studied case is the testing in
the case company’s development of Android1 embedded devices. For the in-depth
analysis, the testing of one function is studied. The function exists in several prod-
uct variants, depends on hardware variants, evolves in different versions over time,
and is adapted to continuous upgrades of the Android platform. The development
organization is complex, involving a globally distributed development, and the
market situation involves delivery of tailored product variants to customers, based
on varying market and country specifications.

The focus in this study is on manual testing of functional and quality require-
ments. This testing is characterized by a higher degree of creativity for the tester
and less detailed documentation. Relations between different test executions and
implicit testing goals are identified and expressed in terms of test coverage items
(TCI:s)2, capturing different levels of detail as well as different purposes of tests.

The case context The product line products, which were developed in a soft-
ware project in the case study context, comprise different product variants (about
10), called product configurations in Figure 7. The products are in turn customized
for a number of different customers and market segments (hundreds) which have

1http://www.android.com/
2In Paper V the term used is only “coverage items”.

28 INTRODUCTION

different software requirements, and are called release configurations. Each re-
lease is packaged in a product package.

!"#"$%&' ()"*+,*'

!"#"$%"&'()*+,-$.()' /-(0,'1&2$'3$+"&

-)"$%./$'

0"!+/#'

/-(0,'1&&'()*+,-$.()' 1$/23*.'

4))&+*%5/#('

/#$4(-5&'()*+,-$.()' 1&%6/$7'

1&%6/$7'8/9:%$"'

1&%6/$7';%$2:%$"'

Figure 7: Configuration view of the product line under study.

The software development is distributed over three organizational units (core
software, application software and product composition), where they primarily
focus on platform, product and release configurations, respectively, as defined in
Figure 7. Within the core software and application software organizations, the
software is divided into different functional areas and for each area there is a team
of developers. Parts of the organizations are distributed over three continents.

Testing in the core software and application software organizations are con-
ducted at (at least) three main levels of test abstraction each, which involves re-
peated testing of common parts. Feature tests (unit testing, structural and func-
tional testing) are carried out by the functional area teams. Integration tests and
system test are carried out at both the test departments for platform and product.
At the product composition level, all product configurations are tested with sys-
tem tests and all product packages are acceptance tested. Regression testing is
conducted at all test levels and organizational units.

Overlaid testing In the case, the amount of overlaid testing, and the factors
causing overlay, were investigated. The analysis distinguishes between test design
overlay and test execution overlay. Test design overlay refers to the existence of
more than one test case that test the same TCI for the same purpose. Test execution
overlay refers to multiple executions of the same TCI with the same purpose. Two
of the research questions studied regard the industrial SPL testing context:

1. How much testing in a variability-intensive context is overlaid and which
is redundant? – Testing is repeated across abstraction levels, versions and
variants which could imply that multiple testing is done on the same TCI:s.

2. When and why does overlaid testing appear? – If overlaid testing exist,
which factors are causing the overlaid testing?

4 Research contributions 29

In total 517 test executions of 192 different test cases were identified, which
tested the case function, over a period of 22 weeks. The failure identification rate is
generally low: 15 of the 517 test executions failed. Feature testing and integration
testing run only one failing execution each.

Overlay in test design At the highest level of coverage item abstraction, these
192 test cases cover 19 unique TCI:s. Hence, 90% of the test cases could be
considered overlaid since they do not cover any unique coverage items. A large
share of the design overlay identified at the highest level of abstraction can be
attributed to the variability of the test cases, i.e. most of the test cases are different
variants at a more detailed level of coverage analysis. There are, for example, 112
different system test cases designed to test the function in terms of compatibility
with different models of devices, and types and sizes of memory cards. Increasing
the detail level of the ‘purpose’ parameter, there is no overlay between the different
test levels: feature integration and system testing, and no overlay within feature
testing. There is still design redundancy within integration testing and system
testing at this level, 33% and 63% respectively.

Overlay in test execution Overlay in test execution is defined as re-execution
of a coverage item and could origin both in overlay in the test design or the re-
execution of a test case. However the overlaid test execution is not redundant, if
it has been affected by a change since the last execution. At the highest level of
abstraction, 517 test executions tested the case function. 96% of these are overlaid.
The overlay remains high even for analysis at lower abstraction levels.

Factors causing redundancy Based on the analysis of the test data and in-
terviews with nine testers and managers, three key factors causing test redundancy
were identified:

1. Distribution of test responsibilities – Organizational distribution had more
impact than geographical.

2. Inconsistent documentation of test cases – Importance of consistency in de-
sign and documentation of test cases seem to depend on the size of the test
suite and the number of involved test managers. In contrast to the intuition of
the practitioners, redundancy in requirements or the absence of a complete
requirement specification did not cause design redundancy in the testing.

3. Insufficient delta analysis – Lack of commonality analysis of the variation
in space as well as lack of regression analysis of the variation in time were
the two main causes of overlaid test executions.

Behind these factors, there is a chain of causes and effects, described in Figure
8, which is elaborated in depth in Paper V.

30 INTRODUCTION

Testing of generic areas (S)

Evolving organization (F,I,S)

Distribution of test
responsibilities (I, S, O)

Poor documentation
and structure

Legacy

Execution
redundancy

Absence of complete requirements
specification available for testers (F)

Inconsistent documentation of
test cases (I)

Redundancy in requirements (F)

Insufficient commonality
analysis

Use of static test suites for
regression testing (F, I)

Insufficient change impact
analysis

Insufficient
delta analysis

Design
redundancy

Parallel
work (O)

Figure 8: Graph illustrating the hypotheses derived from the case study. Dashed
arrows indicate relations partly contradicted by the quantitative data. F = Feature
test, I = Integration test, S = System test, O = Overlap.

4.3 Improving regression test scoping in the software
product line context

Papers V and VI propose and evaluate a visual analytics strategy which aims to
address the identified challenges. A tool for decision support seeks to automate
the management parts of the testing chain, illustrated in the left semicircle in Fig-
ure 3 in Section 2.2. Most of the RT techniques offered in literature provides such
support on a rather high automation level, i.e. with a low level of user interaction,
which limits their flexibility and make them very context dependent. Since our
industrial studies all highlight the complexity and variation in regression testing
situations we propose a pragmatic tool offering support at a lower level of automa-
tion, i.e. allowing for more user interaction. Furthermore, previous studies on SE
technology adoption observe a status quo mindset [31,62], meaning that organiza-
tions are reluctant to make radical changes to existing process. Thus, we propose
a tool that may adapt to and evolve incrementally within the complex context. The
first step is just to make the existing practices transparent.

4 Research contributions 31

A visualization proposal

The third research question in Paper V regards the possibility to improve regression
testing within the industrial SPL testing context:

3. How can visualization support test scoping decisions? – We assume that
visualization is a powerful tool when handling large volumes of data, which
is the case for SPL testing. Thus it is relevant to study prerequisites for
visualization in this context.

Based on the observed needs for improvement in the case study and our expe-
rience of analyzing overlay within this context, we draw conclusions about how to
provide a visualization that is correct, understandable and relevant for the purpose
of supporting test scoping decisions in a SPL context. The visualization should
include: test design coverage, test execution progress and priorities of both TCI:s
and variants. Furthermore the visualization tool need to be flexible and allow for
different perspectives on the testing due to different testing goals at different stages
of a project as well as the different roles in the organization.

Empirical evaluation of the visualization proposal

Paper VI reports our experiences of implementing and evaluating visual analytics
for supporting test evaluation and planning. A set of various visualization proto-
types were created to illustrate the concepts of our visualization proposal. Data
from three different real world software contexts were extracted and transformed
into data tables in various ways. The data tables were in turn mapped to visual
structures and visualized with the MosaiCode tool [81], see Figure 9 which was
originally developed for software visualization. For each of the three software
contexts we set up a focus group meeting with test managers who used the visual-
ization prototypes for performing a set of simulated evaluation and planning tasks.
Meanwhile, we observed how they used the tool and held a structured discussion
about their experience of the tool put in relation to their daily work.

Results from this study were analyzed according to the visualization reference
model by Card et al. [18] which describes visualization as a set of adjustable map-
pings from data to visual form: data transformation, from raw data to data tables;
visual mapping, from data tables to visual structures; and view transformation
from visual structures to views. User interaction may control different parameters
of these mappings.

All study participants confirmed potential usefulness of the visual analytics for
evaluating and planning testing as well as for communicating decisions to man-
agers and subordinate testers. We focused on visualizing test execution history
and extracted data from test management databases and from natural language test
reports in MS Word format. The extracted data was transformed into data tables
with test coverage items, TCI:s, described by a set of dimension values and at-
tribute values. Although, all participants found this visualization useful for assess-

32 INTRODUCTION

Figure 9: Screenshot of one of the prototype visualizations – Tiles in the Mosaic window represent
the about 1500 different test cases that have been executed in the Firefox regression test suite. Infor-
mation from the about 300 000 test executions is aggregated and a number of different attribute values
are visualized through the color schemes of the tiles and in the histogram.

ing test coverage and making decisions, some pinpointed the need for additional
information to make informed decisions. Furthermore, our evaluation showed the
need to visualize several dimensions of the coverage items. In Table 2, two ex-
ample TCI:s defined in 6 dimensions are presented. Different views were needed
for different types of tasks. This was also true for the derived attribute values; all
proposed metrics were useful but for different tasks.

The main components of a visual structure are the use of space, the marks, and
the graphical properties of the marks [18]. In our visualization prototype we used
spatial position to encode dimension values of TCIs in the mosaic window and
colors of the tiles to encode attribute values. The mosaic view showed to be useful
to the one being new to a test scope or when the data set is large, as it provided a
good overview of both test design coverage and execution progress. The container
view was useful to the one being familiar with the scope and the structure, for
navigating.

For the planning task more user interaction was requested. Especially, the par-
ticipants requested an ability to filter data on different criteria and to manually
map colors to ranges of attribute values. The MosaiCode tool provided interactive
view transformation in terms of zooming, control of tile size and number of differ-
ent colors on tiles. Practitioners considered the zooming function very useful but
preferred automatic setting of tile sizes.

5 Related work 33

Table 2: Data table of example test coverage items – The hierarchical positions are described along
six dimensions of the testing strategy. TCI 11 is here a sub TCI of TCI 1021 with respect to the time
dimension. The abstraction level of the TCI determines the derived values of the list of attributes.

TCI 1021 TCI 11

Dimension: Functionality System/Social phonebook/Add
contact

System/Social phonebook/Add
contact

Dimension: Purpose All/Interaction/Incoming mes-
sage

All/Interaction/Incoming mes-
sage

Dimension: Variant All/Blue star All/Blue star
Dimension: Platform All All

Dimension: Organization OrganizationA/Application
software/System integration
test

OrganizationA/Application
software/System integration
test

Dimension: Time All All/2012/w46
Attribute: #executions 13 0
Attribute: #failures 0 0
Attribute: #days since last
execution

30 30

...

5 Related work

This chapter points out current research which is directly related to the research
contributions presented in this thesis. A general positioning of the research is
provided in the introduction, Chapter 1. Background information on the main
areas under study (i.e. software product line engineering, software testing and
software product line testing) is provided in Chapter 2.

5.1 Related publications by the author

In addition to the papers included in this thesis the research project has generated
a number of related publications.

In our attempt to synthesize research on regression test selection (Paper 1) and
provide advice for practitioners we discovered some shortcomings in the evidence
base. In [119] we elaborate on the problem of transferring research into practice
and give proposals regarding test technique benchmarking in terms of context ap-
plicability.

A Brazilian research group carried out a mapping study [25] similar to ours
(Paper 4). Unaware of each other we chose the same topic and research method
and conducted our studies at about the same time. Both studies were published and
we summarize our results in [27]. This coincidence also gave us the opportunity to
conduct a meta study on the reliability of systematic mapping studies in software
engineering [132].

34 INTRODUCTION

We have carried out two real life evaluations of two different regression test
approaches which are reported in [38] and [36]. In both cases we selected tech-
niques based on the needs and constraints in the industrial contexts. Both evalua-
tions showed promising results and provided valuable insights on the challenge of
transferring research into practice, which were summarized in Paper III.

We also conducted an extensive interview study, investigating the large scale
industrial product line context from the perspective of aligning requirements and
test [13, 120]. We revealed a number of challenges related to eight different prob-
lem areas: organization and processes, people, tools, requirements process, testing
process, change management, traceability, and measurement. This study was ex-
tended with interviews from additionally five companies and an analysis covering
both challenges and practices used to meet the identified challenges [13].

In [35] we discuss the need and challenges of providing decision support for
test planning and test selection in a product line context, and highlights possible
paths towards a pragmatic implementation of context-specific decision support of
various levels of automation.

We were also invited to write a chapter, for the book series "Advances in Com-
puters", presenting an overview of the subject regression testing in software prod-
uct line engineering [116]. This series targets a broad audience and the level of
presentation is aimed at readers who are generally not specialists in the field of
software testing.

5.2 Other researchers’ work
Regression testing

Regression testing research focus on how to reuse existing tests as testing is re-
peated over time. Three main groups of approaches have been studied: Test suite
minimization, test case selection and test case prioritization. Yoo and Harman sur-
vey the literature within each of these areas and provide an overview of the state
of research [137]. In order to determine which technique is appropriate for a cer-
tain situation, several factors need to be considered such as which input does the
technique require? on what level of abstraction is the analysis made?, and what
empirical support is there for these claims?

Input: Most of the proposed techniques are code based, conducting analysis
on source code (e.g. the selection techniques by Leung and White [75], Chen et
al. [20]), intermediate code (e.g. the selection techniques by Rothermel et al. [113],
White and Abdullah [129]), or binary code (e.g. the selection technique by Zheng
et al. [140]). Similarly most minimization techniques optimize the structural cov-
erage of a set of tests (e.g. work by Horgan and London [53], Harrold et al. [47],
Offutt et al. [91]). Prioritization of test cases may be based on different criteria of
which code coverage is one (e.g., by Elbaum et al. [34]). Some regression test-
ing techniques are based on a certain type of specifications or models (e.g., the
selection technique by Sajeev and Wibowo [121], the minimization techniques by

5 Related work 35

Harder et al. [46], Korel et al. [72], and the prioritization technique by Korel et
al. [71]). There are also some recent examples of both selection and prioritization
techniques based on project data such as failure reports or execution history of a
test case [38, 66]. Other criteria for test case prioritization are, e.g., combinato-
rial. [16, 23] or human based [126, 138].

Level of abstraction: While most of the proposed techniques conduct analysis
at a low level, e.g. statements, there are other examples, e.g. a class based tech-
nique by Orso et al. [93] or component based by Sajeev and Wibowo [121] and
Zheng et al. [140].

Empirical support: Several empirical evaluations of regression testing tech-
niques have been made lately. Our systematic review (Paper I) and the survey by
Yoo and Harman [137] provide good overviews. However, as concluded in Paper
I, the evidence base is incomplete since the techniques are context dependent and
in many cases evaluations are made only in one specific context.

Regression testing in the SPL context

As defined in [117] the SPLT problem can be described as a 3D regression test-
ing problem (over levels, versions and variants). Also McGregor and Im outline a
conceptual proposal that address the fact that product lines vary both in time and
space [84]. Traditionally regression testing strategies deal with the repetitive test-
ing over several versions of the software, the time dimension. Some attempts have
been made to apply these also to the space dimension: covering arrays [102,135],
architectural diagrams [26] based on formal models. Stricker et al. propose a data-
flow based technique to avoid redundant testing in application engineering [123].
Kim et al. introduce the idea of shared executions to avoid redundancy [65] Their
idea builds on the same principle as the TCI model described in this thesis but on
a lower level of detail. Long et al. [80] demonstrate synergies and overlap in code
coverage between what they call loosely-coupled software development commu-
nities, which also applies to SPL development.

Nörenberg et al. [90] propose a lightweight approach for regression test se-
lection which they argue applies to the software product line testing problem as
well. They validate their approach on an embedded system in the automotive do-
main. The approach is based on system requirements and their association with
test cases. However, although lightweight, the approach requires the existence of
a complete system specification containing information on dependencies between
system functions and contributing components. In addition to a standardized sys-
tem specification the approach also requires a standardized testing strategy within
the organization to ensure an equal level of available information within test spec-
ifications.

36 INTRODUCTION

On transferring research in SE into practice

Evidence based software engineering (EBSE) is a paradigm, inspired by medical
practice, trying to support the application of empirical evidence in practice. One
central tool is systematic literature reviews. Dyba et al. propose a systematic
EBSE approach for a practitioner which involves five steps [32] to support and
improve decisions on technology adoption. The focus of their approach is the
identification and appraisal of evidence. A model to support the evaluation of rigor
and relevance of technology evolutions in software engineering was proposed by
Ivarsson and Gorschek [57].

Rainer et al. [105] investigate the discrepancy between software engineering
practices and the EBSE paradigm. They conclude that practitioners need to be
persuaded to adopt EBSE practices and that empirical evidence per se is not im-
portant in the initial persuasion strategy. They further evaluate the use of the EBSE
guidelines by undergraduate students empirically [103,104] and find that EBSE is
very challenging for non-researchers and that rigorous and relevant evidence may
not exist to answer their questions. Gorschek et al. [42] proposed another model
to support technology transfer focusing on the collaboration between researchers
and practitioners.

Specifically, the gap between research and practice in the regression testing
field is analyzed by Nörenberg et al. [90]. They highlight the imbalance between
different evaluation criteria in empirical evaluations of regression testing tech-
niques and call for more focus on generality and efficiency as defined by Rother-
mel and Harrold [111]. The use of various research methodologies to improve the
relevance of software engineering research have also been proposed: ethnogra-
phies [54], case studies [118] and action research [3].

Visualization in SE

Visualization helps reducing cognitive complexity [18]. Software visualization
is applied in various areas: e.g. static and dynamic code visualization [4], fault
diagnostics and requirements analysis [43]. A survey of software maintenance,
reengineering and reverse engineering [73] shows that 82% of researchers con-
sider software visualization important or necessary for their work. Another survey
with industry practitioners [7] identifies benefits of software visualization tools:
reducing costs, increasing comprehension of software, increasing productivity and
quality, management of complexity, and finding errors [28]. Kienle and Muller
identify requirements for software visualization tools with a focus on tools tar-
geting the domain of software maintenance, reengineering, and reverse engineer-
ing [64].

Diehl provides an overview of the area of software visualization defined as “the
visualization of artifacts related to software and its development process” [28]. He
identifies three main groups of techniques: 1) visualizing static program proper-
ties, dynamic program properties and software evolution. Diehl compares differ-

6 Future research directions 37

ent visualization methodologies [29] and apply visualization techniques to explore
rules extracted from historical software information [17].

Pleuss et al. [98] provide a comparative overview of visualization techniques
to support product configuration in software product line engineering. Jones et
al. [60] show how visualization of test information may support fault localization.
Araya presents a visualization tool HaPAO to visually assess the quality of code
coverage of unit tests [2]. A range of metrics for each class are visualized to
illustrate how the methods in it have been covered during a set of tests.

6 Future research directions

In the first part of this thesis work, reported in Papers I–III, I observe some chal-
lenges in matching research on regression testing with the industrial need for im-
provement of the same. These challenges originate in communication gaps be-
tween researchers and practitioners as well as lack of general knowledge on re-
gression testing concepts. In this thesis I provide an increased understanding of
both the research and the industrial needs to overcome the communication gap. I
also provide an extended model for technology adoption to guide practitioners in
adopting research results and introduce tool support into a process. The second
part of the thesis (Papers IV and V) focus on the challenges for regression test-
ing in the software product line context. Support is needed for managing huge
amounts of tests repeatedly executed on similar software due to variability in the
software, iterative development and complex organizational structures. Finally, in
Papers V and VI, I propose and evaluate visual analytics of historic test execution
data as a means to meet those challenges. This section describes ways to advance
this research further in terms of 1) improving the accessibility of regression testing
research, 2) increasing the knowledge on general regression testing concepts, 3)
providing support for evaluating indirect effects of introducing regression testing
tools to a process and 4) improving and evaluating the visualization approach in
different contexts.

Improve accessibility of regression testing research. There are several
reasons why regression testing research is hard to access and implement in indus-
try. Except for the large variation among researchers in how regression testing
strategies are described and evaluated, researchers and practitioners approach the
regression testing problem at different abstraction levels, from different perspec-
tives and to some extent with different effect targets. Our synthesis of empirical
results and classification of evaluated techniques approach the first obstacle and
abstracts the current knowledge one level. This supports practitioners in getting
an overview of existing knowledge in the field. In addition they need guidelines
supporting the identification of regression testing problems in their own context.
There may be a range of factors causing inefficiency in regression testing that do

38 INTRODUCTION

not originate from the regression testing itself. Thus support is needed to extract
the regression testing problem. To search for applicable techniques practitioners
would also need a framework for describing context factors which are crucial for
the selection of regression testing strategies. Similarly such framework should
support researchers in classifying and reporting evaluation context of regression
testing studies. Such framework should preferably build on secondary studies of
both regression testing research and industrial regression testing context.

Increase knowledge on general regression testing concepts. While
several secondary studies on regression testing research are already available, this
is not the case for context studies. There is a need for more studies focusing on
the industrial context with respect to regression testing. Secondary studies could
include both primary studies reporting industrial contexts although it is not their
focus, and less rigorous experience reports. Such attempts have been made in the
software product line testing case [59]. Regarding the evidence base on regression
testing strategies, available secondary studies [37, 137] are of course limited as
well since they depend on available primary studies. These studies do however
pinpoint the gaps and stress the need for more evaluation of general regression
testing assumptions rather than specific implementations of techniques.

Provide support for evaluating indirect effects of introducing regres-
sion testing tools to a process. In Paper III we introduce a model for how
to introduce testing process changes considering both available research and prag-
matic effects of the change. However, although we used it for evaluating the effects
of regression testing improvement in a real industrial case, the model is rather gen-
eral and needs to be complemented with more subarea specific guidelines. Such
guidelines may evolve from additional real life evaluations of regression test im-
provement actions.

Improve and evaluate the visualization approach in different contexts.
In Paper VI we discuss and evaluate our visualization approach. It was appreci-
ated by practitioners from different industrial contexts as a way to bring order
in a complex regression testing environment and meet the SPLT challenge to as-
sess test quality and plan testing when large amounts of repeated tests are needed.
They also provided valuable feedback on how to improve the visualization fur-
ther. However, as discussed throughout this thesis, such improvements and further
evaluations need to be made incrementally within a specific context. Although we
have a lot to learn from each other’s experiences, no general solutions exist and
researchers in software engineering need to support practitioners and computer sci-
entists in bringing clarity in the effects of applying specific treatments to specific
contexts. Two examples of technical aspects of the visualization to refine and eval-
uate further are the cluster analysis and the correlation between different attribute

7 Conclusion 39

values and fault detection abilities. Other aspects to evaluate are the indirect and
direct effects of adopting such tool in an organization, the effects of providing dif-
ferent types of human interaction as well as different ways of visualizing several
dimensions of the testing.

7 Conclusion
Industry practice of regression testing does not utilize the knowledge gained in
research. There may be several reasons for that. Test maturity in an organization
may be generally low, leading to shortsighted test planning with too short lead
times for test. A lack of testing resources in combination with short lead times
prevents both the use of systematic approaches and improvement work itself.

Even with a more mature test organization and dedicated resources for test im-
provements it is hard for a practitioner to identify relevant and applicable research.
Many proposed regression testing techniques solve a very specific problem in a
similarly specific context. For a tester operating in a complex industrial context it
might not make sense to isolate a point of improvement to match those proposals.

Large software organizations with a product line development approach face
many challenges regarding testing. Trade-offs need to be done along three di-
mensions of repeated testing and consider a range of goals and constraints. Fur-
thermore, test management is a part of a large management system, including re-
lease planning, requirements management, configuration management, develop-
ment management, test management, and more, which makes it difficult to enroll
major changes from any of those single perspectives. If test maturity in an organi-
zation is low, testing may be considered the last instance of development implying
that testing aspects have low priority in decisions on for example which develop-
ment paradigm to use, how to specify requirements or design the system.

Test planning support, like any decision support system, must operate in a
complex context and need to be pragmatic, adapted to the context and evolve in-
crementally within the context. Also introducing automated support for regression
test scoping need to be done in increments including both evaluation and deci-
sion tasks regarding for example: identification of preconditions, evaluation of the
effects of automation changes and implementing, evaluating and improving the
implementation.

A first step towards decision support is the visualization of test execution data
as proposed in this thesis. Through visualization of relevant information at a proper
level of detail, test management in general may be supported. Such tool would also
provide a framework which enables research based and context specific regression
testing improvements.

REFERENCES

[1] Joan E. van Aken. Management research based on the paradigm of the de-
sign sciences: The quest for field-tested and grounded technological rules.
Journal of Management Studies, 41(2):219–246, 2004.

[2] Vanessa Peña Araya. Test blueprint: an effective visual support for test
coverage. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11), pages 1140–1142, New York, NY, USA, 2011.
ACM.

[3] David E. Avison, Francis Lau, Michael D. Myers, and Peter Axel Nielsen.
Action research. Communications of the ACM, 42(1):94–97, January 1999.

[4] Thomas A. Ball and Stephen G. Eick. Software visualization in the large.
Computer, 29(4):33 –43, April 1996.

[5] Ghinwa Baradhi and Nashat Mansour. A comparative study of five regres-
sion testing algorithms. In Proceedings of the Australian Software Engi-
neering Conference (ASWEC ’97), pages 174–182, 1997.

[6] Soheila Bashardoust-Tajali and Jean-Pierre Corriveau. On extracting tests
from a testable model in the context of domain engineering. In Proceed-
ings of the IEEE 13th International Conference on Engineering of Complex
Computer Systems (ICECCS 2008), pages 98–107, April 2008.

[7] Sarita Bassil and Rudolf K. Keller. Software visualization tools: survey and
analysis. In Proceedings of the 9th International Workshop on Program
Comprehension (IWPC 2001), pages 7 –17, 2001.

[8] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations and
lessons learned from automated testing. In Proceedings of the 27th inter-
national conference on Software engineering (ICSE ’05), pages 571–579,
2005.

[9] Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi, and Giuseppe
Lami. Product line use cases: Scenario-based specification and testing of

42 INTRODUCTION

requirements. In Software Product Lines - Research Issues in Engineering
and Management, pages 425–445. Springer-Verlag, 2006.

[10] Antonia Bertolino and Stefania Gnesi. Use case-based testing of product
lines. In Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Founda-
tions of software engineering (ESEC/FSE-11), pages 355–358, 2003.

[11] Antonia Bertolino and Stefania Gnesi. PLUTO: a test methodology for
product families. In Software Product Family Engineering Software Product
Family Engineering, volume 3014 of Lecture Notes in Computer Science,
pages 181–197. Springer-Verlag, 2004.

[12] John Bible, Gregg Rothermel, and David S. Rosenblum. A comparative
study of coarse- and fine-grained safe regression test-selection techniques.
ACM Transactions on Software Engineering and Methodology, 10(2):149–
183, 2001.

[13] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalm-
steiner, Emelie Engström, Björn Regnell, Giedre Sabaliauskaite, Annabella
Loconsole, Tony Gorschek, and Robert Feldt. Challenges and practices in
aligning requirements with verification and validation: A case study of six
companies. Manuscript submitted for publication.

[14] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. Addison-Wesley, 2000.

[15] Lionel Briand. Embracing the engineering side of software engineering.
IEEE Software, 29(4):96–96, July 2012.

[16] Renée C. Bryce and Charles J. Colbourn. Prioritized interaction testing for
pair-wise coverage with seeding and constraints. Information and Software
Technology, 48(10):960–970, 2006.

[17] Michael Burch, Stephan Diehl, and Peter Weißgerber. Visual data mining
in software archives. In Proceedings of the ACM symposium on Software
visualization (SoftVis ’05), pages 37–46, New York, NY, USA, 2005.

[18] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman, editors. Readings
in Information Visualization: Using Vision to Think. Academic Press, 1
edition, February 1999.

[19] Emanuela G. Cartaxo, Patrícia D. L. Machado, and Francisco G. Oliveira
Neto. On the use of a similarity function for test case selection in the con-
text of model-based testing. Software Testing, Verification and Reliability,
21(2):75–100, 2011.

REFERENCES 43

[20] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. TESTTUBE:
a system for selective regression testing. In Proceedings of the 16th Inter-
national Conference on Software Engineering (ICSE-16), pages 211 –220,
May 1994.

[21] Pavan Kumar Chittimalli and Mary Jean Harrold. Recomputing coverage
information to assist regression testing. IEEE Transactions on Software
Engineering, 35(4):452–469, 2009.

[22] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2001.

[23] Myra B. Cohen, Matt B. Dwyer, and Jiangfan Shi. Constructing interaction
test suites for highly-configurable systems in the presence of constraints: A
greedy approach. Software Engineering, IEEE Transactions on, 34(5):633–
650, 2008.

[24] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and ad-
equacy in software product line testing. In Proceedings of the Workshop
on Role of software architecture for testing and analysis (ROSATEA ’06),
pages 53–63, 2006.

[25] Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado,
John D. McGregor, Eduardo Santana de Almeida, and Silvio Romero
de Lemos Meira. A systematic mapping study of software product lines
testing. Information and Software Technology, 53(5):407–423, May 2011.

[26] Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado,
Yguaratã Cerquira Cavalcanti, Eduardo Santana de Almeida, Vicinius Car-
doso Garcia, and Silvio Romero de Lemos Meira. A regression testing ap-
proach for software product lines architectures. Proceedings of the Fourth
Brazilian Symposium on Software Components, Architectures and Reuse,
pages 41–50, 2010.

[27] Paulo Anselmo da Mota Silveira Neto, Per Runeson, Ivan
do Carmo Machado, Eduardo Santana de Almeida, Silvio Romero
de Lemos Meira, and Emelie Engström. Testing software product lines.
IEEE Software, 28(5):16 –20, October 2011.

[28] Stephan Diehl. Software Visualization: Visualizing the Structure, Be-
haviour, and Evolution of Software. Springer, 1 edition, May 2007.

[29] Stephan Diehl, Fabian Beck, and Michael Burch. Uncovering strengths and
weaknesses of radial visualizations–an empirical approach. IEEE Transac-
tions on Visualization and Computer Graphics, 16(6):935 –942, December
2010.

44 INTRODUCTION

[30] Christian Dinnus and Klaus Pohl. Experiences with software product
line engineering. In Software Product Line Engineering, pages 413–434.
Springer-Verlag, Berlin/Heidelberg, 2005.

[31] Tore Dybå. An empirical investigation of the key factors for success in soft-
ware process improvement. IEEE Transactions on Software Engineering,
31(5):410–424, May 2005.

[32] Tore Dybå, Barbara A. Kitchenham, and Magne Jørgensen. Evidence-based
software engineering for practitioners. IEEE Software, 22(1):58–65, Jan-
uary 2005.

[33] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research.
In Guide to Advanced Empirical Software Engineering, pages 285–311.
Springer London, London, 2008.

[34] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Pri-
oritizing test cases for regression testing. SIGSOFT Softw. Eng. Notes,
25(5):102–112, August 2000.

[35] Emelie Engström and Per Runeson. Decision support for test management
and scope selection in a software product line context. In Proceedings of
the IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW ’11), pages 262–265, 2011.

[36] Emelie Engström, Per Runeson, and Andreas Ljung. Improving regression
testing transparency and efficiency with history based prioritization–an in-
dustrial case study. In Proceedings of the 4th International Conference on
Software Testing Verification and Validation (ICST’11), pages 367 –376,
2011.

[37] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review
on regression test selection techniques. Information and Software Technol-
ogy, 52(1):14–30, January 2010.

[38] Emelie Engström, Per Runeson, and Greger Wikstrand. An empirical eval-
uation of regression testing based on fix-cache recommendations. In Pro-
ceedings of the 3rd International Conference on Software Testing Verifica-
tion and Validation (ICST’10), pages 75–78, 2010.

[39] Yankui Feng, Xiaodong Liu, and Jon Kerridge. A product line based aspect-
oriented generative unit testing approach to building quality components. In
Proceedings of th 31st Annual International Computer Software and Appli-
cations Conference, pages 403–408, July 2007.

REFERENCES 45

[40] Kurt F. Fischer. A test case selection method for the validation of software
maintenance modifications. In Proceedings of the International Computer
Software and Applications Conference, pages 421–426, 1977.

[41] Birgit Geppert, Jenny Li, Frank Rößler, and David M. Weiss. Towards
generating acceptance tests for product lines. In Software Reuse: Methods,
Techniques, and Tools, volume 3107 of Lecture Notes in Computer Science,
pages 35–48. Springer Berlin Heidelberg, 2004.

[42] Tony Gorschek, Claes Wohlin, Per Carre, and Stig Larsson. A model for
technology transfer in practice. IEEE Software, 23(6):88 –95, December
2006.

[43] Denis Grac̆anin, Kres̆imir Matković, and Mohamed Eltoweissy. Software
visualization. Innovations in Systems and Software Engineering, 1(2):221–
230, 2005.

[44] Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten Andler. An evalu-
ation of combination strategies for test case selection. Empirical Software
Engineering, 11(4):583–611, 2006. 10.1007/s10664-006-9024-2.

[45] Jo Hannay, Dag Sjøberg, and Tore Dybå. A systematic review of theory
use in software engineering experiments. IEEE Transactions on Software
Engineering, 33(2):87–107, February 2007.

[46] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites
via operational abstraction. In Proceedings 25th International Conference
on Software Engineering, pages 60–71, 2003.

[47] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for
controlling the size of a test suite. ACM Transactions on Software Engi-
neering and Methodology, 2(3):270–285, July 1993.

[48] Jean Hartmann, Marlon Vieira, and Axel Ruder. A UML-based approach
for validating product lines. In Proceedings of the International Workshop
on Software Product Line Testing (SPLiT 2004), pages 58–65, August 2004.

[49] William A. Hetrick, Charles W. Krueger, and Joseph G. Moore. Incremental
return on incremental investment: Engenio’s transition to software product
line practice. In Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications, pages
798–804, 2006.

[50] Alan Hevner. A three cycle view of design science research. Scandinavian
Journal of Information Systems, 19(2), January 2007.

[51] Alan Hevner and Samir Chatterjee. Design Research in Information Sys-
tems: Theory and Practice. Springer, May 2010.

46 INTRODUCTION

[52] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. De-
sign science in information systems research. MIS Quarterly, 28(1):75–105,
2004.

[53] Joseph R. Horgan and Saul London. A data flow coverage testing tool for c.
In Proceedings of the Second Symposium on Assessment of Quality Software
Development Tools, pages 2–10, 1992.

[54] John Hughes, Val King, Tom Rodden, and Hans Andersen. Moving out
from the control room: ethnography in system design. In Proceedings of
the ACM conference on Computer supported cooperative work (CSCW ’94),
pages 429–439, 1994.

[55] IEEE. Standard glossary of software engineering terminology. Technical
Report 610.12-1990, 1990.

[56] IEEE. Standard for software test documentation. Technical Report 829-
1983, Revision, 1998.

[57] Martin Ivarsson and Tony Gorschek. A method for evaluating rigor and
industrial relevance of technology evaluations. Empirical Software Engi-
neering, 16(3):365–395, 2011.

[58] Michel Jaring, René L. Krikhaar, and Jan Bosch. Modeling variability and
testability interaction in software product line engineering. In Seventh In-
ternational Conference on Composition-Based Software Systems (ICCBSS),
pages 120–129, 2008.

[59] Martin Fagereng Johansen, Oystein Haugen, and Frank Fleurey. A survey
of empirics of strategies for software product line testing. In Proceedings of
the IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 266–269, March 2011.

[60] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test
information to assist fault localization. In Proceedings of the ACM 24th
International Conference on Software Engineering (ICSE ’02), pages 467–
477, 2002.

[61] Natalia Juristo, Ana Moreno, Sira Vegas, and Martin Solari. In search of
what we experimentally know about unit testing. IEEE Software, 23(6):72–
80, November 2006.

[62] Jussi Kasurinen, Ossi Taipale, and Kari Smolander. How test organizations
adopt new testing practices and methods? In 2011 IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 553 –558, March 2011.

REFERENCES 47

[63] Shiego Kato and Nobuhito Yamaguchi. Variation management for software
product lines with cumulative coverage of feature interactions. In Proceed-
ings of the 15:th international Software Product Line Conference, pages
140–149, Munich, Germany, 2011. IEEE Computer Society.

[64] Holger M. Kienle and Hausi A. Müller. Requirements of software visual-
ization tools: A literature survey. In IEEE Proceedings of the 4th Interna-
tional Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT 2007), pages 2 –9, June 2007.

[65] Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared exe-
cution for efficiently testing product lines. In Proceedings of the IEEE In-
ternational Symposium on Software Reliability Engineering (ISSRE 2012),
November 2012.

[66] Jung-Min Kim and Adam Porter. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Pro-
ceedings of the ACM 24th International Conference on Software Engineer-
ing, pages 119–129, 2002.

[67] Tomoji Kishi and Natsuko Noda. Design testing for product line develop-
ment based on test scenarios. In Proceedings of the International Workshop
on Software Product Line Testing (SPLiT 2004), pages 19–26, August 2004.

[68] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Pe-
ter W. Jones, David C. Hoaglin, Khaled El-Emam, and Jarrett Rosenberg.
Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering, 28(8):721–734, August 2002.

[69] Ronny Kolb. A risk driven approach for efficiently testing software product
lines. In 5th GPCE Young, Researches Workshop, Erfurt, Germany, 2003.

[70] Ronny Kolb and Dirk Muthig. Making testing product lines more efficient
by improving the testability of product line architectures. In Proceedings of
the ACM ISSTA workshop on Role of software architecture for testing and
analysis (ROSATEA ’06), pages 22–27, 2006.

[71] Bogdan Korel, Luay Ho Tahat, and Mark Harman. Test prioritization using
system models. In Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 559–568, 2005.

[72] Bogdan Korel, Luay Ho Tahat, and Boris Vaysburg. Model based regression
test reduction using dependence analysis. In Proceedings of the 10th An-
nual Software Reliability Symposium International Conference on Software
Maintenance, pages 214–223, 2002.

48 INTRODUCTION

[73] Rainer Koschke. Software visualization for reverse engineering. In Stephan
Diehl, editor, Software Visualization, number 2269 in Lecture Notes in
Computer Science, pages 138–150. Springer Berlin Heidelberg, January
2002.

[74] Craig Larman and Victor R. Basili. Iterative and incremental developments.
a brief history. Computer, 36(6):47 –56, June 2003.

[75] Hareton K. N. Leung and Lee White. A study of integration testing and
software regression at the integration level. In Proceedings of the IEEE
Conference on Software Maintenance, pages 290–301, November 1990.

[76] Hareton K. N. Leung and Lee White. A cost model to compare regression
test strategies. In Proceedings of the Conference on Software Maintenance,
pages 201–208, October 1991.

[77] J. Jenny Li, Birgit Geppert, Frank Rößler, and David M. Weiss. Reuse exe-
cution traces to reduce testing of product lines. In Proceedings of the 11th
International Conference Software Product Lines. Second Volume (Work-
shops), pages 65–72, 2007.

[78] J. Jenny Li, David M. Weiss, and J. Hamilton Slye. Automatic integration
test generation from unit tests of eXVantage product family. In Proceed-
ings of the 11th International Conference Software Product Lines. Second
Volume (Workshops), pages 73–80, 2007.

[79] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Prod-
uct Lines in Action: The Best Industrial Practice in Product Line Engineer-
ing. Springer, 1 edition, July 2007.

[80] Teng Long, Ilchul Yoon, Adam Porter, Alan Sussman, and Atif M. Memon.
Overlap and synergy in testing software components across loosely-coupled
communities. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA’12), 2012.

[81] Jonathan I Maletic, Daniel J. Mosora, Christian D. Newman, Michael L.
Collard, Andrew Sutton, and Brian P. Robinson. MosaiCode: visualizing
large scale software: A tool demonstration. pages 1–4, September 2011.

[82] John D. McGregor. Testing a software product line. Technical Report
CMU/SEI-2001-TR-022, ESC-TR-2001-022, Software Engineering Insti-
tute, Carnegie Mellon University, 2001.

[83] John D. McGregor. Testing a software product line. In Testing Techniques in
Software Engineering, volume 6153 of Lecture Notes in Computer Science,
pages 104–140. Springer Berlin / Heidelberg, 2010.

REFERENCES 49

[84] John D. McGregor and Kyungsoo Im. The implications of variation for test-
ing in a software product line. In Proceedings of the International Workshop
on Software Product Line Testing (SPLiT 2007), 2007.

[85] Satish Mishra. Specification based software product line testing: A case
study. In Concurrency, Specification and Programming (CS&P 2006),
2006.

[86] Michela Montesi and Patricia Lago. Software engineering article types: An
analysis of the literature. Journal of Systems and Software, 81(10):1694–
1714, October 2008.

[87] Michela Montesi and John Mackenzie Owen. Research journal articles as
document genres: exploring their role in knowledge organization. Journal
of Documentation, 64(1):143–167, January 2008.

[88] Henry Muccini and André Van Der Hoek. Towards testing product line
architectures. In Proceedings of International Workshop on Testing and
Analysis of Component Based Systems, pages 111–121, 2003.

[89] Clémentine Nebut, Franck Fleurey, Yves Le Traon, and Jean-marc Jézéquel.
A requirement-based approach to test product families. Proceedings of the
5th workshop on product families engineering, pages 198–210, 2003.

[90] Ralf Nörenberg, Anastasia Cmyrev, Ralf Reißing, and Klaus D. Müller-
Glaser. An efficient specification-based regression test selection technique
for E/E-Systems. In Workshop Automotive Software Engineering, 2011.

[91] A. Jefferson Offutt, Jie Pan, and Jeffrey M. Voas. Procedures for reducing
the size of coverage-based test sets. In Proceedings of the 12th International
Conference on Testing Computer Software, pages 111–123, 1995.

[92] Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Sug-
anuma. Regression testing in an industrial environment. Communications
of the ACM, 41(5):81–86, May 1998.

[93] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression
testing to large software systems. In Proceedings of the ACM SIGSOFT 12th
International symposium on Foundations of software engineering (FSE-12),
volume 29, pages 241–251, October 2004.

[94] Sebastian Oster, Andreas Wübbeke, Gregor Engels, and Andy Schürr. A
survey of model-based software product lines testing. In Model-based Test-
ing for Embedded Systems, Computational Analysis, Synthesis, and Design
of Dynamic systems, pages 339–381. CRC Press/Taylor & Francis, 2011.

50 INTRODUCTION

[95] Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens. A
model for types and levels of human interaction with automation. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, 30(3):286 –297, May 2000.

[96] Greg Paula. Reinventing a core product line. Mechanical Engineering,
119(10):102–103, 1997.

[97] Kai Petersen and Claes Wohlin. Context in industrial software engineering
research. In Proceedings of the 3rd International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM ’09), pages 401–404,
October 2009.

[98] Andreas Pleuss, Rick Rabiser, and Goetz Botterweck. Visualization tech-
niques for application in interactive product configuration. In Proceedings
of the 15th International Software Product Line Conference, volume 2 of
SPLC ’11, pages 22:1–22:8, 2011.

[99] Klaus Pohl, Günther Böckle, and Frank J. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, 1
edition, September 2005.

[100] Klaus Pohl and Andreas Metzger. Software product line testing. Commu-
nications of the ACM, 49:78, December 2006.

[101] Colin Potts. Software-engineering research revisited. IEEE Software,
10(5):19 –28, September 1993.

[102] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware re-
gression testing: an empirical study of sampling and prioritization. In Pro-
ceedings of the 2008 international symposium on Software testing and anal-
ysis (ISSTA ’08), pages 75–86, 2008.

[103] Austen Rainer and Sarah Beecham. A follow-up empirical evaluation of ev-
idence based software engineering by undergraduate students. In Proceed-
ings of the 12th International Conference on Evaluation and Assessment in
Software Engineering, 2008.

[104] Austen Rainer, Tracy Hall, and Nathan Baddoo. A preliminary empirical
investigation of the use of evidence based software engineering by under-
graduate students. In Proceedings of the 10th International Conference on
Evaluation and Assessment in Software Engineering, 2006.

[105] Austen Rainer, Dorota Jagielska, and Tracy Hall. Software engineering
practice versus evidence-based software engineering research. In Proceed-
ings of the ACM Workshop on Realising evidence-based software engineer-
ing (REBSE ’05), pages 1–5, 2005.

REFERENCES 51

[106] Sacha Reis, Andreas Metzger, and Klaus Pohl. Integration testing in soft-
ware product line engineering: a model-based technique. In Proceedings of
the 10th international conference on Fundamental approaches to software
engineering, pages 321–335, 2007.

[107] Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. Model-based
system testing of software product families. In Advanced Information Sys-
tems Engineering, volume 3520, pages 519–534. Springer Berlin Heidel-
berg, 2005.

[108] Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. Derivation of
domain test scenarios from activity diagrams. In Proceedings of the Interna-
tional Workshop on Product Line Engineering: The Early Steps: Planning,
Modeling, and Managing (PLEES’03), Erfurt, 2003.

[109] Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. The ScenTED
method for testing software product lines. In Proceedings of the Software
Product Lines - Research Issues in Engineering and Management, pages
479–520, 2006.

[110] John Rooksby, Mark Rouncefield, and Ian Sommerville. Testing in the wild:
The social and organisational dimensions of real world practice. Computer
Supported Cooperative Work (CSCW), 18(5):559–580, 2009.

[111] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selec-
tion techniques. IEEE Transactions on Software Engineering, 22(8):529–
551, August 1996.

[112] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software Engineering and
Methodology, 6(2):173–210, April 1997.

[113] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test
selection for c++ software. Software Testing, Verification and Reliability,
10(2):77–109, June 2000.

[114] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong.
An empirical study of the effects of minimization on the fault detection
capabilities of test suites. In Proceedings of the IEEE International Confer-
ence on Software Maintenance, page 34, 1998.

[115] Gregg Rothermel, Roland H. Untch, Chu Chengyun, and Mary Jean Har-
rold. Test case prioritization: an empirical study. In Proceedings of the
IEEE International Conference on Software Maintenance, pages 179–188,
1999.

52 INTRODUCTION

[116] Per Runeson and Emelie Engström. Regression testing in software product
line engineering. volume 86 of Advances in Computers, pages 223–263.
Elsevier, 2012.

[117] Per Runeson and Emelie Engström. Software product line testing–a 3D
regression testing problem. In Proceedings of the IEEE Fifth International
Conference onSoftware Testing, Verification and Validation (ICST), pages
742 –746, April 2012.

[118] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering–Guidelines and Examples. Wiley, 2012.

[119] Per Runeson, Mats Skoglund, and Emelie Engström. Test benchmarks–
what is the question? In Proceedings of the IEEE International Conference
on Software Testing Verification and Validation Workshop (ICSTW ’08),
pages 368–371, April 2008.

[120] Giedre Sabaliauskaite, Annabella Loconsole, Emelie Engström, Michael
Unterkalmsteiner, Björn Regnell, Per Runeson, Tony Gorschek, and Robert
Feldt. Challenges in aligning requirements engineering and verification in
a large-scale industrial context. In Requirements Engineering: Foundation
for Software Quality, volume 6182 of Lecture Notes in Computer Science,
pages 128–142. Springer Berlin / Heidelberg, 2010.

[121] A. S. M. Sajeev and Bugi Wibowo. Regression test selection based on
version changes of components. In Proceedings of the IEEE Tenth Asia-
Pacific Software Engineering Conference (APSEC ’03), pages 78–85, 2003.

[122] Mats Skoglund and Per Runeson. A case study of the class firewall regres-
sion test selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering, pages 72–81,
2005.

[123] Vanessa Stricker, Andreas Metzger, and Klaus Pohl. Avoiding redundant
testing in application engineering. In Proceedings of the 14th international
conference on Software product lines: going beyond, Lecture Notes in Com-
puter Science, pages 226–240. Springer Berlin Heidelberg, 2010.

[124] David P. Tegarden. Business information visualization. Communications of
the Association for Information Systems, 1(4), January 1999.

[125] Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Product family testing:
a survey. SIGSOFT Software Engineering Notes, 29(2):12, March 2004.

[126] Paolo Tonella, Paolo Avesani, and Angelo Susi. Using the case-based rank-
ing methodology for test case prioritization. In Proceedings of the IEEE
22nd International Conference on Software Maintenance (ICSM ’06), pages
123–133, 2006.

REFERENCES 53

[127] Tim Trew. What design policies must testers demand from product line ar-
chitects? In Proceedings of the International Workshop on Software Prod-
uct Line Testing, Technical Report: ALR-2004-031, pages 51–57. Avaya
Labs, 2004.

[128] Karl T. Ulrich and Steven D. Eppinger. Product Design and Development.
McGraw-Hill, Inc., 1995.

[129] Lee White and Khalil Abdullah. A firewall approach for the regression
testing of object-oriented software. In Proceedings of 10th annual software
quality week, 1997.

[130] Lee White and Brian Robinson. Industrial real-time regression testing and
analysis using firewalls. In Proceedings of the 20th IEEE International
Conference on Software Maintenance (ICSM ’04), pages 18–27, 2004.

[131] Bernd Wilhelm. Platform and modular concepts at volkswagen–their effects
on the assembly process. In Transforming Auto Assembly, pages 146–156,
Berlin, Germany, 1997. Springer-Verlag.

[132] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie
Engström, Ivan do Carmo Machado, and Eduardo Santana de Almeida. On
the reliability of mapping studies in software engineering. Manuscript sub-
mitted for publication, 2013.

[133] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Reg-
nell, and Anders Wesslén. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, 2000.

[134] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore.
A study of effective regression testing in practice. In Proceedings of the
IEEE Eighth International Symposium on Software Reliability Engineering
(ISSRE ’97), pages 264–274, 1997.

[135] Cemal Yilmaz, Myra B. Cohen, and Adam A. Porter. Covering arrays for ef-
ficient fault characterization in complex configuration spaces. IEEE Trans-
actions on Software Engineering, 32(1):20–34, January 2006.

[136] Robert K. Yin. Case Study Research: Design and Methods. SAGE, 2003.

[137] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, March 2012.

[138] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering test
cases to achieve effective and scalable prioritisation incorporating expert
knowledge. In Proceedings of the ACM 18th International symposium on
Software testing and analysis (ISSTA ’09), pages 201–212, 2009.

54 INTRODUCTION

[139] Hui Zeng, Wendy Zhang, and David Rine. Analysis of testing effort by
using core assets in software product line testing. In Proceedings of the In-
ternational Workshop on Software Product Line Testing, Technical Report:
ALR-2004-031, pages 1–6. Avaya Labs, 2004.

[140] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. An ini-
tial study of a lightweight process for change identification and regression
test selection when source code is not available. In Proceedings of the IEEE
16th International Symposium on Software Reliability Engineering (ISSRE
2005), pages 225–234, November 2005.

INCLUDED PAPERS

PAPER I

A SYSTEMATIC REVIEW ON
REGRESSION TEST

SELECTION TECHNIQUES

Abstract

Regression testing is verifying that previously functioning software remains after
a change. With the goal of finding a basis for further research in a joint industry-
academia research project, we conducted a systematic review of empirical evalu-
ations of regression test selection techniques. We identified 27 papers reporting
36 empirical studies, 21 experiments and 15 case studies. In total 28 techniques
for regression test selection are evaluated. We present a qualitative analysis of the
findings, an overview of techniques for regression test selection and related empir-
ical evidence. No technique was found clearly superior since the results depend on
many varying factors. We identified a need for empirical studies where concepts
are evaluated rather than small variations in technical implementations.

Emelie Engström, Per Runeson and Mats Skoglund
Journal of Information and Software Technology 52(1):14-30, 2010

1 Introduction

Efficient regression testing is important, even crucial, for organizations with a large
share of their cost in software development. It includes, among other tasks, deter-
mining which test cases need to be re-executed, i.e. regression test selection, in
order to verify the behavior of modified software. Regression test selection in-
volves a trade-off between the cost for re-executing test cases, and the risk for
missing faults introduced through side effects of changes to the software. Itera-
tive development strategies and reuse are common means of saving time and effort
for the development. However they both require frequent retesting of previously

58 A Systematic Review on Regression Test Selection Techniques

tested functions due to changes in related code. The need for efficient regression
testing strategies is thus becoming more and more important.

A great deal of research effort has been spent on finding cost-efficient meth-
ods for different aspects of regression testing. Examples include test case selec-
tion based on code changes [1] [7] [14] [18] [21] [23] [24] [50] [64] [59] [67]
and specification changes [40] [42] [55] [6], evaluation of selection techniques
[49], change impact analysis [45], regression tests for different applications e.g.
database applications [19], regression testing of GUIs and test automation [41],
and test process enhancement [33]. To bring structure to the topics, researchers
have typically divided the field of regression testing into i) test selection, ii) mod-
ification identification, iii) test execution, and iv) test suite maintenance. This
review is focused on test selection techniques for regression testing.

Although techniques for regression test selection have been evaluated in pre-
vious work [3] [16] [38] [60], no general solution has been put forward since no
technique could possibly respond adequately to the complexity of the problem and
the great diversity in requirements and preconditions in software systems and de-
velopment organizations. Neither does any single study evaluate every aspect of
the problem; e.g. Kim et al. [29] evaluate the effects of regression test application
frequency, Elbaum et al. [12] investigate the impact that different modifications
have on regression test selection techniques, several studies examine the ability
to reduce regression testing effort [3] [12] [16] [29] [38] [60] [66] and to reveal
faults [12] [16] [29] [50].

In order to map the existing knowledge in the field, we launched a systematic
review to collect and compare existing empirical evidence on regression test selec-
tion. The use of systematic reviews in the software engineering domain has been
subject to a growing interest in the last years. In 2004 Kitchenham proposed a
guideline adapted to the specific characteristics of software engineering research.
This guideline has been followed and evaluated [5] [30] [58] and updated ac-
cordingly in 2007 [31]. Kitchenham et al. recently published a review of 20
systematic reviews in software engineering 2004-2007 [32]. Ideally, several em-
pirical studies identified in a systematic review evaluate the same set of techniques
under similar conditions on different subject programs. Then there would be a
possibility to perform an aggregation of findings or even meta-analysis and thus
enable drawing general conclusions. However, as the field of empirical software
engineering is quite immature, systematic reviews have not given very clear pic-
tures of the results. In this review we found that the existing studies were diverse,
thus hindering proper quantitative aggregation. Instead we present a qualitative
analysis of the findings, an overview of existing techniques for regression test se-
lection and of the amount and quality of empirical evidence. There are surveys
and reviews of software testing research published before, but none of these has
the broad scope and the extensive approach of a systematic review. In 2004 Do
et al. presented a survey of empirical studies in software testing in general [9]
including regression testing. Their study covered two journals and four confer-

2 Research Method 59

ences over ten years (1994-2003). Other reviews of regression test selection are
not exhaustive but compare a limited number of chosen regression test selection
techniques. Rothermel and Harrold presented a framework for evaluating regres-
sion test techniques already in 1996 [49] and evaluated the, by that time, existing
techniques. Juristo et al. aggregated results from unit testing experiments [27] of
which some evaluate regression testing techniques, although with a more narrow
scope. Binkley et al. reviewed research on the application of program slicing to
the problem of regression testing [4]. Hartman et al. reports a survey and critical
assessment of regression testing tools [22]. However, as far as we know, no sys-
tematic review on regression test selection research has been carried through since
the one in 1996 [49]. An early report of this study was published in 2008 [13],
which here is further advanced especially with respect to the detailed description
of the techniques (Section 3.4), their development history and the analysis of the
primary studies (Section 3.5)1.

This paper is organized as follows. In section 2 the research method used for
our study is described. Section 3 reports the empirical studies and our analyses.
Section 4 discusses the results and section 5 concludes the work.

2 Research Method

2.1 Research Questions
This systematic review aims at summarizing the current state of the art in regres-
sion test selection research by proposing answers to a set of questions below. The
research questions stem from a joint industry-academia research project, which
aims at finding efficient procedures for regression testing in practice. We searched
for candidate regression test selection techniques that were empirically evaluated,
and in case of lack of such techniques, to identify needs for future research. Fur-
ther, as the focus is on industrial use, issues of scale-up to real-size projects and
products are important in our review. The questions are:

• RQ1) Which techniques for regression test selection in the literature have
been evaluated empirically?

• RQ2) Can these techniques be classified, and if so, how?

• RQ3) Are there significant differences between these techniques that can be
established using empirical evidence?

• RQ4) Can technique A be shown to be superior to technique B, based on
empirical evidence?

11 In this extended analysis, some techniques that originally were considered different ones, were
considered the same technique. Hence, the number of techniques differ from [10]. Further, the qual-
ity of two empirical studies was found insufficient in the advanced analysis, why two studies were
removed.

60 A Systematic Review on Regression Test Selection Techniques

Answers to these research questions are searched in the published literature
using the procedures of systematic literature reviews as proposed by Kitchenham
[31].

2.2 Sources of information

In order to gain a broad perspective, as recommended in Kitchenham’s guide-
lines [31], we searched widely in electronic sources. The advantage of searching
databases rather than a limited set of journals and conference proceedings, is also
empirically motivated by Dieste et al [8]. The following seven databases were
covered:

• Inspec (<www.theiet.org/publishing/inspec/>)

• Compendex (<www.engineeringvillage2.org>)

• ACM Digital Library (<portal.acm.org>)

• IEEE eXplore (<ieeexplore.ieee.org>)

• ScienceDirect (<www.sciencedirect.com>)

• Springer LNCS (<www.springer.com/lncs>)

• Web of Science(<www.isiknowledge.com>)

These databases cover the most relevant journals and conference and workshop
proceedings within software engineering, as confirmed by Dybå et al. [11]. Grey
literature (technical reports, some workshop reports, work in progress) was ex-
cluded from the analysis for two reasons: the quality of the grey literature is more
difficult to assess and the volume of studies included in the first searches would
have grown unreasonably. The searches in the sources selected resulted in over-
lap among the papers, where the duplicates were excluded primarily by manual
filtering.

2.3 Search criteria

The initial search criteria were broad in order to include articles with different uses
of terminology. The key words used were <regression> and (<test> or <testing>)
and <software>, and the database fields of title and abstract were searched. The
start year was set to 1969 to ensure that all relevant research within the field would
be included, and the last date for inclusion is publications within 2006. The earliest
primary study actually included was published in 1997. Kitchenham recommends
that exclusion based on languages should be avoided [31]. However, only pa-
pers written in English are included. The initial search located 2 923 potentially
relevant papers.

2 Research Method 61

2.4 Study Selection

In order to obtain independent assessments, four researchers were involved in a
three-stage selection process, as depicted in Figure 1. In the first stage duplicates
and irrelevant papers were excluded manually based on titles. In our case, the
share of irrelevant papers was extremely large since papers on software for statis-
tical regression testing or other regression testing could not be distinguished from
papers on software regression testing in the database search. The term software did
not distinguish between the two areas, since researchers on statistical regression
testing often develop some software for their regression test procedures. After the
first stage 450 papers remained.

Figure 1: Study selection procedure.

In the second stage, information in abstracts was analyzed and the papers
were classified along two dimensions: research approach and regression testing
approach. Research approaches were experiment, case study, survey, review, the-
ory and simulation. The two latter types were excluded, as they are not presenting
an empirical research approach, and the survey and review papers were not con-
sidered as being primary studies but rather related work to the systematic review.
At this stage we did not judge the quality of the empirical data. Regression test-
ing approaches were selection, reduction, prioritization, generation, execution and
other. Only papers focusing on regression test selection were included.

In the third stage a full text analysis was performed on the 73 papers and the
empirical quality of the studies was further assessed. The following questions were
asked in order to form quality criteria for which studies to exclude before the final
data extraction:

62 A Systematic Review on Regression Test Selection Techniques

• Is the study focused on a specific regression test selection method? E.g. a
paper could be excluded that presents a method that potentially could be
used for regression testing, but is evaluated from another point of view.

• Are the metrics collected and the results relevant for a comparison of meth-
ods? E.g. a paper could be excluded which only reports on the ability to
predict fault prone parts of the code, but not on the fault detection effective-
ness or the cost of the regression test selection strategy.

• Is data collected and analyzed in a sufficiently rigorous manner? E.g. a pa-
per could be excluded if a subset of components was analyzed and conclu-
sions were drawn based on those, without any motivation for the selection.

These questions are derived from a list of questions, used for a similar purpose,
published by Dybå et al. [11]. However in our review context, quality require-
ments for inclusion had to be weaker than suggested by Dybå et al. in order to
obtain a useful set of studies to compare. The selection strategy was in general
more inclusive than exclusive. Only papers with very poorly reported or poorly
conducted studies were excluded, as well as papers where the comparisons made
were considered irrelevant to the original goals of this study.

Abstract analysis and full text analysis were performed in a slightly iterative
fashion. Firstly, the articles were independently assessed by two of the researchers.
In case of disagreement, the third researcher acted as a checker. In many cases, dis-
agreement was due to insufficient specification of the criteria. Hence, the criteria
were refined and the analysis was continued.

In order to get a measure of agreement in the study selection procedure, the
Kappa coefficient was calculated for the second stage, which comprised most judg-
ments in the selection. In the second stage 450 abstracts were assessed by two
researchers independently. In 41 cases conflicting assessments were made which
corresponds to the Kappa coefficient K = 0.78. According to Landis and Koch
[35] this translates to a substantial strength of agreement.

2.5 Data extraction and synthesis
Using the procedure, described in the previous section, 27 articles were finally
selected that reported on 36 unique empirical studies, evaluating 28 different tech-
niques. The definition of what constitutes a single empirical study, and what con-
stitutes a unique technique is not always clear cut. The following definitions have
been used in our study:

• Study: an empirical study applying a technique to one or more programs.
Decisions on whether to split studies with multiple artifacts into different
studies were based on the authors’ own classification of the primary stud-
ies. Mostly, papers including studies on both small and large programs are
presented as two different studies.

2 Research Method 63

• Technique: An empirically evaluated method for regression test selection.
If the only difference between two methods is an adaption to a specific pro-
gramming language (e.g. from c++ to java) they are considered being the
same technique.

Studies were classified according to type and size, see Section 2.1. Two types
of studies are included in our review, experiments and case studies. We use the
following definitions:

• Experiment: A study in which an intervention is deliberately introduced to
observe its effects [56].

• Case study: An empirical inquiry that investigates a contemporary phe-
nomenon within its real-life context, especially when the boundaries be-
tween the phenomenon and context are not clearly evident [68].

Surveys and literature reviews were also considered in the systematic review,
e.g. [49] and [27], but rather as reference point for inclusion of primary studies
than as primary studies as such.

Regarding size, the studies are classified as small, medium or large (S, M, L)
depending on the study artifact sizes. A small study artifact has less than 2,000
lines of code (LOC), a large study artifact has more than 100,000 LOC, and a
medium sized study artifact is in between. The class limits are somewhat arbitrar-
ily defined. In most of the articles the lines of code metric is clearly reported and
thus this is our main measurement of size. But in some articles sizes are reported
in terms of number of methods or modules, reported as the authors’ own statement
about the size or not reported at all.

The classification of the techniques is part of answering RQ2 and is further
elaborated in Section 2.4.

2.6 Qualitative assessment of empirical results

The results from the different studies were qualitatively analyzed in categories of
four key metrics: reduction of cost for test execution, cost for test case selection,
total cost, and fault detection effectiveness, see Section 3.5. The “weight” of an
empirical study was classified according to the scheme in Table 1. A study with
more “weight” is considered contributing more to the overall conclusions. A unit
of analysis in an experiment is mostly a version of a piece of code, while in a case
study; it is mostly a version of a whole system or sub-system.

The results from the different studies were then divided into six different cat-
egories according to the classification scheme in Table 2. The classification is
based on the study “weight" and the size of the difference in a comparative em-
pirical study. As the effect sizes were rarely reported in the studies, the sizes of
the differences are also qualitatively assessed. The categorization of results was

64 A Systematic Review on Regression Test Selection Techniques

Table 1: “Weight” of empirical study.
Type and size of study Light empirical study

“weight”
Medium empirical study
“weight"

Experiment (small) Analysis units < 10 Analysis units >= 10
Case study (small-medium)
Experiment (medium) Analysis units < 4 Analysis units >= 4
Case study (large)

Table 2: Classification scheme for qualitative assessment of the weight of empir-
ical results.

No difference Difference of small
size

Difference of large
size

Medium em-
pirical study
“weight"

Strong indication of
equivalence between the
two compared techniques

Weak indication that
one technique is supe-
rior to the other

Strong indication that
one technique is supe-
rior to the other

Light em-
pirical study
“weight"

Weak indication of equiv-
alence between the two
compared techniques

No indication of differ-
ences or similarities

Weak indication that
one technique is supe-
rior to the other

made by two researchers in parallel and uncertainties were resolved in discussions.
Results are presented in Figures 5 - 8 in Section 2.5.

No difference Difference of small size Difference of large size Medium empir-
ical study “weight" Strong indication of equivalence between the two compared
techniques Weak indication that one technique is superior to the other Strong in-
dication that one technique is superior to the other Light empirical study “weight"
Weak indication of equivalence between the two compared techniques No indica-
tion of differences or similarities Weak indication that one technique is superior to
the other

2.7 Threats to validity

Threats to the validity of the systematic review are analyzed according to the fol-
lowing taxonomy; construct validity, reliability, internal validity and external va-
lidity.

Construct validity reflects to what extent the phenomenon under study really
represents what the researchers have in mind and what is investigated according
to the research questions. The main threat here is related to terminology. Since
the systematic review is based on a hierarchical structure of terms - regression
test/testing consists of the activities modification identification, test selection, test
execution and test suite maintenance - we might miss other relevant studies on test
selection that are not specifically aimed for regression testing. However, this is a
consciously decided limitation, which has to be taken into account in the use of

3 Results 65

the results. Another aspect of the construct validity is assurance that we actually
find all papers on the selected topic. We analyzed the list of publication fora and
the list of authors of the primary studies to validate that no major forum or author
was missed.

Reliability focuses on whether the data is collected and the analysis is con-
ducted in a way that it can be repeated by other researchers with the same results.
We defined a study protocol setting up the overall research questions, the overall
structure of the study as well as initial definitions of criteria for inclusions/exclu-
sion, classification and quality. The criteria were refined during the study based on
the identification of ambiguity that could mislead the researchers.

In a systematic review, the decision process for inclusion and exclusion of
primary studies is the major focus when it comes to reliability, especially in this
case where another domain (statistics) also uses the term regression testing. Our
countermeasures taken to reduce the reliability threat were to set up criteria and to
use two researchers to classify papers in stages 2 and 3. In cases of disagreement,
a third opinion is used. However, the Kappa analysis indicates strong agreements.
One of the primary researchers was changed between stages 2 and 3. Still, the
uncertainties in the classifications are prevalent and a major threat to reliability,
especially since the quality standards for empirical studies in software engineering
are not high enough. Research databases is another threat to reliability [11]. The
threat is reduced by using multiple databases; still the non-determinism of some
database searches is a major threat to the reliability of any systematic review.

Internal validity is concerned with the analysis of the data. Since no statistical
analysis was possible due to the inconsistencies between studies, the analysis is
mostly qualitative. Hence we link the conclusions as clearly as possible to the
studies, which underpin our discussions.

External validity is about generalizations of the findings derived from the pri-
mary studies. Most studies are conducted on small programs and hence general-
izing them to a full industry context is not possible. In the few cases were experi-
ments are conducted in the small as well as case studies in the large, the external
validity is reasonable, although there is room for substantial improvements.

3 Results

3.1 Primary studies

The goal of this study was to find regression test selection techniques that are
empirically evaluated. The papers were initially obtained in a broad search in
seven databases covering relevant journals, conference and workshop proceedings
within software engineering. Then an extensive systematic selection process was
carried out to identify papers describing empirical evaluations of regression test
selection techniques. The results presented here thus give a good picture of the
existing evidence base.

66 A Systematic Review on Regression Test Selection Techniques

Out of 2 923 titles initially screened, 27 papers (P1-P27) on empirical eval-
uations of techniques for regression test selection remained until the final stage.
These 27 papers report on 36 unique studies (S1-S36), see Table 3, and compare
in total 28 different techniques for regression test selection for evaluation (T1-
T28), see listing in Table 3.3 below, which constitutes the primary studies of this
systematic review. Five reference techniques are also identified (REF1-REF5), e.g.
re-test all (all test cases are selected) and random(25) (25% of the test cases are
randomly selected). In case the studies are reported partially or fully in different
papers, we generally refer to the most recent one as this contains the most updated
study. When referring to the techniques, we do on the contrary refer to the oldest,
considering it being the original presentation of the technique.

Table 3: Primary studies, S1-S36, published in papers P1-P27, evaluation techniques T1-
T28.

Study
ID

Publica-
tion
ID

Reference Techniques Artifacts Type
of
study

Size
of
study

S1 P1 Baradhi and
Mansour
(1997) [2]

T4, T5, T6,
T11, T12

Own unspecified Exp S

REF1
S2 P2 Bible et al.

(2001) [3]
T7, T8 7x Siemens, Small constructed

programs, constructed, realistic
non-coverage based test suites

Exp S

REF1
S3 P2 Bible et al.

(2001) [3]
T7, T8 Space, Real application, real

faults, constructed test cases
Exp S

REF1
S4 P2 Bible et al.

(2001) [3]
T7, T8 Player, One module of a large

software system constructed real-
istic test suites

Exp M

REF1
S5 P3 Elbaum et al.

(2003) [12]
T2, T4, T18 Bash, Grep, Flex and Gzip,

Real, non-trivial C program, con-
structed test suites

CS
(Mult)

M

REF1
S6 P4 Frankl et al.

(2003) [15]
T7, T10 7xSiemens, Small constructed

programs, constructed, realistic,
non-coverage based test suites

Exp S

REF1
S7 P5 Graves et al.

(2001) [16]
T1, T2, T7 7xSiemens, Small constructed

programs, constructed, realistic
non-coverage based test suites;
space, Real application, real
faults, constructed test cases;
player, One module of a large
software system constructed real-
istic test suites

Exp S M

REF1, REF2,
REF3, REF4

S8 P6 Harrold et al.
(2001) [20]

T15 Siena, Jedit, JMeter, RegExp,
Real programs, constructed faults

Exp S

continued on next page ...

3 Results 67

Table 3 – continued from previous page
Study
ID

Publica-
tion
ID

Reference Techniques Artifacts Type
of
study

Size
of
study

REF1
S9 P7 Kim et al.

(2005) [29]
T2, T7, T8 7xSiemens, Small constructed

programs, constructed, realistic
non-coverage based test suites;
Space, Real application, real
faults, constructed test cases

Exp S

REF1, REF2,
REF3, REF4

S10 P8 Koju et al.
(2003) [34]

T15 Classes in .net framework, Open
source, real test cases

Exp S

REF1
S11 P9 Mansour et

al. (2001)
[38]

T4, T5, T6,
T12

20 small sized Modules Exp S

S12 P10 Mao and Lu
(2005) [40]

T16, T17,
T24

Triangle, eBookShop, ShipDemo,
Small Constructed programs

CS S

REF1
S13 P11 Orso et al.

(2004) [43]
T9, T15, T19 Jaba, Daikon, JBoss, Real-life

programs, original test suites
Exp M L

REF1
S14 P12 Pasala and

Bhowmick
(2005) [44]

T20 Internet Explorer (client), IIS
(web server), application (app.
Server), An existing browser
based system, real test cases

CS NR

REF1
S15 P13 Rothermel

and Harrold
(1997) [50]

T7 7xSiemens, Small constructed
programs, constructed, realistic
non-coverage based test suites

Exp S

REF1
S16 P13 Rothermel

and Harrold
(1997) [50]

T7 Player, One module of a large
software system constructed real-
istic test suites

Exp M

REF1
S17 P14 Rothermel

and Harrold
(1998) [52]

T7 7xSiemens, Small constructed
programs, constructed, realistic
non-coverage based test suites

Exp S

REF1
S18 P14 Rothermel

and Harrold
(1998) [52]

T7 7xSiemens, Small constructed
programs, constructed, realistic
non-coverage based test suites

Exp S

REF1
S19 P14 Rothermel

and Harrold
(1998) [52]

T7 7xSiemens, Small constructed
programs, constructed, realistic
non-coverage based test suites;

Exp S

REF1
S20 P14 Rothermel

and Harrold
(1998) [52]

T7 Player, One module of a large
software system constructed real-
istic test suites

Exp M

REF1
continued on next page ...

68 A Systematic Review on Regression Test Selection Techniques

Table 3 – continued from previous page
Study
ID

Publica-
tion
ID

Reference Techniques Artifacts Type
of
study

Size
of
study

S21 P14 Rothermel
and Harrold
(1998) [52]

T7 Commerercial, Real application,
real test suite

Exp S

REF1
S22 P15 Rothermel

et al.
(2002) [46]

T8, T18 Emp-server, Open-source, server
component, constructed test
cases; Bash Open-source, real
and constructed test cases

Exp M

REF1
S23 P16 Rothermel

et al.
(2004) [47]

T2, T8, T18 Bash, Open-source, real and con-
structed test cases

Exp M

REF1
S24 P16 Rothermel et

al. (2004)
[47]

T2, T8, T18 Emp-server, Open-source, server
component, constructed test cases

Exp M

REF1
S25 P17 Skoglund

and Runeson
(2005) [57]

T9, T21 Swedbank, Real, large scale, dis-
tributed, component-based, J2EE
system, constructed, scenario-
based test cases

CS L

REF1
S26 P18 Vokolos

and Frankl
(1998) [60]

T10 ORACOLO2, Real industrial sub-
systems, real modifications, con-
structed test cases

CS M

REF1
S27 P19 White and

Robinson
(2004) [63]

T3 14 real ABB projects, Industrial,
Real-time system

CS L

REF5
S28 P19 White and

Robinson
(2004) [63]

T9 2 real ABB projects, Industrial,
Real-time system

CS L

REF5
S29 P20 White et al.

(2005) [62]
T3, T9, T25 OO-telecommunication software

system
CS S

S30 P20 White et al.
(2005) [62]

T3, T9, T25 OO - real-time software system CS L

S31 P21 Willmor
and Embury
(2005) [65]

T7, T22, T23 Compiere, James, Mp3cd
browser, Open source systems,
real modifications

CS NR

REF1
S32 P22 Wong et al.

(1997) [66]
T13 Space, Real application, real

faults, constructed test cases
CS S

REF1
S33 P23 Wu et al.

(1999) [67]
T14 ATM-simulator, small con-

structed program
CS S

REF1
continued on next page ...

3 Results 69

Table 3 – continued from previous page
Study
ID

Publica-
tion
ID

Reference Techniques Artifacts Type
of
study

Size
of
study

S34 P23 Wu et al.
(1999) [67]

T14 Subsystem of a fully networked
supervisory control and data anal-
ysis system

CS M

REF1
S35 P24,

P25,
P26

Zheng et al.
(2005) [70],
Zheng et
al. (2006)
[71] Zheng
(2005) [69]

T26, T28 ABB-internal, Real C/C++ appli-
cation

CS M

REF1
S36 P27,

P25
Zheng et al.
(2006) [72],
Zheng et al.
(2006) [71]

T27, T28 ABB-internal, Real C/C++ appli-
cation

CS M

REF1

In most of the studies, the analyses are based on descriptive statistics. Tabu-
lated data or bar charts are used as a basis for the conclusions. In two studies (S23
and S24), published in the same paper (P16) [47] statistical analysis is conducted,
using ANOVA.

3.2 Analyses of the primary studies

In order to explore the progress of the research field, and to validate that the se-
lected primary studies reasonably cover our general expectations of which fora
and which authors should be represented, we analyze, as an extension to RQ1,
aspects of the primary studies as such: where they are published, who published
them, and when. As defined in Section 1.5, a paper may report on multiple studies,
and in some cases the same study is reported in more than one paper. Different
researchers have different criteria for what constitutes a study. We have tried to ap-
ply a consistent definition of what constitutes a study. This distribution of studies
over papers is shown in Table 4. Most papers (18 out of 27) report a single study,
while few papers report more than one. Two papers report new analyses of earlier
published studies. Note that many of the techniques are originally presented in
papers without empirical evaluation, hence these papers are not included as pri-
mary studies in the systematic review, but referenced in Section 2.3 as sources of
information about the techniques as such (Table 3.3).

The number of identified techniques in the primary studies is relatively high
compared to the number of studies, 28 techniques were evaluated in 36 studies.
In Table 5, the distribution of techniques over different studies is presented. One
technique was present in 14 different studies, another technique in 8 studies etc.

70 A Systematic Review on Regression Test Selection Techniques

Table 4: Distribution of number of papers after the number of studies each paper
reports.

reported studies in
each paper

papers # studies

0 (re-analysis of another
study)

2 0

1 18 18
2 5 10
3 1 3
5 1 5
Total 27 36

Table 5: Distribution of techniques after occurrences in number of studies

Represented in
number of studies

Number of tech-
niques

14 1
8 1
5 2
4 1
3 2
2 7
1 14
Total 28

14 techniques only appear in one study, which is not satisfactory when trying to
aggregate information from empirical evaluations of the techniques.

Table 6 lists the different publication fora in which the articles have been pub-
lished. It is worth noting regarding the publication fora, that the empirical re-
gression testing papers are published in a wide variety of journals and conference
proceedings. Limiting the search to fewer journals and proceedings would have
missed many papers, see Table 6.

The major software engineering journals and conferences are represented among
the fora. It is not surprising that a conference on software maintenance is on the
top, but we found, during the validity analysis, that the International Symposium
on Software Testing and Analysis is not on the list at all. We checked the pro-
ceedings specifically and have also noticed that, for testing in general, empirical
studies have been published there, as reported by Do et al. [9], but apparently not
on regression test selection during the studied time period.

Table 7 lists authors with more than one publication. In addition to these 17
authors, five researchers have authored or co-authored one paper each. In the top
of the author’s list, we find the names of the most prolific researchers in the field of

3 Results 71

Table 6: Number of papers in different publication fora

Publication Fora Type # %
International Conference on Software Maintenance Conference 5 18.5
ACM Transactions of Software Engineering and Methodology Journal 3 11.1
International Symposium on Software Reliability Engineering Conference 3 11.1
International Conference on Software Engineering Conference 3 11.1
Asia-Pacific Software Engineering Conference Conference 2 7.4
International Symposium on Empirical Software Engineering Conference 2 7.4
IEEE Transactions of Software Engineering Journal 1 3.7
Journal of Systems and Software Journal 1 3.7
Software Testing Verification and Reliability Journal 1 3.7
Journal of Software Maintenance and Evolution Journal 1 3.7
ACM SIGSOFT Symposium on Foundations of SE Conference 1 3.7
Automated Software Engineering Conference 1 3.7
Australian SE Conference Conference 1 3.7
International Conf on COTS-based Software Systems Conference 1 3.7
Int. Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications

Conference 1 3.7

Total 27 100

regression test selection (Rothermel and Harrold). It is interesting to notice from
the point of view of conducting empirical software engineering research, that there
are two authors on the top list with industry affiliation (Robinson and Smiley).

The regression test selection techniques have been published from 1988 to
2006, as shown in Figure 2 and Table 3.3. The first empirical evaluations were
published in 1997 (one case study and three experiments), hence the empirical
evaluations have entered the scene relatively late. 12 out of the 28 techniques have
been originally presented and evaluated in the same paper: T12-S11 and T13-S32
(1997); T14-S33-S34 (1999); T18-S5 (2003); T19-S13 (2004),; T20-S14; T21-
S25; T23-S31; T25-S29-S30 and T26-S35 (2005); T27-S33 and T28-S35 (2006).

Table 7: Researchers and number of publications

Name # Name #
Rothermel G. 9 Baradhi G. 2
Harrold M. J. 5 Frankl P. G. 2
Robinson B. 5 Kim J. M. 2
Zheng J. 4 Mansour N. 2
Elbaum S. G. 3 Orso A. 2
Kallakuri P. 3 Porter A. 2
Malishevsky A. 3 White L. 2
Smiley K. 3 Vokolos F. 2
Williams L. 3

72 A Systematic Review on Regression Test Selection Techniques

Figure 2: Accumulated number of published techniques, case studies and exper-
iments.

We conclude from this analysis that there are only a few studies comparing
many techniques in the same study, making it hard to find empirical data for
a comprehensive comparison. However, some small and medium-sized artifacts
have appeared as a de-facto benchmark in the field [9], enabling comparison to
some extent of some techniques.

Most of the expected publication fora are represented, and one that is not repre-
sented, but was expected, was specifically double checked. Similarly, well known
researchers in the field were among the authors, hence we consider the selected
primary studies as being a valid set. It is clear from the publication analysis that
the techniques published during the later years are published with empirical eval-
uations to a higher degree than during the earlier years, which is a positive trend
in searching for empirically evaluated techniques as defined in RQ1.

3.3 Empirically evaluated techniques (RQ1)
Overview

Table 3.3 lists the 28 different regression test selection techniques (T1-T28), in
chronological order according to date of first publication. In case the studies are
reported partially or fully in different papers, we generally refer to the original one.
In case a later publication has added details that are needed for exact specification
of the technique, both references are used.

This list is specifically the answer to the first research question: which tech-
niques for regression test selection existing in the literature have been evaluated
empirically (RQ1). In this review, the techniques, their origin and description, are
identified in accordance to what is stated in each of the selected papers, although

3 Results 73

adapted according to our definition of what constitutes a unique technique in Sec-
tion 1.5.

Development history

The historical development chain gives some advice on which techniques are re-
lated and how they are developed, see Figure 3. There are three major paths,
beginning with T3, T7 and T8 respectively.

Figure 3: Evolution of techniques.

One group of techniques is the firewall techniques where dependencies to mod-
ified software parts are isolated inside a firewall. Test cases covering the parts
within the firewall are selected for re-execution. The first firewall technique (T3)
for procedural languages was presented by Leung and White in 1990 [37]. An
empirical evaluation used a changed version (T5). The technique was adapted to
object-oriented languages T9 in two similar ways [24] [61] and further enhanced
and extended in the I-BACCI technique (T25-T28). It has also been adapted to
Java (T21).

Another group of techniques is based on a technique invented by Rothermel
and Harrold for procedural languages in 1993 [48] (T7), sometimes referred to as
DejaVu. This technique has later been adopted to object-oriented languages T15
(for C++ [51], and for Java [20] [34]) and also further extended for MSIL code
[34]. Through technique T19 it has also been combined with techniques from the
group of firewall techniques. Extended techniques that cope with database state
have also been created T22 and T23 [65].

The firewall techniques are based on relationships to changed software parts.
Different granularities of parts have been used, such as dependencies between

74 A Systematic Review on Regression Test Selection Techniques

Table 8: Techniques for regression test selection
Technique Origin Description Evaluated in study
T1 Harrold and Soffa (1988) [21] Dataflow-coverage-based S7
T2 Fischer et al. (1981) [14] Hartman

and Robson (1988) [23]
Modification-focused, mini-
mization, branch and bound
algorithm

S5, S7, S9, S23, S24

T3 Leung and White (1990) [37] Procedural-design firewall S27, S29, S30
T4 Gupta et al. (1992) [17] Coverage-focused, slicing S1, S5, S11
T5 White and Leung (1992) [64] Firewall S1, S11
T6 Agraval et al. (1993) [1] Incremental S1, S11
T7 Rothermel and Harrold (1993) [48] Viewing statements, DejaVu S2 -S4, S6, S7, S9,

S15 - S21, S31
T8 Chen and Rosenblum (1994) [7] Modified entity - TestTube S2 - S4, S9, S22 - 24
T9 Pei et al. (1997) [24] White and

Abdullah (1997) [61]
High level - identifies changes at
the class and interface level

S13, S25, S28 -S30

T10 Vokolos and Frankl (1997) [59] Textual Differing - Pythia S6, S26
T11 Mansour and Fakih (1997) [39] Genetic algorithm S1
T12 Mansour and Fakih (1997) [39] Simulated annealing S1, S11
T13 Wong et al. (1997) [66] Hybrid: modification, minimiza-

tion and prioritization- based se-
lection

S32

T14 Wu et al. (1999) [67] Analysis of program structure
and function-calling sequences

S33, S34

T15 Rothermel et al. (2000) [51] Har-
rold et al. (2001) [20] Koju et al.
(2003) [34]

Edge level - identifies changes at
the edge level

S8, S10, S13

T16 Orso et al. (2001) [42] Use of metadata to represent
links between changes and Test
Cases

S12

T17 Sajeev et al. (2003) [55] Use of UML (OCL) to describe
information changes

S12

T18 Elbaum et al. (2003) [12] Modified-non-core Same as T8
but ignoring core functions

S5, S22

T19 Orso et al. (2004) [43] Partitioning and selection Two
Phases

S13

T20 Pasala and Bhowmick (2005) [44] Runtime dependencies captured
and modeled into a graph (CIG)

S14

T21 Skoglund and Runeson (2005) [57] Change based selection S25
T22 Willmor and Embury (2005) [65] Test selection for DB-driven ap-

plications (extension of T7) com-
bined safety

S31

T23 Willmor and Embury (2005) [65] Database safety S31
T24 Mao and Lu (2005) [40] Enhanced representation of

change information
S12

T25 White et al. (2005) [62] Extended firewall additional
data-paths

S29, S30

T26 Zheng (2005) [70] I-BACCI v.1 S35
T27 Zheng et al. (2006) [72] I-BACCI v.2 (firewall + BACCI) S36
T28 Zheng et al. (2006) [72] I-BACCI v.3 S35, S36
REF1 Leung and White (1989) [36] Retest-all S1 - S10, S12 - S24,

S26, S31 - S36
REF2 Random (25) S7, S9
REF3 Random (50) S7, S9
REF4 Random (75) S7, S9
REF5 Intuitive, experience based selec-

tion
S27, S28

3 Results 75

modules, functions or classes. There exist techniques that are not stated in their
presentations to be based on the firewall technique but still make use of depen-
dencies between software parts. T8, T14 and T18 all utilize the relations between
functions and T20 use dependencies between components (DLL:s).

In addition to the three major groups, there are other techniques which share
some similarities with either group, although not being directly derived from one
of them.

Using the dependency principle between larger parts, such as functions or
classes, lead to that all test cases using the changed part are re-executed even
though the actual modified code may not be executed. Using a smaller granularity
gives better precision but are usually more costly since more analysis is needed.
The smallest granularity is the program statements, segments, or blocks. The rela-
tionships between these smallest parts may be represented by creating control flow
graphs where the control flow from one block to another may be seen as a rela-
tionship between the two blocks. This principle is for example used in the group
of techniques based on Rothermel and Harrold’s technique T7, see above, but is
also used in the firewall technique T5. T10 also use program blocks for its test
selection. An extension of this principle where the variables are also taken into
account is used in the techniques T2, T4, T6, T11-T13, in various ways.

Another group of techniques are those using specifications or metadata of the
software instead of the source code or executable code. T17 use UML specifica-
tions, and T16 and T24 use metadata in XML format for their test case selection.

Uniqueness of the techniques

There is a great variance regarding the uniqueness of the techniques identified
in the studied papers. Some techniques may be regarded as novel at the time of
their first presentation, while others may be regarded as only variants of already
existing techniques. For example in [3] a regression test selection techniques is
evaluated, T8, and the technique used is based on modified entities in the subject
programs. In another evaluation, reported on in [12] it is stated that the same
technique is used as in [3] but adapted to use a different scope of what parts of the
subjects programs that is included in the analysis, T18. In [3] the complete subject
programs are included in the analysis; while in [12] core functions of the subject
programs are ignored. This difference of scope probably has an effect on the test
cases selected using the two different approaches. The approach in which core
functions is ignored is likely to select fewer test cases compared to the approach
where all parts of the programs are included. It is not obvious whether the two
approaches should be regarded as two different techniques or if they should be
regarded as two very similar variants of the same technique. We chose the latter
option.

Some techniques evaluated in the reviewed papers are specified to be used for a
specific type of software, e.g. Java, T15 and T19 [20] [43], component based soft-

76 A Systematic Review on Regression Test Selection Techniques

ware, T17, T20, T24 and T28 [40] [44] [71] [72], or database-driven applications,
T22, [65]. It is not clear whether they should be considered one technique applied
to two types of software, or two distinctly different techniques. For example, a
technique specified for Java, T15, is presented and evaluated in [20]. In [34] the
same technique is used on MSIL (MicroSoft Intermediate Language) code, how-
ever adapted to cope with programming language constructs not present in Java.
Thus, it can be argued that the results of the two studies cannot be synthesized
in order to draw conclusions regarding the performance of neither the technique
presented in [20], nor the adapted version, used in [34]. However, we chose to
classify them as the same technique.

There are also techniques specified in a somewhat abstract manner, e.g. tech-
niques that handle object-oriented programs in general, e.g. T14 [67]. However,
when evaluating a technique, the abstract specification of a technique must be
concretized to handle the specific type of subjects selected for the evaluation. The
concretization may look different depending on the programming language used
for the subject programs. T14 is based on dependencies between functions in
object-oriented programs in general. The technique is evaluated by first tailoring
the abstract specification of the technique to C++ programs and then performing
the evaluation on subject programs in C++. However, it is not clear how the tailor-
ing of the specification should be performed to evaluate the technique using other
object-oriented programming languages, e.g. C# or Java. Thus, due to differences
between programming languages, a tailoring made for one specific programming
language may have different general performance than a tailoring made for another
programming language.

3.4 Classification of Techniques (RQ2)

In response to our second research question (RQ2), we are looking for some kind
of classification of the regression test selection techniques. Since the techniques
are sensitive to subtle changes in their implementation or use, we could compare
classes of techniques, instead of comparing individual techniques. As indicated
in Figure 3, there exist many variants of techniques, gradually evolved over time.
Some suggested classifications of regression test techniques exist. Rothermel and
Harrold present a framework for analyzing regression test selection techniques
[49], including evaluation criteria for the techniques: inclusiveness, precision, ef-
ficiency and generality. Graves et al. [16] present a classification scheme where
techniques are classified as Minimization, Safe, Dataflow-Coverage-based, Ad-
hoc/Random or Retest-All techniques. Orso et al. [43] separate between tech-
niques that operate at a higher granularity e.g. method or class (called high-level)
and techniques that operate at a finer granularity, e.g. statements (called low-
level). In this review we searched for classifications in the papers themselves with
the goal of finding common properties in order to be able to reason about groups
of regression testing techniques.

3 Results 77

One property found regards the type of input required by the techniques. The
most common type of required input is source code text, e.g. T1-8, T10-12 and
T18. Other types of code analyzed by techniques are intermediate code for virtual
machines, e.g. T9, T13-15 and T21, or machine code, e.g. T24 and T26. Some
techniques require input of a certain format, e.g. T16 (meta data) and T17 (OCL).
Techniques may also be classified according to the type of code used in the analysis
(Java, C++). A third type of classification that could be extracted from the papers
regards the programming language paradigm. Some techniques are specified for
use with procedural code, e.g. T1, T2, T7, T8, and T18, while other techniques are
specified for the object-oriented paradigm, e.g. T9, T13-17, and T21-T23 some
techniques are independent of programming language, e.g. T3, T19, and T26-28.

The most found property assigned to regression test selection techniques is
whether they are safe or unsafe. With a safe technique the defects found with the
full test suite are also found with the test cases picked by the regression test selec-
tion technique. This property may be used to classify all regression test selection
techniques into either safe or unsafe techniques. Re-test all is an example of a safe
technique since it selects all test cases, hence, it is guaranteed that all test cases
that reveal defects are selected. Random selection of test cases is an example of an
unsafe technique since there is a risk of test cases revealing defects being missed.
In our study seven techniques were stated by the authors to be safe, T7, T8, T10,
T15, and T21-24. However, the safety characteristic is hard to achieve in practice,
as it e.g. assumes determinism in program and test execution.

A major problem, in addition to finding a classification scheme is applying
the scheme to the techniques. The information regarding the different properties
is usually not available in the publications. Hence, we may only give examples
of techniques having the properties above based on what the authors state in their
publications. The properties reported for each technique is presented in Table 8.

3.5 Analysis of the Empirical Evidence (RQ3)

Once we have defined which empirical studies exist and a list of the techniques
they evaluate, we continue with the third research question on whether there are
significant differences between the techniques (RQ3). We give an overview of the
primary studies as such in Subsection 3.5.1. Then we focus on the metrics and
evaluation criteria used in different studies (Section 3.5.2).

Types of empirical evidence

Table 11 overviews the primary studies by research method, and the size of the
system used as subject. We identified 21 unique controlled experiments and 15
unique case studies. Half of the experiments are conducted on the same set of
small programs [25], often referred to as the Siemens programs, which are made

78 A Systematic Review on Regression Test Selection Techniques

Table 8: Overview of properties for each technique.
Applicability Method Properties

Tech-
nique

Type of
Lang-
uagea

Type
of Soft-
wareb

Inputc Approachd Granularitye Detection
Abilityf

Cost Re-
ductiong

T1 Ind IM CF Stm
T2 Proc SC CF Stm Min
T3 Proc SC FW Module
T4 Proc SC Slicing Stm Min
T5 Proc SC FW
T6 Proc SC Slicing Stm
T7 Proc SC CF Stm Safe
T8 Proc SC Dep Func Safe
T9 OO IM FW Class
T10 Proc SC Stm Safe
T11 Proc SC Genetic Stm
T12 Proc SC SimAn Stm
T13 Proc SC Stm Min
T14 OO SC Dep Func
T15 OO IM CF Stm Safe
T16 OO Comp Spec CF Stm
T17 OO Comp Spec
T18 Proc SC Dep Func
T19 OO IM FW+CF Class+Stm
T20 Ind Comp BIN Dep Comp
T21 OO IM FW Class
T22 OO DB SC CF Stm Safe
T23 OO DB SC CF Stm Safeh

T24 OO Comp BIN
+Spec

Dep Stm Safe

T25 OO SC? FW Class
T26 Ind Comp BIN FW Func
T27 Ind Comp BIN+SC FW Func
T28 Ind Comp BIN+SC FW Func

aProc= Procedural language, Ind = Independent, OO = Object oriented
bComp = Component based, DB = Database driven
cSC = Source code, IM = Intermediate code for virtual machines, BIN = Machine code, Spec =

Input of a certain format
dCF = Control flow, FW = Fire wall, Slicing, Dep = Dependency based, Genetic, SimAn= Simulated

annealing
eStm = statement, Func = Function, Class, Module, Component
fSafe
gMin = Minimization
hsafe only in DB-state

3 Results 79

Table 9: Primary studies of different type and size

Type of
studies

Size of sub-
jects under
study

Number
of studies

%

Experiment Large 1 3
Experiment Medium 7 19
Experiment Small 13 36
Case
study

Large 4 11

Case
study

Medium 5 14

Case
study

Small 4 11

Case
study

Not reported 2 6

Total 36 100

available through the software infrastructure repository2 presented by Do et al. [9].
The number of large scale real life evaluations is sparse. In this systematic review
we found four (S25, S27, S28, S30). Both types of studies have benefits and en-
counter problems, and it would be of interest to study the link between them, i.e.
does a technique which is shown to have great advantages in a small controlled
experiment show the same advantages in a large scale case study. Unfortunately
no complete link was found in this review. However, the move from small toy
programs to medium sized components, which is observed among the studies, is a
substantial step in the right direction towards real-world relevance and applicabil-
ity.

The empirical quality of the studies varies a lot. In order to obtain a sufficiently
large amount of papers, our inclusion criteria regarding quality had to be weak.
Included in our analysis was any empirical evaluation of regression test selection
techniques if relevant metrics were used and a sufficiently rigorous data collection
and analysis could be followed in the report, see section 1.4 for more details. This
was independently assessed by two researchers.

An overview of the empirically studied relations between techniques and stud-
ies are shown in Figure 4. Circles represent techniques and connective lines be-
tween the techniques represent comparative studies. CS on the lines refers to the
number of case studies conducted in which the techniques are compared, and Exp
denotes the number of experimental comparisons. Some techniques have not been
compared to any of the other techniques in the diagram: T13, T14 and T20. These
techniques are still empirically evaluated in at least one study, typically a large

22 http://sir.unl.edu.

80 A Systematic Review on Regression Test Selection Techniques

scale case study. If no comparison between proposed techniques is made, the
techniques are compared to a reference technique instead, e.g. the retest of all test
cases, and in some cases a random selection of a certain percentage of test cases is
used as a reference as well. The reference techniques are not shown Figure 4 for
visibility reasons.

Researchers are more apt to evaluate new techniques or variants of techniques
than to replicate studies, which is clearly indicated by that we identified 28 differ-
ent techniques in 27 papers. This gives rise to clusters of similar techniques com-
pared among them selves and techniques only compared to a reference method
such as re-test all.

Three clusters of techniques have been evaluated sufficiently to allow for mean-
ingful comparison, see Figure 4; C1: T2, T7, T8 and T18, C2: T4, T5, T6 and T12,
and C3: T3, T9 and T25. Each of these pair of techniques has been compared in
at least two empirical studies. However, not all studies are conducted according
to the same evaluation criteria, nor is the quality of the empirical evidence equally
high. Therefore we classified the results with respect to empirical quality, as de-
scribed in Section 1.6, and with respect to evaluation criteria, as desribed below.

Evaluation criteria

Do and Rothermel proposed a cost model for regression testing evaluation [10].
However, this model requires several data which is not published in the primary
studies. Instead, we evaluated the results with respect to each evaluation criterion
separately. We identified two main categories of metrics: cost reduction and fault
detection effectiveness. Five different aspects of cost reduction and two of fault
detection effectiveness have been evaluated in the primary studies. Table 12 gives
an overview of the extent to which the different metrics are used in the studies.
Size of test suite reduction is the most frequent, evaluated in 76% of the studies.
Despite this, it may not be the most important metric. If the cost for performing
the selection is too large in relation to this reduction, no savings are achieved. In
42% of the studies the total time (test selection and execution) is evaluated instead
or as well. The effectiveness measures are either related 1) to test cases, i.e. the
percentage of fault-revealing test cases selected out of all fault-revealing test cases,
or 2) to faults, i.e. the percentage of faults out of all known ones, detected by the
selected test cases.

Several of the studies concerning reduction of number of test cases are only
compared to retest all (S8, S10, S14-S21, S26, S32-S34) [20], [34], [44], [50],
[52], [60], [66], [67] with the only conclusion that a reduction of test cases can
be achieved, but nothing on the size of the effect in practice. This is a problem
identified in experimental studies in general [28]. Many of the studies evaluating
time reduction are conducted on small programs, and the size of the differences is
measured in milliseconds, although there is a positive trend, over time, towards us-
ing medium-sized programs. Only 30% of the studies consider both fault detection

3 Results 81

Figure 4: Techniques related to each other through empirical comparisons.

and cost reduction. Rothermel proposed a framework for evaluation of regression
test selection techniques [49] which have been used in some evaluations. This
framework defines four key metrics, inclusiveness, precision, efficiency, and gen-
erality. Inclusiveness and precision corresponds to test case-related fault detection
effectiveness and precision, respectively, in Table 10. Efficiency is related to space
and time requirements and varies with test suite reduction as well as with test ex-
ecution time and test selection time. Generality is more of a theoretical reasoning,
which is not mirrored in the primary studies.

82 A Systematic Review on Regression Test Selection Techniques

Table 10: Use of evaluation metrics in the studies

Evaluated Metrics Number % Rothermel
framework
[49]

Cost Reduction Test suite reduction 29 76 Efficiency
Test execution time 7 18 Efficiency
Test selection time 5 13 Efficiency
Total time 16 42 Efficiency
Precision (omission of
non-fault revealing tests)

1 3 Precision

Fault Detection
Effectiveness

Test case-related detec-
tion effectiveness

5 13 Inclusiveness

Fault-related detection ef-
fectiveness

8 21

3.6 Comparison of techniques (RQ4)

In response to our fourth research question (RQ4) we are analyzing the empirically
evaluated relations between the techniques by visualizing the results of the studies.
Due to the diversity in evaluation criteria and in empirical quality this visualiza-
tion cannot give a complete picture. However, it may provide answers to specific
questions: e.g. Is there any technique applicable in my context proven to reduce
testing costs more than the one I use today?

Our taxonomy for analyzing the evidence follows the definitions in Table 2.
Grey arrows indicate light weight empirical result and black arrows indicate medium
weight result. A connection without arrows in the figures means that the studies
have similar effect, while where there is a difference, the arrow points to the tech-
nique that is better with respect to the chosen criterion. A connection with thicker
line represents more studies. In section 3.6.1, we report our findings regarding test
suite reduction and in section 3.6.2 regarding fault detection. Note that the num-
bers on the arrows indicate number of collected metrics, which may be more than
one per study.

Cost reduction

Figure 5 reports the empirically evaluated relations between the techniques regard-
ing the cost reduction, including evaluations of execution time as well as of test
suite reduction and precision.

The strongest evidence can be found in cluster C1, where T2 provides most
reduction of execution costs. T7, T8 and T18 reduce the test suites less than T2,
and T8 among those reduces execution cost less than T18. All techniques how-

3 Results 83

Figure 5: Empirical results for Cost Reduction, including Test Execution Time,
Test Suite Reduction and Precision.

ever, reduce test execution cost compared to REF1 (re-test all), which is a natural
criterion for a regression test selection technique.

In cluster C2, there is strong evidence that T6 and T12 have similar cost for
test execution. On the other hand, there is a study with weaker empirical evidence,
indicating that T12 reduces execution cost more than T6.

The rest of the studies show rather weak empirical evidence, showing that the
evaluated techniques reduce test execution cost better than re-test all.

One component of the cost for regression test selection is the analysis time

84 A Systematic Review on Regression Test Selection Techniques

Figure 6: Empirical results for Test Selection Time.

needed to select which test cases to re-execute. The selection time is reported
separately for a small subset of the studies, as shown in Figure 6.

The left group primarily tells that T19 has less selection time than T15, and in
C1, T8 has less analysis time than T7.

The results from cluster C2 shows mixed messages. T4 has in most cases the
shortest selection time, although it in one study is more time consuming than T6.
The selection time is hence dependent on the subject programs, test cases and types
of changes done.

In Figure 7, the total time for analysis and execution together is shown for those
studies where it is reported. It is worth noting that some regression test selection
techniques actually can be more time consuming than re-test all (T7, T8, T10).
Again, this is case dependent, but it is interesting to observe that this situation
actually arises under certain conditions.

Other relations are a natural consequence of the expansion of certain tech-
niques. T9 (Object oriented firewall) is less time consuming than T25 (extended
OO firewall with data paths). Here an additional analysis is conducted in the re-
gression test selection.

Fault detection effectiveness

In addition to saving costs, regression test selection techniques should detect as
many as possible of the faults found by the original test suite. Evaluations of

4 Discussion 85

Figure 7: Empirical results for Total Time.

test case-related as well as fault-related detection effectiveness are presented in
Figure 8.

Some techniques are proven to be safe, i.e. guarantees that the fault detection
effectiveness is 100% compared to the original test suite (see Section 2.4). This
property is stated to hold for seven techniques: T7, T8, T10, T15, T22, T23 and
T24.

T7 and T8 within C2 are also those that can be found superior or equal from
Fig 8, which is in line with the safe property. T4 in C2 tends also to be better or
equal to all its reference techniques. However, for the rest, the picture is not clear.

4 Discussion

4.1 The reviewed studies

The overall goal with the study was to identify regression test selection techniques
and systematically assess the empirical evidence collected about those techniques.
As the selection of a specific technique is dependent on many factors, the outcomes
of empirical studies also depend on those factors. However only few factors are
specifically addressed in the empirical studies and hence it is not possible to draw

86 A Systematic Review on Regression Test Selection Techniques

Figure 8: Empirical results for Fault Detection Effectiveness.

very precise conclusions. Nor is it possible to draw general conclusions. Instead
we have conducted mostly qualitative assessments of the empirical studies. From
those we try to aggregate recommendations of which regression test selection tech-
niques to use.

A comparison of the techniques in cluster C1 indicates that the minimization
technique, T2, is the most efficient in reducing time and/or number of test cases
to run. However this is an unsafe technique (see Section 2.4) and all but one of
six studies report on significant losses in fault detection. When it comes to safe
techniques, T7 is shown to be the most efficient in reducing test cases. However
analysis time for T7 is shown to be too long (it exceeds the time for rerunning all
test cases) in early experiments, while in later experiments, it is shown to be good.
Hence, there is a trade-off between cost reduction and defect detection ability. This
is the case in all test selection, and none of the evaluated technique seems to have
done any major breakthrough in solving this trade-off.

It is interesting to notice that the technique T7 is not changed between the

4 Discussion 87

studies that show different results on selection time, but the subject programs on
which the experiments are conducted are changed. This is one factor that heavily
impacts on the performance of some techniques. This emphasizes the importance
of the regression testing context in empirical studies, and may also imply that
specific studies have to be conducted when selecting a technique for a specific
environment.

As mentioned before, many techniques are incremental improvements of ex-
isting techniques, which are demonstrated to perform better. For example, T25 is
an extension of T9, with better fault detection at the cost of total time. This is a
pattern shown in many of the studies: improvements may be reached, but always
at a price for something else.

4.2 Implications for future studies

The standards for conducting empirical studies, and which measures to evaluate,
differ greatly across the studies. Rothermel and Harrold proposed a framework
to constitute the basis for comparison [49], but it is not used to any significant
level in later research. Hence, it is not possible to conduct very strict aggregation
of research results, e.g. through meta analysis. It is however not necessarily the
ultimate goal to compare specific techniques. More general concepts would be
more relevant to analyze, rather than detailed implementation issues.

Examples of such concepts to evaluate are indicated in the headings of Table
10. Applicability: are different techniques better suited for different languages
or programming concepts, or for certain types of software? Method: are some
selection approaches better suited to find faults, independently of details in their
implementation? Which level of granularity for the analysis is effective - state-
ment, class, component, or even specification level? Other concepts are related to
process, product and resources factors [54]. Process: How frequent should the
regression testing cycles be? At which testing level is the regression testing most
efficient: unit, function, system? Product: Is regression testing different for differ-
ent types and sizes of products? Resources: Is the regression testing different with
different skills and knowledge among the testers?

In the reviewed studies, some of these aspects are addressed: e.g. the size
aspect, scaling up from small programs to medium-sized [52], the level of granu-
larity of tests [3], as well as testing frequency [29] and the effect of changes [12].
However, this has to be conducted more systematically by the research community.

Since the outcomes of the studies depend on many different factors, replication
of studies with an attempt to keep as many factors stable as possible is a means to
achieve a better empirical foundation for evaluation of concepts and techniques.
The use of benchmarking software and test suites is one way of keeping factors
stable between studies [9] However, in general, the strive for novelty in each
research contribution tends to lead to a lack of replications and thus a lack of
deeper understanding of earlier proposed techniques.

88 A Systematic Review on Regression Test Selection Techniques

A major issue in this review is to find the relevant information to compare
techniques. Hence, for the future, a more standardized documentation scheme
would be helpful, as proposed by e.g. Jedlitschka and Pfahl [26] for experiments
and Runeson and Höst [53] for case studies. To allow enough detail despite page
restrictions, complementary technical reports could be published on the empirical
studies.

5 Conclusions and future work

In this paper we present results from a systematic review of empirical evaluations
of regression test selection techniques. Related to our research questions we have
identified that:

RQ1 There are 28 empirically evaluated techniques on regression test selection
published,

RQ2 these techniques might be classified according to: applicability on type of
software and type of language; details regarding the method such as which
input is required, which approach is taken and on which level of granularity
is changes considered; and properties such as classification in safe/unsafe or
minimizing/not minimizing.

RQ3 The empirical evidence for differences between the techniques is not very
strong, and sometimes contradictory, and

RQ4 hence there is no basis for selecting one superior technique. Instead tech-
niques have to be tailored to specific situations, e.g. initially based on the
classification of techniques.

We have identified some basic problems in the regression testing field which
hinders a systematic review of the studies. Firstly, there is a great variance in the
uniqueness of the techniques identified. Some techniques may be presented as
novel at the time of their publications and others may be regarded as variants of
already existing techniques. Combined with a tendency to consider replications as
second class research, the case for cooperative learning on regression testing tech-
niques is not good. In addition to this, some techniques are presented in a rather
general manner, e.g. claimed to handle object-oriented programs, which gives
much space for different interpretations on how they may be implemented due to
e.g. different programming language constructs existing in different programming
languages. This may lead to different (but similar) implementations of a specific
technique in different studies depending on e.g. the programming languages used
in the studies.

As mentioned in Section 1, to be able to select a strategy for regression testing,
relevant empirical comparisons between different methods are required. Where

5 Conclusions and future work 89

such empirical comparisons exist, the quality of the evaluations must be consid-
ered. One goal of this study was to determine whether the literature on regression
test selection techniques provides such uniform and rigorous base of empirical evi-
dence on the topic that makes it possible to use it as a base for selecting a regression
test selection method for a given software system.

Our study shows that most of the presented techniques are not evaluated suf-
ficiently for a practitioner to make decisions based on research alone. In many
studies, only one aspect of the problem is evaluated and the context is too specific
to be easily applied directly by software developers. Few studies are replicated,
and thus the possibility to draw conclusions based on variations in test context is
limited. Of course even a limited evidence base could be used as guidance. In
order for a practitioner to make use of these results, the study context must be
considered and compared to the actual environment into which a technique is sup-
posed to be applied.

Future work for the research community is 1) focus more on general regres-
sion testing concepts rather than on variants of specific techniques; 2) encourage
systematic replications of studies in different context, preferably with a focus on
gradually scaling up to more complex environments; 3) define how empirical eval-
uations of regression test selection techniques should be reported, which variation
factors in the study context are important.

Acknowledgements
The authors acknowledge Dr. Carina Andersson for her contribution to the first
two stages of the study. The authors are thankful to librarian Maria Johnsson
for excellent support in the search procedures. We appreciate review comments
from Prof. Sebastian Elbaum and the anonymous reviewers, which substantially
have improved the paper. The work is partly funded by the Swedish Governmental
Agency for Innovation Systems under grant 2005-02483 for the UPPREPA project,
and partly funded by the Swedish Research Council under grant 622-2004-552 for
a senior researcher position in software engineering.

90 A Systematic Review on Regression Test Selection Techniques

References

[1] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul A. Lon-
don. Incremental regression testing. In Proceedings of the Conference on
Software Maintenance, pages 348–357, 1993.

[2] Ghinwa Baradhi and Nashat Mansour. A comparative study of five regression
testing algorithms. In Proceedings of the Australian Software Engineering
Conference (ASWEC ’97), pages 174–182, 1997.

[3] John Bible, Gregg Rothermel, and David S. Rosenblum. A comparative
study of coarse- and fine-grained safe regression test-selection techniques.
ACM Transactions on Software Engineering and Methodology, 10(2):149–
183, 2001.

[4] David Binkley. The application of program slicing to regression testing. In-
formation and Software Technology, 40(11-12):583–594, 1998.

[5] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and
Mohamed Khalil. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of Systems and
Software, 80(4):571–583, April 2007.

[6] Yanping Chen, Robert L. Probert, and D. Paul Sims. Specification-based
regression test selection with risk analysis. In Proceedings of the 2002 con-
ference of the Centre for Advanced Studies on Collaborative research (CAS-
CON ’02), pages 1–. IBM Press, 2002.

[7] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. TESTTUBE:
a system for selective regression testing. In Proceedings of the 16th Inter-
national Conference on Software Engineering (ICSE-16), pages 211 –220,
May 1994.

[8] Oscar Dieste, Anna Grimán, and Natalia Juristo. Developing search strate-
gies for detecting relevant experiments. Empirical Software Engineering,
14(5):513–539, October 2009.

[9] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its po-
tential impact. Empirical Software Engineering, 10(4):405–435, 2005.

[10] Hyunsook Do and Gregg Rothermel. An empirical study of regression test-
ing techniques incorporating context and lifetime factors and improved cost-
benefit models. In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering (FSE-14), pages 141–
151, 2006.

References 91

[11] Tore Dybå, Torgeir Dingsøyr, and Geir K. Hanssen. Applying systematic
reviews to diverse study types: An experience report. In Proceedings of
the First International Symposium on Empirical Software Engineering and
Measurement (ESEM ’07), pages 225–234, 2007.

[12] Sebastian Elbaum, Praveen Kallakuri, Alexey Malishevsky, Gregg Rother-
mel, and Satya Kanduri. Understanding the effects of changes on the cost-
effectiveness of regression testing techniques. Software Testing, Verification
and Reliability, 13(2):65–83, April 2003.

[13] Emelie Engström, Mats Skoglund, and Per Runeson. Empirical evaluations
of regression test selection techniques: a systematic review. In Proceedings
of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, ESEM ’08, pages 22–31, New York, NY,
USA, 2008. ACM.

[14] Kurt F. Fischer, F Raji, and A Chruscicki. A methodology for retesting mod-
ified software. In Proceedings of the National Telecommunications Confer-
ence, pages 1–6, 1981.

[15] Phyllis G. Frankl, Gregg Rothermel, Kent Sayre, and Filippos I. Vokolos. An
empirical comparison of two safe regression test selection techniques. In Pro-
ceedings of the International Symposium on Empirical Software Engineering
(ISESE 2003), pages 195 – 204, October 2003.

[16] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An empirical study of regression test selection techniques. ACM
Transactions on Software Engineering and Methodology, 10(2):184–208,
April 2001.

[17] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An approach to regres-
sion testing using slicing. In In Proceedings of the Conference on Software
Maintenance, pages 299–308, 1992.

[18] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. Program slicing-based
regression testing techniques. Journal of Software Testing, Verification, and
Reliability, 6(2):83–111, 1996.

[19] Florian Haftmann, Donald Kossmann, and Eric Lo. A framework for efficient
regression tests on database applications. The VLDB Journal, 16(1):145–164,
September 2006.

[20] Mary Jean Harrold, Alessandro Orso, James A. Jones, Maikel Pennings,
Tongyu Li, Ashish Gujarathi, Saurabh Sinha, Donglin Liang, and S. Alexan-
der Spoon. Regression test selection for java software. In Proceedings of the
16th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA ’01), pages 312–326, 2001.

92 A Systematic Review on Regression Test Selection Techniques

[21] Mary Jean Harrold and Mary Lou Soffa. An incremental approach to unit
testing during maintenance. In Proceedings of the Conference on Software
Maintenance, pages 362 –367, October 1988.

[22] Jean Hartmann and David J. Robson. Approaches to regression testing. In
Proceedings of the Conference on Software Maintenance, pages 368–372,
October 1988.

[23] Jean Hartmann and David J. Robson. Techniques for selective revalidation.
IEEE Software, 7(1):31–36, January 1990.

[24] Pei Hsia, Xiaolin Li, David Chenho Kung, Chih-Tung Hsu, Liang Li, Yasu-
fumi Toyoshima, and Cris Chen. A technique for the selective revalidation
of OO software. Journal of Software Maintenance, 9(4):217–233, July 1997.

[25] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Exper-
iments of the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of the 16th international conference on Software
engineering (ICSE ’94), pages 191–200, 1994.

[26] Andreas Jedlitschka and Dietmar Pfahl. Reporting guidelines for controlled
experiments in software engineering. In 2005 International Symposium on
Empirical Software Engineering (ISESE 2005), pages 95–104, November
2005.

[27] Natalia Juristo, Ana Moreno, Sira Vegas, and Martin Solari. In search of
what we experimentally know about unit testing. IEEE Software, 23(6):72–
80, November 2006.

[28] Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, and Dag I.K. Sjøberg. A
systematic review of effect size in software engineering experiments. Infor-
mation and Software Technology, 49(11-12):1073–1086, November 2007.

[29] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical study
of regression test application frequency. Software Testing, Verification and
Reliability, 15(4):257–279, December 2005.

[30] B.A. Kitchenham, E. Mendes, and G.H. Travassos. Cross versus within-
company cost estimation studies: A systematic review. Software Engineer-
ing, IEEE Transactions on, 33(5):316 –329, May 2007.

[31] Barbara Kitchenham. Guidelines for performing systematic literature re-
views in software engineering. Technical report, and Department of Com-
puter Science, University of Durham, Version 2.3, 2007.

References 93

[32] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software en-
gineering - a systematic literature review. Information and Software Technol-
ogy, 51(1):7–15, January 2009.

[33] René R. Klösch, Paul W. Glaser, and Robert J. Truschnegg. A testing ap-
proach for large system portfolios in industrial environments. Journal of
Systems and Software, 62(1):11–20, May 2002.

[34] Toshihiko Koju, Shingo Takada, and Norihisa Doi. Regression test selection
based on intermediate code for virtual machines. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM ’03), pages 420–429,
2003.

[35] J. Richard Landis and Gary G. Koch. The measurement of observer agree-
ment for categorical data. Biometrics, 33(1):159–174, March 1977.

[36] Hareton K. N. Leung and Lee White. Insights into testing and regression
testing global variables. Journal of Software Maintenance, 2(4):209–222,
December 1990.

[37] Hareton K. N. Leung and Lee White. A study of integration testing and
software regression at the integration level. In Proceedings of the IEEE Con-
ference on Software Maintenance, pages 290–301, November 1990.

[38] Nashat Mansour, Rami Bahsoon, and Ghinwa Baradhi. Empirical compari-
son of regression test selection algorithms. Journal of Systems and Software,
57(1):79–90, April 2001.

[39] Nashat Mansour and Khaled El-Fakih. Natural optimization algorithms for
optimal regression testing. In Proceedings of the 21th Annual International
Computer Software and Applications Conference (COMPSAC ’97), pages
511 –514, August 1997.

[40] Chengying Mao and Yansheng Lu. Regression testing for component-based
software systems by enhancing change information. In Proceedings of the
12th Asia-Pacific Software Engineering Conference (APSEC ’05), pages
611–618, 2005.

[41] Atif M. Memon. Using tasks to automate regression testing of GUIs. In
Proceedings of the International Conference Applied Informatics (IASTED),
pages 477–482, 2004. cited By (since 1996) 2.

[42] Alessandro Orso, Mary Jean Harrold, David Rosenblum, Gregg Rothermel,
Hyunsook Do, and Mary Lou Soffa. Using component metacontent to sup-
port the regression testing of component-based software. In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM’01),
pages 716–725, 2001. cited By (since 1996) 33.

94 A Systematic Review on Regression Test Selection Techniques

[43] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling regression
testing to large software systems. In Proceedings of the ACM SIGSOFT 12th
International symposium on Foundations of software engineering (FSE-12),
volume 29, pages 241–251, October 2004.

[44] Anjaneyulu Pasala and Animesh Bhowmick. An approach for test suite se-
lection to validate applications on deployment of COTS upgrades. In Pro-
ceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC
’05), pages 401–407, 2005.

[45] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: a tool for change impact analysis of java programs. Proceedings
of the Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 2004), 39(10):432–448, October 2004.

[46] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen
Kallakuri, and Brian Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02), pages 130–140, 2002.

[47] Gregg Rothermel, Sebastian Elbaum, Alexey G. Malishevsky, Praveen
Kallakuri, and Xuemei Qiu. On test suite composition and cost-effective
regression testing. ACM Trans. Softw. Eng. Methodol., 13(3):277–331, July
2004.

[48] Gregg Rothermel and Mary Jean Harrold. A safe, efficient algorithm for re-
gression test selection. In Proceedings of the Conference on Software Main-
tenance (ICSM ’93), pages 358–367, 1993.

[49] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–551,
August 1996.

[50] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test se-
lection technique. ACM Transactions on Software Engineering and Method-
ology, 6(2):173–210, April 1997.

[51] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test
selection for c++ software. Software Testing, Verification and Reliability,
10(2):77–109, June 2000.

[52] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. An
empirical study of the effects of minimization on the fault detection capabil-
ities of test suites. In Proceedings of the IEEE International Conference on
Software Maintenance, page 34, 1998.

References 95

[53] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, April 2009.

[54] Per Runeson, Mats Skoglund, and Emelie Engström. Test benchmarks–what
is the question? In Proceedings of the IEEE International Conference on
Software Testing Verification and Validation Workshop (ICSTW ’08), pages
368–371, April 2008.

[55] A. S. M. Sajeev and Bugi Wibowo. Regression test selection based on ver-
sion changes of components. In Proceedings of the IEEE Tenth Asia-Pacific
Software Engineering Conference (APSEC ’03), pages 78–85, 2003.

[56] William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experi-
mental and Quasi-Experimental Designs for Generalized Causal Inference.
Houghton Mifflin Company, Boston New York, 2002.

[57] Mats Skoglund and Per Runeson. A case study of the class firewall regres-
sion test selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering, pages 72–81,
2005.

[58] Mark Staples and Mahmood Niazi. Experiences using systematic review
guidelines. Journal of Systems and Software, 80(9):1425–1437, September
2007.

[59] Filippos I. Vokolos and Phyllis G. Frankl. Pythia: A regression test selection
tool based on textual differencing. In Proceedings of the Third International
Conference on Reliability, Quality and Safety of Software-Intensive Systems
(ENCRESS’97), 1997.

[60] Filippos I. Vokolos and Phyllis G. Frankl. Empirical evaluation of the textual
differencing regression testing technique. In Software Maintenance, 1998.
Proceedings. International Conference on, pages 44 –53. IEEE Comput. Soc,
November 1998.

[61] Lee White and Khalil Abdullah. A firewall approach for the regression test-
ing of object-oriented software. In Proceedings of 10th annual software qual-
ity week, 1997.

[62] Lee White, Khaled Jaber, and Brian Robinson. Utilization of extended fire-
wall for object-oriented regression testing. In Proceedings of the IEEE 21st
International Conference on Software Maintenance (ICSM ’05), pages 695–
698, 2005.

[63] Lee White and Brian Robinson. Industrial real-time regression testing and
analysis using firewalls. In Proceedings of the 20th IEEE International Con-
ference on Software Maintenance (ICSM ’04), pages 18–27, 2004.

96 A Systematic Review on Regression Test Selection Techniques

[64] Lee J. White and Hareton K.N. Leung. A firewall concept for both control-
flow and data-flow in regression integration testing. In Software Mainte-
nance, 1992. Proceerdings., Conference on, pages 262 –271. IEEE Comput.
Soc. Press, November 1992.

[65] David Willmor and Suzanne M. Embury. A safe regression test selection
technique for database driven applications. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance, pages 421–430, 2005.

[66] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore.
A study of effective regression testing in practice. In Proceedings of the IEEE
Eighth International Symposium on Software Reliability Engineering (ISSRE
’97), pages 264–274, 1997.

[67] Ye Wu, Mei-Hwa Chen, and H.M. Kao. Regression testing on object-oriented
programs. In Proceedings of the 10th International Symposium on Software
Reliability Engineering, pages 270 –279, 1999.

[68] Robert K. Yin. Case Study Research: Design and Methods. SAGE, 2003.

[69] Jiang Zheng. In regression testing selection when source code is not avail-
able. In Proceedings of the IEEE/ACM 20th international Conference on
Automated software engineering (ASE ’05), pages 752–755, 2005.

[70] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. An initial
study of a lightweight process for change identification and regression test
selection when source code is not available. In Proceedings of the IEEE 16th
International Symposium on Software Reliability Engineering (ISSRE 2005),
pages 225–234, November 2005.

[71] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. Applying
regression test selection for COTS-based applications. In Proceedings of
the 28th international conference on Software engineering (ICSE ’06), pages
512–522, 2006.

[72] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley. A
lightweight process for change identification and regression test selection in
using COTS components. In Proceedings of the Fifth International Confer-
ence on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS
’06), pages 137–143, 2006.

PAPER II

A QUALITATIVE SURVEY OF
REGRESSION TESTING

PRACTICES

Abstract

Aim: Regression testing practices in industry have to be better understood, both
for the industry itself and for the research community. Method: We conducted a
qualitative industry survey by i) running a focus group meeting with 15 industry
participants and ii) validating the outcome in an on line questionnaire with 32 re-
spondents. Results: Regression testing needs and practices vary greatly between
and within organizations and at different stages of a project. The importance and
challenges of automation is clear from the survey. Conclusions: Most of the find-
ings are general testing issues and are not specific to regression testing. Challenges
and good practices relate to test automation and testability issues.

Emelie Engström and Per Runeson
Proceedings of 11th International Conference on Product Focused Software De-
velopment and Process Improvement (PROFES’10), June 2010

1 Introduction

Regression testing is retesting of previously working software after a change to
ensure that unchanged software is still functioning as before the change. Accord-
ing to IEEE, regression testing is Selective retesting of a system or component to
verify that modifications have not caused unintended effects and that the system or
components still complies with its specified requirements [8]. The need for effec-
tive strategies for regression testing increases with the increasing use of iterative
development strategies and systematic reuse in software projects. Studies indi-

98 A Qualitative Survey of Regression Testing Practices

cate that 80% of testing cost is regression testing and more than 50% of software
maintenance cost is related to testing [3].

There is a gap between research and practices of regression testing. Research
on regression testing mainly focuses on selection and prioritization of test cases.
Several techniques for regression test selection are proposed and evaluated. En-
gström et al. reviewed the literature in the field recently [4] and highlights the
importance of the test context to the outcome of regression testing techniques.
Only few empirical evaluations of regression test selection techniques are carried
out in a real industrial context [5], [16], [17].

However industry practice on regression testing is mostly based on experience
alone, and not on systematic approaches. There is a need for researchers to bet-
ter understand the needs and practices in industry. Rooksby et al. [11] argue for
the need for investigation and characterization of real world work. They conclude
that improvements of current testing practices are meaningful in its specific local
context and “cannot be brought about purely through technically driven innova-
tion”. In their paper they highlight, based on experiences from testing in four real
projects, that improvements in industry are not always sophisticated and accurate
as is often pursued in research.

In order to retrieve a better understanding of real world needs and practices, a
qualitative survey [6, p. 61-78] of industry practice of regression testing is con-
ducted, by means of focus group discussions in a software process improvement
network (SPIN) and a questionnaire to validate the results. Issues discussed in
the focus group were definitions and practices of regression testing in industry as
well as challenges and improvement suggestions. A total of 46 software engineers
from 38 different organizations participated in the focus group and questionnaire
survey. Results are qualitative and of great value in that they highlight relevant and
possible directions for future research.

To the extent of our knowledge no industrial surveys on regression testing prac-
tices have been reported on. However experience reports on regression testing in
industrial software development projects can be found [9]. Onoma et al. conclude
that regression testing is used extensively and that several companies develop in-
house regression testing tools to automate the process. Re-test all is a common
approach and the selection of test cases is not a critical issue.

When it comes to testing practices in general a couple of industrial surveys
have been undertaken [2], [7], [12], [13], concluding that test automation is a key
improvement issue [13] and that test case selection for continuous regression test-
ing is a hard task. No systematic approach for test case selection was used by the
companies but instead they relied on the developers expertise and judgment [12].

This paper is organized as follows: Section 2 describes how the survey is con-
ducted and discusses validity issues. In section 3 results are presented and ana-
lyzed. Finally conclusions are provided in section 4.

2 Method description 99

2 Method description
The study’s overall goal is to characterize current regression testing practices in
industry for the sake of research. It also aims at identifying good practices for
spreading across different companies as well as areas in need for improvement
within the companies and possibly identification of future research topics. Hence,
a qualitative survey is found appropriate [6, p. 61-78]. The research questions for
the survey are:

RQ1 What is meant by regression testing in industry?

RQ2 Which problems or challenges related to regression testing exist?

RQ3 Which good practices on regression testing exist?

The survey is conducted using two different research methods, one focus group
discussion [10, p. 284-289] in a SPIN group, and one questionnaire in a testing
interest network. The focus group was used to identify concepts and issues related
to regression testing, while the questionnaire was used to validate the findings
in a different setting. A similar approach was used for a unit testing survey in
2006 [12].

2.1 Focus group
The focus group meeting was arranged at one of the monthly meetings of SPIN-
syd, a software process improvement network in Southern Sweden [14]. The mem-
bers of the network were invited to a 2.5 hour session on regression testing in May
2009. 15 industry participants accepted the invitation, which is about the normal
size for a SPIN-syd monthly meeting, and the same as for our previous unit testing
survey [12]. The focus group meeting was moderated by two academics and one
industry participant, and observed by a third academic. An overview of the focus
group participants is shown in Table 1.

The industry participants represented automation, medical devices, informa-
tion systems (IS), and telecom domains. Consultants also participated which were
working with testing for their clients. The product companies all produce embed-
ded software and were both of medium and large size, while consultancy firms of
all sizes were represented.

The session was organized around five questions:

• What is regression testing?

• When do the participants regression test?

• How do the participants regression test?

• What are the participants’ problems regarding regression testing?

100 A Qualitative Survey of Regression Testing Practices

Table 1: Participants in focus group meeting. Number of developers in the sur-
veyed company: extra small is 1, small is 2 − 19, medium is 20 − 99, and large
100− 999

Company Domain Size Role
A Automation Medium Participant
A Automation Medium Participant
A Automation Medium Participant
G Medical devices Medium Participant
G Medical devices Medium Participant
I Information systems Large Moderator
I Information systems Large Participant
S Telecom Large Participant
S Telecom Large Participant
E Telecom Large Participant
X Consultant Extra small Participant
C Consultant Extra small Participant
Q Consultant Medium Participant
K Consultant Medium Participant
O Consultant Large Participant
L Academics N/A Researcher
L Academics N/A Researcher
L Academics N/A Observer

2 Method description 101

• What are the participants’ strengths regarding regression testing?

For each of the questions, the moderator asked the participants to write their
answers on post-it charts. Then each participant presented his or her view of the
question and the responses were documented on white boards.

After the session, key findings were identified using qualitative analysis meth-
ods. Statements were grouped into themes, primarily structured by the five ques-
tions, and secondary according to keywords in the statements. Further, the results
were restructured and turned into questions for use in the questionnaire.

2.2 Questionnaire
The resulting questionnaire consists of 45 questions on what regression testing
is, with five-level Likert-scale response alternatives: Strongly disagree, Disagree,
Neutral, Agree, Strongly Agree and an additional Not Applicable option (see Fig 1).
One question on automation vs manual used five scale alternatives from Automated
to Manual (see Fig 2). Further, 29 questions on satisfaction with regression testing
practices in the respondents’ organizations had the response alternatives Very Sat-
isfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied and Not Applicable (see
Fig 3). The questionnaire was defined in the SurveyGizmo questionnaire tool for
on line data collection [1].

Respondents were invited through the SAST network (Swedish Association
for Software Testing) through their quarterly newsletter, which is distributed to
some 2.000 testers in Sweden, representing a wide range of company sizes and
application domains. Respondents were promised an individual benchmarking
report if more than three participants from one company responded, and a chance
for everybody to win a half-day seminar on testing given by the second author.
Thirty-two respondents answered the complete questionnaire, which are presented
in Table 2.

The respondents cover the range of company sizes and domains. Out of the 32
respondents, 9 were developing embedded systems in particular within the tele-
com domain, 12 developed information systems in particular within the domains
of business intelligence and finance, and 11 were consultants. Out of 21 prod-
uct companies, 3 represent small development organizations, 9 represent medium
sized organizations and 8 represent large organizations. The size of the consul-
tancy organizations are not specifically relevant, but is reported to indicate the
variation.

2.3 Threats to validity
The study does not aim at providing a statistically valid view of a certain popula-
tion of companies, as intended with general surveys [6]. The research questions
are focused on existence and not on frequencies of responses. Hence, we consider
the survey having more character of multiple case studies on a certain aspect of

102 A Qualitative Survey of Regression Testing Practices

Figure 1: Number of responses for each questionnaire alternative on regression
test practices

2 Method description 103

Figure 2: Number of responses for each questionnaire alternative on automated
vs. manual regression testing

Figure 3: Number of responses for each questionnaire alternative on satisfaction
with regression test practices

104 A Qualitative Survey of Regression Testing Practices

Table 2: Respondents to the questionnaire. Number of developers in the surveyed
company: extra small is 1, small is 2−19, medium is 20−99, and large 100−999

Company Size Domain
Me Small Automation
Te Medium Automation
V Large Automotive
Tc Small Business intelligence
Ql Medium Business intelligence
Ti Medium Business intelligence
C Large Consultant
Ha Large Consultant
H Large Consultant
H Large Consultant
Q Medium Consultant
R Small Consultant
K Medium Consultant
Si Large Consultant
So Large Consultant
T Small Consultant
Tp Medium Consultant
Eu Medium Finance
Sk Large Finance
A Medium Finance
U Medium Information systems
Sm Medium Information systems
W Small Information systems
B Large Information systems
L Large Insurance
Mu Large Insurance
Ma Large Medical devices
E Large Telecom
Hi Medium Telecom
M Medium Telecom
S Large Telecom
S Large Telecom

3 Analysis of the results 105

several cases and consequently we discuss threats to validity from a case study
perspective [15].

Construct validity concerns the underlying constructs of the research, i.e.
terms and concepts under study. We mitigated construct validity threats by having
the first question of the focus group related to terminology and concepts. Thereby,
we ensured a common understanding for the rest of the group meeting. In the sur-
vey, however, the terms may be interpreted differently and this is out of control of
the researchers.

Internal validity relates to identification of casual relationships. We do not
study any casual relationships in the study, and we just briefly touch upon corre-
lations between factors. Patterns in the data that might indicate correlations are
interpreted conservatively in order not to over interpret the data.

External validity relates to generalization from the findings. We do not at-
tempt to generalize in a statistical sense; any generalization possible is analytical
generalization [15]. In order to help such generalization, we report characteristics
of the focus group members and questionnaire respondents in Tables 1 and 2.

3 Analysis of the results
The focus group and survey results were analyzed using the Zachman frame-
work, which originally was presented for analysis of information systems archi-
tectures [18]. The framework has six categories, what, how, where, who, when and
why, although these terms were not originally used. For each category, questions
are defined and tailored to the domain under investigation. Originally intended
for IS development, Zachman proposed that it might be used for developing new
approaches to system development [18]. We use it similar to Runeson [12], i.e.
to structure the outcome of the focus group meetings and to define the validation
questionnaire, although we primarily focus on what, how and when.

An overview of the questionnaire results is shown in Figures 1, 2 and 3. Ques-
tions are referred to in the text as [Qx] for question x. The analysis is then pre-
sented according to the framework questions and identified strengths and weak-
nesses in subsections 3.1 to 3.4.

3.1 What?

There is good agreement in the focus group and among the survey respondents
regarding what regression testing is. Regression testing involves repetitive tests
and aims to verify that previously working software still works after changes to
other parts. Focus can be either re-execution of test cases or retest of functionality.

106 A Qualitative Survey of Regression Testing Practices

As for testing in general the goal of the regression testing may differ between
different organizations or parts of an organization. The goal may be either to
find defects or to obtain a measure of its quality. Regression testing shall ensure
that nothing has been affected or destroyed, and give an answer to whether the
software has achieved the desired functionality, quality and stability etc. In the
focus group discussion, an additional goal of regression testing was mentioned as
well; to obtain a guide for further priorities in the project. Regression testing offers
a menu of what can be prioritized in the project, such as bug fixes. This additional
goal was only confirmed to some extent by 35% of the respondents [Q8].

Different kinds of changes to the system generate regression testing. Men-
tioned in the focus group discussion and confirmed by the majority of the respon-
dents were: new versions, new configurations, fixes, changed solutions, new hard-
ware, new platforms, new designs and new interfaces [Q9-16]. One third of the
respondents, mostly small and medium sized organizations, indicated that regres-
sion testing is applied regardless of changes, while in larger organizations, regres-
sion testing was tighter connected to changes [Q17]. The amount and frequency
of regression testing is determined by the assessed risk, the amount of new func-
tionality, the amount of fixes and the amount of available resources. The first three
factors are confirmed by the majority of the respondents [Q29-31] while the agree-
ment on the dependency on resources availability varies to a greater extent among
the respondents [Q32].

3.2 When?

Regression testing is carried out at different levels (e.g. module level, compo-
nent level and system level [Q18-20]) and at different stages of the development
process. From focus group discussions it was found that that some organizations
regression test as early as possible while other regression test as late as possible in
the process, and some claimed that regression testing is continuously carried out
throughout the whole development process. The purpose may be slightly different
for the three options; early regression test to enable early detection of defects, and
late regression testing for certification or type approval purposes.

How often regression testing is carried out differed as well; some organizations
regression test daily while others regression test at each software integration, at
each milestone, or before releases [Q24-26]. In some cases the availability of
resources is determinant. Among the questionnaire responses, there were large
variations on how often regression testing is applied. The most common approach
is to regression test before releases (indicated by 95% of the respondents) [Q27].
Only 10% of the respondents regression test daily [Q24].

3 Analysis of the results 107

3.3 How?

From the focus group discussions it was identified that tests used for regression
testing may be a selection of developer’s tests, a selection of tester’s tests, a selec-
tion of tests from a specific regression test suite, or new test cases are designed.
According to questionnaire responses, the most common is to reuse test cases
designed by testers. Strategies for regression test selection mentioned in the fo-
cus group were: complete retest, combine static and dynamic selection, complete
retest of safety critical parts, select test cases concentrating on changes and pos-
sible side effects, ad-hoc selection, smoke test, prioritize and run as many as pos-
sible, and focus on functional test cases. Questionnaire results confirm that it is
common to run a set of specified regression test cases every time, together with a
set of situation dependent test cases. Ad-hoc selection seems not to be a common
approach; only 10% of the respondents indicate that approach [Q42]. 70% of the
respondents confirm the focus on functional test cases [Q44] and 50% confirm the
usage of smoke tests [Q45].

A project may include several different regression testing activities. Both man-
ual and automatic regression testing are applied. 50% of the respondents indicate
an equal amount of manual and automatic regression testing while 30% perform
regression testing exclusively manually [Q46].

3.4 Weaknesses and strengths

The focus group had an open discussion about both weaknesses and strengths in
their regression testing practices, and it showed that in several cases representatives
from one organization had solution proposals where others had problems. Some
problems were common to most of the participants (e.g. lack of time and resources
to regression test and insufficient tool support) while others were more specific.
The outcome of the discussion was a list of 29 possible problem areas which were
validated in the questionnaire.

Test case selection. Several problems related to test case selection were dis-
cussed in the focus group. It was mentioned that it is hard to assess the impact of
changes on existing code and to make a good selection. It is hard to prioritize test
cases with respect to product risks and fault detection ability, and to be confident
in not missing safety critical faults. Determining the required amount of tests was
also considered a problem, and it is hard to assess the test coverage.

Participants wished for a regression test suite with standard test cases and for
regression testing guidelines at different stages of a project with respect to quality
aspects. Some participants were satisfied with their impact analysis and with their
test management systems. As a response to the test selection problem, exploratory
testing was recommended and also to have a static test set used for each release.

108 A Qualitative Survey of Regression Testing Practices

No specific test selection technique was referred to, such as the ones reviewed by
Engström et al. [4].

The results from the questionnaire responses are in this respect not conclusive.
The responses are divided evenly across the whole spectrum, with a slight shift to-
wards satisfaction. However, in terms of processes for impact analysis and assess-
ment of test coverage the challenges identified in the focus group where confirmed
by a third of the respondents even though as many were satisfied. [Q47-51].

Test case design. Lack of time and resources for regression testing was a
recurring complaint in the discussions. So also in the case for test case design.
Among respondents to the survey were as many satisfied as dissatisfied in this mat-
ter [Q52]. One proposal mentioned in the focus group was to focus on test driven
development and thus make developers take test responsibility, hence building test
automation into the development process, which may be reused for regression test-
ing purposes as well.

Automated and manual regression testing. Automating regression test-
ing causes problems and manual testing is time and resource consuming. Both
problems and proposals were discussed in the focus group. Within the focus group,
participants were satisfied and dissatisfied with automation as well as with their
manual testing. Most participants wanted a better balance between automated and
manual testing and support in determining cost benefit of automating regression
testing.

It is not only costs for implementing the automated tests that need to be con-
sidered, but also costs for maintaining the test suites and in many cases manual
analysis of results. It was proposed to define interfaces for automation below the
user interface level in order to avoid frequent changes of the test scripts, due to
user interface changes. Use of manual testing was recommended for testing of
user experience and for exploratory testing.

The problems of automation was confirmed by questionnaire responses. 60%
of the respondents were dissatisfied with the balance between manual and auto-
mated regression testing [Q56], the assessment of cost/benefit, execution of auto-
mated regression tests as well as the environment for automated regression testing.
In contrast, as many were satisfied with their manual testing, 60% [Q59].

Regression testing problem areas. Specific problem areas for regression
testing, mentioned in the discussion forum were: regression tests in real target
environment and in simulated target environment, regression testing of third party
products and of GUI’s. For each problem mentioned, were among the participants
both those who had problems and those who were satisfied with their solutions.
None of the problem areas was confirmed by a majority of negative answers in the
questionnaire even though between 10-25% were dissatisfied in each case [Q60-

3 Analysis of the results 109

64]. As testing of databases is subject to regression testing research, this area was
added to the questionnaire, although not mentioned in the focus group.

Test results. Several of the participants in the focus group were unsatisfied
with how test results were presented and analyzed. In many cases verdict report-
ing is inconsistent and often there is no time to do a thorough analysis. Some
participants said that their reporting of results and analysis works well and gave
examples of good factors, such as having an independent quality department and
having software quality attributes connected to each test case, which is good not
only for for reporting results but also for prioritization and selection of test cases.

The questionnaire responses were generally neutral regarding consistency of
verdict reporting and processes and practices for analyzing results, but agreed that
practices for presentation of results from automated tests were not good enough
[Q68].

Test suite maintenance. The focus group named maintenance of test suites
and test cases as a problem. Participants stated that much of the regression testing
is redundant with respect to test coverage and that there is a lack of traceability
from tests to requirements. Some of the participants were satisfied with their tools
and processes for traceability and claimed that they are good at maintenance of
test cases in case of changes in the product. A recommendation was to have inde-
pendent review teams reviewing the test protocols.

Questionnaire responses confirmed the lack of good tools for documenting
traceability between test cases and requirements but otherwise the variation in the
responses to the questions regarding maintenance was great [Q69-71].

Testability. An issue brought up in the focus group were the amount of de-
pendencies in the software and its relation to testability. Participants expressed a
wish for a test friendly design where the structure enables a simple delimitation of
relevant tests. There is a need for design guidelines considering testability, modu-
larization of the software and clearer dependencies in order to make it easier to set
test scopes.

Questionnaire responses indicate satisfaction with coordination/communica-
tion between designers and testers [Q72] and neutrality to modularization of the
system [Q74]. Further they confirmed the need for minimization of dependencies
in the system [Q73] as well as for testability issues in design guidelines [Q75].

Test planning. Finally some needs and recommendations regarding the test
planning was given. Again a cost model was asked for: It would be nice to have a
cost model for environments and technical infrastructure covering; automated test-
ing, test data, test rigs, unit tests, functional tests, performance tests, target/simu-
lator and test coverage.

110 A Qualitative Survey of Regression Testing Practices

Everyone in the focus group agreed that it is better to test continuously than
in large batches. A rule of thumb is to plan for as much test time as development
time even when the project is delayed. It is also good to have a process with a flex-
ible scope for weekly regression tests, e.g. core automated scope, user scenarios,
main regression scope, dynamic scope, dynamic exploratory scope etc. In order to
broaden the coverage, it was proposed to vary the test focus between different test
rounds.

4 Conclusions
Regression testing increases in software projects as software becomes more and
more complex with increasing emphasis on systematic reuse and shorter develop-
ment cycles. Many of the challenges, highlighted in the study, are not specific to
regression testing but are general to all testing. However, they have a significant
impact on how effective the regression testing becomes. Questions involving auto-
mated testing is of course particularly important for regression testing, as the same
tests are repeated many times. Similarly, a test-friendly design is of great impor-
tance when one wants to do a selective retesting. Literature on regression testing
tends to focus on the selection of test cases based on changes in the code, but for
practitioners it does not seem to be the most important issue.

Regression testing definitions (RQ1) are very much the same across all
surveyed companies and in line with formal definitions [8] although the regres-
sion testing practices differ. Regression testing is applied differently in different
organizations, at different stages of a project, at different levels and with varying
frequency. Regression testing is not an isolated one-off activity, but rather an ac-
tivity of varying scope and preconditions, strongly dependent on the context in
which it is applied. In most development organizations, regression testing is ap-
plied continuously and at several levels with varying goals. This further underlines
the need for industrial evaluations of regression testing strategies, where context
information is clearly reported, as was previously noted [4].

Regression testing challenges (RQ2) relate to test case selection, trade-
offs between automated and manual testing and design for testability. Issues re-
lated to test automation are:

• Assessment of cost/benefit of test automation

• Environment for automated testing and the presentation of test results.

Design issues affect regression testing since there is a strong relation between
the effort needed for regression testing and the software design. Design for testa-
bility, including modularization with well defined and observable interfaces, helps

4 Conclusions 111

verifying modules and their impact on the system. This could be addressed by in-
cluding testability in design guidelines. Except for the design issues, coordination
and communication between designers and testers work well.

Good practices (RQ3) were also reported on:

• Run automated daily tests on module level.

• Focus automation below user interface.

• Visualize progress monitoring.

These practices are not specific to regression testing. The latter item is not specific
testing at all, but is a management practice that becomes critical to regression test-
ing as it constitutes a key part of the development project progress. This indicates
that regression testing should not be addressed nor researched in isolation; rather
it should be an important aspect of software testing practice and research to take
into account.

Acknowledgment
The authors would like to thank Per Beremark for moderating the focus group
meeting and to all participants in the focus group and questionnaire. The work
is partly funded by The Swedish Governmental Agency for Innovation Systems
(VINNOVA) in the UPPREPA project under grant 2005-02483, and partly by the
Swedish Research Council under grant 622-2004-552 for a senior researcher posi-
tion in software engineering.

112 A Qualitative Survey of Regression Testing Practices

References

[1] Online survey software | SurveyGizmo - affordable enterprise survey soft-
ware. http://www.surveygizmo.com, December 2009.

[2] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. An indus-
trial survey on contemporary aspects of software testing. In Proceedings of
the 3rd International Conference on Software Testing Verification and Vali-
dation, pages 393–401, 2010.

[3] Pavan Kumar Chittimalli and Mary Jean Harrold. Recomputing coverage
information to assist regression testing. IEEE Transactions on Software En-
gineering, 35(4):452–469, 2009.

[4] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, January 2010.

[5] Emelie Engström, Per Runeson, and Greger Wikstrand. An empirical evalu-
ation of regression testing based on fix-cache recommendations. In Proceed-
ings of the 3rd International Conference on Software Testing Verification and
Validation (ICST’10), pages 75–78, 2010.

[6] Arlene Flink. The survey handbook. SAGE Publications, 2nd edition, 2003.

[7] Mats Grindal, Jeff Offutt, and Jonas Mellin. On the testing maturity of soft-
ware producing organizations. In Testing: Academia & Industry Conference-
Practice And Research Techniques (TAIC/PART), 2006.

[8] IEEE. Standard for software test documentation. Technical Report 829-1983,
Revision, 1998.

[9] Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma.
Regression testing in an industrial environment. Communications of the
ACM, 41(5):81–86, May 1998.

[10] Colin Robson. Real World Research. Blackwell Publishing, 2nd edition,
2002.

[11] John Rooksby, Mark Rouncefield, and Ian Sommerville. Testing in the wild:
The social and organisational dimensions of real world practice. Computer
Supported Cooperative Work (CSCW), 18(5):559–580, 2009.

[12] Per Runeson. A survey of unit testing practices. IEEE Software, 23(4):22–29,
2006.

References 113

[13] Per Runeson, Carina Andersson, and Martin Höst. Test processes in software
product evolution - a qualitative survey on the state of practice. Journal
of Software Maintenance and Evolution: Research and Practice, 15:41–59,
2003.

[14] Per Runeson, Per Beremark, Bengt Larsson, and Eric Lundh. SPIN-syd–
a non-profit exchange network. In 1st International Workshop on Software
Engineering Networking Experiences, 2006.

[15] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, April 2009.

[16] Mats Skoglund and Per Runeson. A case study of the class firewall regres-
sion test selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering, pages 72–81,
2005.

[17] Lee White and Brian Robinson. Industrial real-time regression testing and
analysis using firewalls. In Proceedings of the 20th IEEE International Con-
ference on Software Maintenance (ICSM ’04), pages 18–27, 2004.

[18] John A. Zachman. A framework for information systems architecture. IBM
Systems Journal, 26(3):276–293, 1987.

PAPER III

INDIRECT EFFECTS IN
EVIDENTIAL ASSESSMENT:

A CASE STUDY ON
REGRESSION TEST

TECHNOLOGY ADOPTION

Abstract

Background: There is a need for efficient regression testing in most software devel-
opment organizations. Often the proposed solutions involve automation of some
sort. However, despite this being a well researched area, research results are rarely
applied in industrial practice. Aim: In this paper we aim to bridge the gap between
research and practice by providing examples of how evidence-based regression
testing approaches can be adopted in industry. We also discuss challenges for the
research community. Method: An industrial case study was carried out to evaluate
the possibility to improve regression testing at Sony Ericsson Mobile Communi-
cations. In this paper we analyse the procedure undertaken based on frameworks
from the evidence based software engineering, EBSE, paradigm (with a focus on
the evidence) and automation literature (with a focus on the practical effects of
the automation changes). Results: Our results pinpoint the need for systematic
approaches when introducing new tool into the regression testing process. Prac-
titioners and researchers need congruent guidelines supporting the appraisal of
both the evidence base and the pragmatic effects, both direct but also indirect, of
the changes. This is illustrated by the introduction of the automation perspective,
where the indirect effects are often hard to evaluate, but is of general importance.
The lack of generalizable results in regression testing literature prevents selection
of techniques based on empirical evidence.

116 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

Emelie Engström, Robert Feldt and Rickard Torkar
The 2nd International Workshop on Evidential assessment of Software Technolo-
gies (EAST’12), Sept 2012

1 Introduction

The cost for testing software increases with the increasing size and complexity of
software systems. At the same time more efficient software development strate-
gies have emerged which demand more frequent testing, e.g. agile strategies with
continuous integration of software updates, or testing of a broader scope of prod-
ucts, e.g. software product line development [2, 18]. Thus the share of testing
costs of the total development cost increases as well and testing easily becomes
a schedule or cost bottleneck or it becomes inadequate (in worst case both). Re-
gression testing is conducted in order to verify that changes to a system has not
negatively impacted on previously functioning software. Thus efficient regression
testing strategies are especially important in organizations where software is fre-
quently updated or when a range of different products are derived from the same
software base.

However, there is a gap between research and practice of regression testing.
Even though several systematic approaches for both prioritization and selection of
regression test cases have been proposed and evaluated in literature [7, 19], they
are not widely used in industry [4]. In many cases the methods and techniques do
not scale while in other cases industry practice is not mature enough to implement
them.

Evidence based software engineering, EBSE, is a paradigm aiming to support
adoption of new software technology and methods based on sound, empirical evi-
dence. The core tool of EBSE is systematic literature reviews and the focus is on
the identification and appraisal of evidence However, EBSE have been shown to
be very challenging for non-researchers and rigorous and relevant evidence may
not exist to answer their questions [13, 14].

In this paper we aim to bridge the gap between research and practice by provid-
ing examples of how EBSE can be applied in industry and pinpointing challenges
for the research community based on experiences from a case study [6] carried
out at Sony Ericsson Mobile communications, SEMC. We describe and analyze
the procedures undertaken to find a relevant regression testing technique and to
evaluate the benefits of introducing it into the testing process.

Introducing a new tool into a process have both direct and indirect effects and
it is not enough to focus on direct evidence isolated to a technique but the context
and the practical effects of the changes also need to be considered. Thus we com-
bine guidelines on EBSE [3] by Dybå et al. with guidelines on automation with
respect to human-computer interaction [11] by Parasuraman et al. as a framework
for our analysis. A recent example of automation anlysis in technology adoption in

2 The regression test automation procedure 117

software engineering is given by Borg [1]. This perspective is essential also when
considering evidence for the efficacy of regression testing since it will involve au-
tomation of some sort; we must therefore better understand the practical effects
of introducing automation, in general. For each of the five steps of EBSE, the
evaluation and decision tasks of the automation procedure are discussed and em-
bodied with examples from our case study, followed by a discussion about current
challenges and advice for practitioners and researches.

The paper is organized as follows: Section 2 describes the synthesis of the
EBSE and automation model and Section 3 reports the case study and contains the
analysis. Both these sections are organized according to the five different steps
of EBSE. In section 4 we discuss the lessons learned about the methodological
strengths and limitations of evidence-based practice and in Section 5 we conclude
the paper with advice for practitioners and researchers.

2 The regression test automation procedure

Dybå et al. [3] propose a systematic EBSE approach for practitioners which in-
volves five steps to support and improve decisions on technology adoption. Sim-
ilarly, Parasuraman et al. [11] propose a procedure involving four steps of eval-
uation and decision tasks that helps answer questions about what should be auto-
mated and to what level. The procedure has primary evaluation criteria based on
a model of the main types of human information processing but also includes sec-
ondary evaluation criteria based on the reliability of the automation and its effects
on cost.

Fig 1 illustrates how the models of Parasuraman et al and Dybået al comple-
ment each other in case of introducing automation to the software engineering
process. In this section we describe the synthesis of the EBSE and automation
approaches in more detail as well as its application on regression test automation.
This framework forms the basis for the description and analysis of the case study
procedure in Section 3. Below we describe it according to the five steps in the
EBSE approach.

2.1 Ask an answerable question.

This step corresponds to the initial steps in the Automation model answering ques-
tions on what to automate and what type of automation should take place. Parasur-
aman suggest a classification of automation types based on four types of human
information processing. This leads to four different classes of functions that can
be automated: information acquisition, information analysis, decision and action
selection, and action implementation [11].

In case of test automation, the type of automation depends on the scope of the
testing. Testing software typically involve several test activities which all may be

118 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

Figure 1: Overview of the EBSE approach described by Dybå et al. [3] and the
Automation approach described by Parasuraman et al. [11] The two models com-
plement each other in their different focus. The Automation model distinguishes
between different types and levels of automation and suggests primary and sec-
ondary evaluation criteria to be applied iteratively while adjusting the decisions
on type and level of automation. The EBSE approach is more general, i.e not
technique-specific.

automated in different ways with different goals: test planning, test case design,
test execution and analysis of test results. Automation may seek to replace hu-
mans performing repetitive and simple tasks e.g. executing test cases or have a
goal to accomplish something beyond human capabilities e.g. decision support.
Regression testing research focus on the latter.

The level of testing under consideration is another factor of the automation
scope. Goals and strategies for automation may vary with level of test [4]. Test
planning at unit level could for example be based on code coverage analyses while
at the integration testing level combinatorial strategies could be more relevant.
Automation at system level is more complex and a more thorough cost benefit
analysis could be a good idea.

Many challenges in regression testing are not specific for regression testing but
improvements may be achieved through improvements of other tasks e.g. automa-
tion of test executions or design for testability [4]. Hence, it is important to specify
the effect targets of the intended automation and ensure that they are aligned with
the scope of the automation.

A good understanding of the context helps to identify, relevant effect targets
and a proper scope for the automation. Even though there is a common under-
standing of what regression testing is and why it is applied in industry, the vari-
ation in practices is large. Regression testing is applied differently in different

2 The regression test automation procedure 119

organizations, at different stages of a project, at different levels and with vary-
ing frequency [4]. Furthermore regression testing is not an isolated activity but is
strongly dependent on the context in which it is applied.

2.2 Find the best evidence

The selection of technique to implement should ideally be based on research, and
guided by relevant classifications of empirical evidence, typically systematic lit-
erature reviews, which could be mapped to a similarly relevant description of the
current context, scope and effect target. To determine which regression testing
technique is appropriate for a certain situation, several factors need to be consid-
ered such as which input does the technique require?, on what level of abstraction
is the analysis made?, what are the claims of a technique, and what empirical sup-
port is there for these claims? [7]. This step has no counterpart in the Parasuraman
model since they assume a different situation in which a specific type of automa-
tion has already been selected or is being evaluated. In the EBSE model one should
consider the breadth of available evidence and techniques.

Several literature reviews on regression testing have been published lately. A
thorough overview of different regression testing strategies in literature is given by
Yoo and Harman [19] and it provides a good starting point for the search. Here
the different areas of minimization, prioritization and selection are explained and
investigated. A classification scheme and classification of regression test selection
techniques is provided by Engstrom et al. [7].

2.3 Critically appraise the evidence

This is also a step which is specific for the EBSE approach. EBSE recommend
practitioners to make use of available summaries of evidence, e.g. systematic lit-
erature reviews and systematic maps. In cases were such summaries are not avail-
able practitioners may be guided by checklists [3] in appraising (often a smaller
set of) published studies.

The current evidence base on regression test selection does not offer much sup-
port for selecting the best automation technique. Although several empirical eval-
uations of regression testing techniques have been made lately, the evidence base
is incomplete and sometimes even contradictory. Regression testing techniques
are context dependent and in many cases evaluations are made only in one specific
context. It is rather the different implementations of the techniques than the high
level concepts that are evaluated. Moreover, often only one aspect is evaluated for
a technique e.g. either the level of cost reduction or the level of fault detection [7].
Indirect effects of introducing this type of automation are rarely discussed.

120 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

2.4 Apply the evidence

In this step the evidence should be integrated with the knowledge about the con-
crete situation and the pragmatic effects of the changes should be considered. Au-
tomation changes may have both direct and indirect effects. This step concerns the
indirect effects of the automation change, for example cognitive effects, effects on
related processes (e.g. requirements engineering and design) and long term effects,
and corresponds with the identification of level of automation and application of
primary evaluation criteria in the Parasuraman model. Sheridan and Verplank de-
fine 10 different levels of automation [17] based on the amount of user interaction
required. Although they are not defined with a focus on software testing they are
applicable in this context.

The primary evaluation criteria according to Parasuraman et al focus on the
consequences for the human performance after the automation has been imple-
mented. For example, Parasuraman states that ‘evidence suggests that well-designed
information automation can change human operator mental workload to a level
that is appropriate for the system tasks to be performed’ [11]. An example can
be the listing of test cases in a prioritized list to help testers make the right deci-
sion. In addition to mental workload, Parasuraman mentions situation awareness,
complacency and skill degradation as primary evaluation criteria to be taken into
consideration.

To help better understand the changes that an automation leads to we have
found it useful to establish pre- and post-automation task flows. A detailed such
analyses could involve the use of value stream maps [10] but we have found even
simpler identification procedures to have value. Based on the description of the
current testing task flow, and an initial decision on the technique to use for the
automation (or at least the type of task to be automated a la Parasuraman), changes
between current practice and improved automated practice can be identified. It is
useful to consider different types of changes such as: changed tasks, added tasks
and removed tasks. It is important not to miss any added tasks such as creation
or collection of inputs that the automated process or tool requires, maintaining the
automation in case of context changes or managing and processing the output from
the automated process.

2.5 Evaluate performance

This step concerns the direct effects of the automation and may be evaluated
against the effect targets identified in the first step. For this step the EBSE and
automation guidelines are consistent. The selected technique should be evaluated
within the context where it is to be applied. Results from this evaluation should
be documented and may be reused in future automation projects either within the
organization or as a contribution to the general knowledge base.

3 The case study 121

3 The case study

The case study was carried out in four steps [6] starting with A) exploratory semi-
structured interviews to better understand the context, effect targets and scope of
the automation. B) Select and implement a suitable method. The methods were C)
quantitatively evaluated with respect to their fault detection efficiency, and finally
D) the testers’ opinions about the implemented methods were collected and ana-
lyzed. Results from this case study has previously been reported by Engstrom et
al. [6]. In this section we describe our application of the regression test automation
procedure in Section 2 and discuss current challenges and advices for practitioners
and researches.

3.1 Asking an answerable question.

This step involves describing the context and identifying the effect targets of the
regression test automation.

Describing the context – To gain more insights into the problem we carried
out interviews with a number of key persons and used a framework proposed by
Petersen and Wohlin [12] to structure the context information. The context de-
scription served several purposes, identification of context constraints relevant for
the selection of technique, support in the evaluation of indirect effects of changes
as well as support in the communication of the results of the evaluation of direct
effects through the enabling of analytical generalization. Details about the context
description are reported in [6]

Identifying the effect target – One of the problems with the current method
in our case study was its dependence on experienced testers with knowledge about
the system and the test cases. There was a risk that the selected test suite was either
too extensive or too narrow; a tester with lack of experience in the area could have
trouble estimating the required time and resources. Moreover, the selected test
suite could be inefficient and misleading. Even experienced testers could select
inefficient test suites since test cases were selected in a routinely manner by just
selecting the same test cases for every regression test session. Since the selection
was based on judgment, there was no evidence that it was the most efficient test
suite. Hence, the following were the expected benefits of a tool supported selection
procedure:

• increased transparency

• improved cost estimation

• increased test efficiency

122 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

• increased confidence

The scope and effect targets identified in our case study correlate with general
needs in industry [4] and is partly inline with the scope of most regression test
selection and prioritization techniques in literature [19]. Similar problems were
identified in a survey on regression testing practices [4]. Participants found it hard
to assess the impact of changes on existing code and to make good selections, to
prioritize test cases with respect to product risks and fault detection ability, and to
be confident in not missing safety critical faults. Determining the required amount
of tests was also considered a problem as well as to assess the test coverage.

3.2 Finding the best evidence

The selected scope of the automation directed the search towards the regression
testing literature, and the list of effect targets and context constraints influenced
the selection of automation technique. The hypothesis that history-based test case
prioritization could improve the current situation was a starting point for the case
study which to some extent made the search and selection of technique biased.
Only history-based regression testing techniques which did not require source code
access were considered.

Most of the proposed techniques in literature are code based (source code, in-
termediate code or binary code) and based on analysis at a low level of abstraction
(e.g. statements). However there are examples of techniques based on analysis at
higher abstraction levels as well as on other types of input. Some techniques are
based on a certain type of specifications or models. There are also some recent ex-
amples of both selection and prioritization techniques based on project data, such
as failure reports or execution history of a test case. One group of techniques is
claimed to be safe, meaning they do not exclude any test case that have a possibil-
ity to execute parts of the system that may have been affected by a change. This
property is only relevant for selection, but might be important for certain types of
systems (e.g. safety critical) [7].

3.3 Appraising the evidence

In our case the selection of technique was not guided by empirical evidence on
the performance of the technique. Instead the automation choice was guided by
the reports of the nature of the proposed techniques. The technique proposed by
Fazlalizadeh et al. [8] was selected because it was based on historic project data,
could be implemented without access to source code and allowed for multiple
prioritization criteria.

3 The case study 123

3.4 Applying the evidence

Our case study spans one iteration over the steps described in 2, identification
of level of automation, identification of changes and evaluation of the effect of
changes.

3.4.1 Identification of level of automation

In our case the automation level would be 4: “Computer offers a restricted set of
alternatives and suggests one, but human still makes and implements final deci-
sion” according to Sheridan and Verplank [17]. Since the scope of the automation
in the case study is pure decision support and not execution of tests, it corresponds
to a low level of automation. On the other hand there are differences in levels
within this scope that could be interesting to pinpoint. Instead of calculating total
priority values by combining several prioritization criterion, priority values could
be calculated for each criteria leaving the weighting of importance to the human
which would be an example of automation at even lower level but still not zero.

3.4.2 Identification of changes

The scope of the automation in our case study involved the test planning and se-
lection of test suites for regression testing. No common procedure for how this
is done existed, but different testers developed their own strategies. Thus the task
flow directly affected by the automation cannot be described in more detail. This
situation seems to be common in industry. [4]

Changed, added and removed tasks in the case study may be described as fol-
lows:

Changed tasks – The suggested automation would change the selection task
from being an ad-hoc task to involve a more systematic procedure. Decisions on
focus, scope and constraints of a test session are needed as input to the tool and
thus have to be explicit.

Added tasks – New tasks relate to the use of the tool. There is an initial
learning effort for using the tool. It also has to be maintained and evolve as the
prerequisites change. The outcome of the tool (a selected test suite) needs to be
reviewed before test execution. In this case the tool was a plug in to the supporting
tool already in use at the company and it collected data from the existing test data
base. No input data of any other format is required and thus no such extra tasks
(development and maintenance of new artifacts) are added.

Removed tasks – The selection and documentation of test scope are achieved
by the tool instead of manual procedures.

124 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

3.4.3 Evaluation of the effect of changes

Parasuraman’s list of cognitive effects may be used as a checklist for one type of
indirect effects. Another checklist may be created by combining the list of task
changes with the previously described elements of the context into a matrix. Each
item in the matrix represents a combination of a task change and a context facet to
be considered. The indirect effects discussed in this section are identified with the
help of both these checklists.

The mental effort for the decisions may increase since in many cases these
types of decisions are made ad-hoc in a routinely manner. With a semi-automatic
tool testers are forced to perform the selections more systematically and of course
to learn and handle a tool. This increased effort might lead to that the tool is not
used properly especially since the regression testing activity is so frequent. On the
other hand they do not have to browse through large amounts of poorly structured
test cases.

There is also a risk in trusting the tool too much. Decisions are complex and
context dependent and the variation in regression test situations cannot be fully
captured by a tool. In our case study the product maturity is low and the software
system complex. The large amount of internal and hidden dependencies prevent
safe selections at a reasonable cost. Furthermore, in a very changing context,
historical data might not be a good predictor of fault detection probability at all.
However, the quantitative evaluation in our example case showed increased effi-
ciency in that particular case, indicating a possibility to improve regression testing
with the tool. Still the suggested test suite need to be manually reviewed. Only a
low level of automation is possible to achieve.

With a low level of automation the risk of skill degradation and decreasing sit-
uation awareness is minimal. Changing the task from manually selecting each test
case to manually review a suggested test suite would probably increase the testers
awareness of unexpected dependencies but also decrease their awareness of what
is in the test data base and what might be missing. A more transparent regression
testing approach eases synchronization of work between teams and enables their
cross learning.

A positive effect of automatically generating the test plan in the test manage-
ment tool instead of manually entering the test cases is increased consistency in
the documentation. Lack of consistency in test documentation may lead to unnec-
essary duplication in distributed testing [5]

3.5 Evaluating performance and seek ways to improve it.
The direct effects of the implemented automation were shown to be increased
transparency and increased efficiency. A prototype tool was developed for the
purpose of evaluating the automation in the case study. Adaptations to the actual
context were inevitable and two different versions of the technique were imple-
mented: one as close to the original proposal as possible and one as close to the

4 Discussion 125

current decision procedure as possible incorporating a number of different prioriti-
zation criteria that was assumed to be important by the local experts. These criteria
were identified through the initial interviews and included: historical effectiveness,
execution history, static priority, age, cost, focus of test session, scope of session
and current status of the test case. A more detailed description of these factors are
found in [6]

Two quantitative evaluations and one qualitative evaluation were carried out
to evaluate the effects of automation (Details about the evaluations are provided
by Engstrom et al. [6]) with respect to the effect targets: increased transparency,
increased test efficiency and increased confidence. No data regarding the execution
cost for a test case or group of test cases was available and thus this aspect could
not be evaluated.

Increased transparency is achieved with any kind of automation, since no sys-
tematic method for regression testing was currently in use. If the use of a system-
atic method or implemented tool does not decrease test efficiency or confidence, it
is considered an improvement of the current situation.

Test efficiency regards the number of faults revealed per executed test case and
was evaluated in two ways in the case study: 1) by comparing the efficiency of
the execution order (prioritization) of test cases in the suites and 2) by analyzing
test suite selections of the same magnitude as corresponding manually selected
suites. Results from the quantitative evaluation constitutes strong evidence for the
possibility to improve efficiency in the current case but little relevance in terms of
possibility to generalize to other contexts.

To reach and measure confidence in a method is in itself non-transparent, since
it deals with the gut feelings of the testers. To some extent it relates to coverage.
If a method can be shown to include all presumed important test cases, the confi-
dence in it is high. However, optimizing a method to include presumed important
coverage aspects affect test efficiency negatively, since it adds test cases to the
selection without respect to their probability of detecting faults.

4 Discussion

In many cases adoption of software engineering evidence in practice involve some
type of automation. When changing the level of automation in a process it is
not enough to appraise the direct evidence of a technique since any type of au-
tomation also entails indirect effects. In our case study we identified a number of
indirect effects: increased mental effort for decisions, risk for over trust in tool,
skill degradation and decreased situation awareness. Also, positive indirect effects
were identified such as increased situation awareness, increased consistency in test
documentation, easier synchronization of work and cross learning between teams.
It is not enough to answer the question “Are these evidence valid, have impact and
applicable?” it is critical to consider the questions “What are indirect/additional

126 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

effects when applying this and what type of evidence is there that negative indirect
effects do not outweigh any positive direct effects?”.

Our analysis of the regression test automation procedure show the importance
of finding holistic guidelines to support the adoption of evidence, focusing on both
evidence and practice. This is central for EBSE to have effect. There is a need
for both general guidelines and guidelines for specific sub areas within software
engineering. In our cased study we created two checklists one with automation
effects to look for, based on experiences from the human-computer interaction and
software test automation disciplines [9, 11], and one, pointing at changes in the
context, based on the elements of the context description combined with the three
types of changes: added, removed and changed tasks.

In addition to the need for methods to support the evaluation of indirect effects,
our case study shows the importance of finding methods to match the communica-
tion of empirical evidence with guidelines for identifying context constraints and
effect targets present in practice. This is typically an area where guidelines need
to be both general and sub area specific. To provide support for practitioners in
matching their context with the available evidence, frameworks must be defined at
an abstraction level low enough to cover the relevant aspects of the particular group
of techniques addressing their effect targets. Still the more abstract framework is
needed to initially identify the scope and effect targets.

Finally, another critical issue for the success of EBSE is the existence of gen-
eralizable results. Artifacts in software engineering research tend to be context
dependent, calling for systematically replicated evaluations where context factors
are considered. In the case of regression test automation there is a need for eval-
uations of high level concepts of strategies rather than evaluations of specific im-
plementations of techniques. To support such research it is crucial to identify the
relevant context factors for a specific sub-area and define frameworks at a proper
level of abstraction.

5 Conclusion

We have analyzed the procedure of finding a proper technique for regression test
automation and evaluating the benefits of adopting it. Frameworks for EBSE and
automation were combined to provide a more holistic view of the regression test
automation procedure. For each of the five EBSE steps we describe the regression
test automation procedure and provide examples of how to do for practitioners in
similar situations. Advice for practitioners may be summarized regarding the iden-
tification of preconditions for the automation, identification of relevant research
and evaluation of effects of the automation.

Identification of preconditions – It is important to identify scope and effect
targets of automation. Information may be gathered with interviews and struc-

5 Conclusion 127

tured according to existing frameworks [12] for context descriptions in software
engineering.

Identification of relevant research – The search for relevant techniques
should be driven by scope of automation, effect targets and and context constraints.
Effect targets in our case study correlate with general needs in industry and are
partly addressed by research. Literature reviews on regression testing [7, 19] pro-
vide overviews of the research and are good starting points for the search. However
the lack of generalizable results prevents choices based on empirics.

Evaluation of effects – Automation changes may have both direct and indi-
rect effects. To identify indirect effects changed, added and removed tasks need
to be identified and the effects of the changes evaluated. Checklists may guide
the analysis The direct effects may be evaluated against the effect targets. Frame-
works for evaluating cost and efficiency of regression testing techniques are avail-
able [15, 16]

Research challenges involve 1) finding methods for evaluating indirect prag-
matic effects of the automation changes as well as 2) finding methods to match
the communication of the empirical evidence with the description of the industrial
context where automation is under consideration.

Acknowledgments
We thank Dr. Per Runeson for valuable review comments on this paper. The work
was supported by VINNOVA (the Swedish Governmental Agency for Innovation
Systems) to SWELL, Swedish research school in Verification and Validation.

128 Indirect Effects in Evidential Assessment: A Case Study on Regression . . .

References

[1] Markus Borg. Findability through traceability - a realistic application of
candidate trace links? In Proceedings of the 7th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE 2012),
pages 173–181, June 2012.

[2] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2001.

[3] Tore Dybå, Barbara A. Kitchenham, and Magne Jørgensen. Evidence-based
software engineering for practitioners. IEEE Software, 22(1):58–65, January
2005.

[4] Emelie Engström and Per Runeson. A qualitative survey of regression testing
practices. In M. Ali Babar, Matias Vierimaa, and Markku Oivo, editors,
Product-Focused Software Process Improvement, volume 6156 of Lecture
Notes in Computer Science, pages 3–16. Springer Berlin / Heidelberg, 2010.

[5] Emelie Engström and Per Runeson. Test overlay in an emerging software
product line–an industrial case study. Information and Software Technology,
55(3):581–594, March 2013.

[6] Emelie Engström, Per Runeson, and Andreas Ljung. Improving regression
testing transparency and efficiency with history based prioritization–an in-
dustrial case study. In Proceedings of the 4th International Conference on
Software Testing Verification and Validation (ICST’11), pages 367 –376,
2011.

[7] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, January 2010.

[8] Yalda Fazlalizadeh, Alireza Khalilian, Mohammad Abdollahi Azgomi, and
Saeed Parsa. Prioritizing test cases for resource constraint environments us-
ing historical test case performance data. In Proceedings of the 2nd IEEE
International Conference on Computer Science and Information Technology
(ICCSIT 2009), pages 190 –195, August 2009.

[9] Mark Fewster and Dorothy Graham. Software Test Automation. Addison-
Wesley Professional, September 1999.

[10] Shahid Mujtaba, Robert Feldt, and Kai Petersen. Waste and lead time reduc-
tion in a software product customization process with value stream maps. In
Australian Software Engineering Conference, pages 139–148, 2010.

References 129

[11] Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens. A
model for types and levels of human interaction with automation. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, 30(3):286 –297, May 2000.

[12] Kai Petersen and Claes Wohlin. Context in industrial software engineering
research. In Proceedings of the 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM ’09), pages 401–404, Octo-
ber 2009.

[13] Austen Rainer and Sarah Beecham. A follow-up empirical evaluation of evi-
dence based software engineering by undergraduate students. In Proceedings
of the 12th International Conference on Evaluation and Assessment in Soft-
ware Engineering, 2008.

[14] Austen Rainer, Tracy Hall, and Nathan Baddoo. A preliminary empirical
investigation of the use of evidence based software engineering by under-
graduate students. In Proceedings of the 10th International Conference on
Evaluation and Assessment in Software Engineering, 2006.

[15] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–551,
August 1996.

[16] Gregg Rothermel, Roland H. Untch, Chu Chengyun, and Mary Jean Harrold.
Test case prioritization: an empirical study. In Proceedings of the IEEE
International Conference on Software Maintenance, pages 179–188, 1999.

[17] Thomas B. Sheridan and William L. Verplank. Human and computer control
of undersea teleoperators. Technical report, MIT Man-Machine Laboratory,
July 1978.

[18] David Talby, Arie Keren, Orit Hazzan, and Yael Dubinsky. Agile software
testing in a large-scale project. IEEE Software, 23(4):30–37, 2006.

[19] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, March 2012.

PAPER IV

SOFTWARE PRODUCT LINE
TESTING – A SYSTEMATIC

MAPPING STUDY

Abstract

Context: Software product lines (SPL) are used in industry to achieve more effi-
cient software development. However, the testing side of SPL is underdeveloped.
Objective: This study aims at surveying existing research on SPL testing in order
to identify useful approaches and needs for future research. Method: A system-
atic mapping study is launched to find as much literature as possible, and the 64
papers found are classified with respect to focus, research type and contribution
type. Results: A majority of the papers are of proposal research types (64 %).
System testing is the largest group with respect to research focus (40 %), followed
by management (23 %). Method contributions are in majority. Conclusions: More
validation and evaluation research is needed to provide a better foundation for SPL
testing.

Emelie Engström and Per Runeson
Journal of Information and Software Technology 53(1):2-13, 2011

1 Introduction

Efficient testing strategies are important for any organization with a large share
of their costs in software development. In an organization using software product
lines (SPL) it is even more crucial since the share of testing costs increases as
the development costs for each product decreases. Testing of a software product
line is a complex and costly task since the variety of products derived from the
product platform is huge. In addition to the complexity of stand-alone product
testing, product line testing also includes the dimension of what should be tested

132 Software Product Line Testing – A Systematic Mapping Study

in the platform and what should be tested in separate products. Early literature
on product lines did not spend much attention to testing [7, p278-279], but the
issue is brought up after that, and much research effort is spent on a variety of
topics related to product line testing. In order to get a picture of existing research
we launched a systematic mapping study of product line testing. The aim is to
get an overview of existing research in order to find useful results for practical
use and to identify needs for future research. We provide a map over the existing
research on software product line testing. Overviews of challenges and techniques
are included in several earlier papers, as well as a couple of brief reviews. However
no extensive mapping study has been reported on earlier.

Systematic mapping is a relatively new research method in software engineer-
ing, adapted from other disciplines by Kitchenham [31]. It is an alternative to sys-
tematic reviews and could be used if the amount of empirical evidence is too little,
or if the topic is too broad, for a systematic review to be feasible. A mapping study
is performed at a higher granularity level with the aim to identify research gaps and
clusters of evidence in order to direct future research. Some reports on systematic
mapping studies are published e.g. on object-oriented software design [2] and on
non-functional search-based software testing [1]. Petersen et al. [58] describe how
to conduct a systematic mapping study in software engineering. Our study is con-
ducted in accordance with these guidelines. Where applicable, we have used the
proposed classification schemes and in addition, we have introduced a scheme spe-
cific to our topic. This paper is organized as follows: Section 2 describes how the
systematic mapping methodology has been applied. Section 3 summarizes chal-
lenges discussed in literature in response to our first research question. In section
4 we compile statistics on the primary studies to investigate the second research
question. Section 5 presents the classification schemes used and in section 6 the
actual mapping of the studies, according to research questions three and four, is
presented together with a brief summary of the research. Finally, discussion and
conclusions are provided in sections 7 and 8, respectively.

2 Research method

2.1 Research questions
The goal of this study is to get an overview of existing research on product line
testing. The overall goal is defined in four research questions:

• RQ1 Which challenges for testing software product lines have been identi-
fied? Challenges for SPL testing may be identified in specific surveys, or as
a bi-product of other studies. We want to get an overview of the challenges
identified to validate the relevance of past and future research.

• RQ2 In which fora is research on software product line testing published?
There are a few conferences and workshops specifically devoted to SPL.

2 Research method 133

However, experience from earlier reviews indicates that research may be
published in very different fora [15].

• RQ3 Which topics for testing product lines have been investigated and to
what extent? As SPL is related to many different aspects, e.g. technical, en-
gineering, managerial, we want to see which ones are addressed in previous
research, to help identifying needs for complementary research.

• RQ4 What types of research are represented and to what extent? Investi-
gations on types of research in software indicate that the use of empirical
studies is scarce in software engineering [21]. Better founded approaches
are advised to increase the credibility of the research [69] and we want to
investigate the status for the specific subfield of SPL testing.

2.2 Systematic mapping

In order to get an overview of the research on SPL testing, a systematic mapping
study is carried through. A detailed description on how to conduct systematic map-
ping studies, and a discussion of differences between systematic mapping and sys-
tematic reviews, is presented by Petersen et al. [58]. The mapping process consists
of three activities; i) search for relevant publications, ii) definition of a classifica-
tion scheme, and iii) mapping of publications. In this study, search for publications
is done in five steps of which the two last steps validate the search, see Figure 1,
using a combination of data base searches and reference based searches [70]. In
the first step an initial set of papers was identified through exploratory searches,
mainly by following references and links to citing publications, with some previ-
ous known publications as the starting point [42,47,50,59,60,73] The result of this
activity was 24 publications, which were screened in order to retrieve an overview
of the area; frequently discussed challenges, commonly used classifications and
important keywords.

The second step consisted in reading introduction sections and related works
sections in the initial set of publications and extending the set with referenced
publications relevant to this study. Only papers with a clear focus on the testing
of a software product line published up to 2008 were included. This resulted in
additional 33 publications. In order to avoid redundancy in research contributions
and to establish a quality level of included publications we decided however to
narrow down the categories of publications after this stage. Non peer reviewed
publications; such as technical reports, books and workshop descriptions, in total
23 publications, were excluded from the set of primary studies. Among those is an
early technical report by McGregor [42] (cited in 70 % of the publications) which
is used to find relevant primary studies, but not included among the primary studies
as such. Another result of this step was a summary of challenges in SPL testing
identified by the community and a preliminary classification scheme for research
contributions.

134 Software Product Line Testing – A Systematic Mapping Study

Figure 1: Search for publications on software product line testing

In the third step we screened titles in proceedings from the most frequent pub-
lication forum from the previous steps; the workshop on Software Product Line
Testing (SPLiT), and from the corresponding main conference; the Software Prod-
uct Line Conference (SPLC). The number of primary studies is 53 after this step.

The fourth and fifth steps are validating the first three. The fourth step includes
automatic searches with Google Scholar and ISI Web of science. The search string
was “product” and “line/lines/family/families” and “test/testing” and it was ap-
plied only to titles, which has shown to be sufficient in systematic reviews [12].
This search resulted in 177 hits in Google Scholar and 38 hits in ISI Web of sci-
ence. The search in web of science did not result in any new unique contribution.

Excluded publications were, except for the above mentioned, tool demonstra-
tions, talks, non-english publications, patent applications, editorials, posters, panel
summaries, keynotes and papers from industrial conferences. In total 49 publica-
tions were relevant for this study according to our selection criteria. This set was
compared to our set of 53 papers from step three and 38 papers were common.
The differing 11 publications were added to the study. In the fifth step the set of
papers was compared to a set of paper included in a systematic review on product
line testing by Lamancha et al. [38]. Their study included 23 papers of which 12
passed our criteria on focus and publication type. All of these were already in-
cluded in our study. Thus we believe that the search for publications is sufficiently
extensive and that the set of publications gives a good picture of the state of art in
SPL testing research.

A summary of the inclusion and exclusion criteria is:

• Inclusion: Peer reviewed publications with a clear focus on some aspect of
software product line testing.

2 Research method 135

• Exclusion: Publications where either testing focus or software product line
focus is lacking. Non-peer reviewed publications.

The answer to RQ1 was retrieved through synthesising the discussions in the initial
24 publications until saturation was reached. Several publications are philosophi-
cal with a main purpose to discuss challenges in SPL testing and almost all papers
discuss the challenges to some extent in the introductory sections. All challenges
mentioned were named and grouped. A summary of the challenges is provided
in section 3. Answers to questions RQ2, RQ3 and RQ4 are retrieved through
analysing the 64 primary studies. A preliminary classification scheme was estab-
lished through keywording [58] abstracts and positioning sections. Classifications
of the primary studies were conducted by the first author and validated by the
second. Disagreements were resolved through discussions or led to refinement of
the classification scheme, which in turn led to reclassification and revalidation of
previously classified publications. This procedure was repeated until no disagree-
ments remained.

2.3 Threats to validity
Threats to the validity of the mapping study are analyzed according to the follow-
ing taxonomy: construct validity, reliability, internal validity and external validity.

Construct validity reflects to what extent the phenomenon under study really
represents what the researchers have in mind and what is investigated according to
the research questions. The terms product lines, software product lines and fami-
ly/families are rather well established, and hence the terms are sufficiently stable
to use as search strings. Similarly for testing, we consider this being well estab-
lished. Another aspect of the construct validity is assurance that we actually find
all papers on the selected topic. We have searched broadly in general publication
databases which index most well reputed publication fora. The long list of differ-
ent publication fora indicates the width of the searching is enough. The snowball
sampling procedure has been shown to work well in searching with a specific tech-
nical focus [70]. We also validated our searches against another review, and found
this review covering all papers in that review.

Reliability focuses on whether the data are collected and the analysis is con-
ducted in a way that it can be repeated by other researchers with the same re-
sults. We defined search terms and applied procedures, which may be replicated
by others. The non-determinism of one of the databases (Google scholar) is com-
pensated by also using a more transparent database (ISI Web of Science). Since
this is a mapping study, and no systematic review, the inclusion/exclusion criteria
are only related to whether the topic of SPL testing is present in the paper or not.
The classification is another source of threats to the reliability. Other researchers
may possibly come up with different classification schemes, finer or more course
grained. However, the consistency of the classification is ensured by having the
classifications conducted by the first author and validated by the second.

136 Software Product Line Testing – A Systematic Mapping Study

Internal validity is concerned with the analysis of the data. Since the analysis
only uses descriptive statistics, the threats are minimal. Finally, external validity is
about generalization from this study. Since we do not draw any conclusions about
mapping studies in general, but only on this specific one, the external validity
threats are not applicable.

3 Challenges in testing a software product line
Software product line engineering is a development paradigm based on common
software platforms, which are customized in order to form specific products [59].
A software platform is a set of generic components that form a common structure,
from which a set of derivative products can be developed [46]. The process of
developing the platform is named domain engineering, and the process of deriving
specific products from the platform is named application engineering [59]. We
refer to domain testing and application testing, accordingly. The variable charac-
teristics of the platform, are referred to as variability; the specific representations
of the variability in software artifacts are called variation points, while the repre-
sentation of a particular instance of a variable characteristic is called a variant [59].

A number of challenges regarding testing of software product lines have been
identified and discussed in the literature, which are identified in this mapping study
(RQ1). They can be summarized in three main challenges concerning i) how to
handle the large number of tests, ii) how to balance effort for reusable components
and concrete products, and iii) how to handle variability.

3.1 Large number of tests
A major challenge with testing a software product line regards the large number of
required tests. In order to fully test a product line, all possible uses of each generic
component, and preferably even all possible product variants, need to be tested.
The fact that the number of possible product variants grows exponentially with
the number of variation points, makes such thorough testing infeasible. Since the
number of products actually developed also increases, there is an increased need
for system tests as well.

The main issue here is how to reduce redundant testing and to minimize the
testing effort through reuse of test artefacts. The close relationship between the
developed products and the fact that they are derived from the same specifications
indicates an option to reduce the number of tests, due to redundancy. A well
defined product line also includes a possibility to define and reuse test artefacts.

3.2 Reusable components and concrete products
The second major challenge, which of course is closely related to the previous, is
how to balance effort spent on reusable components and product variants. Which

4 Primary studies 137

components should be tested in domain (platform) engineering, and which should
be tested in application (product) engineering? [59] A high level of quality is re-
quired for the reusable components but still it is not obvious how much the testing
of reusable components may help reducing testing obligations for each product.
There is also a question of how to test generic components, in which order and in
how many possible variants. The planning of the testing activities is also further
complicated by the fact that software process is split and testing may be distributed
across different parts of the organizations.

3.3 Variability
Variability is an important concept in software product line engineering, and it
introduces a number of new challenges to testing. Variability is expressed as vari-
ation points on different levels with different types of interdependencies. This
raises a question of how different types of variation points should be tested. A
new goal for testing is also introduced in the context of variability: the verification
of the absence of incorrect bindings of variation points. We have to be sure that
features not supposed to be there are not included in the end product. The binding
of variation points is also important. Complete integration and system test are not
feasible until the variation points are bound. It is also possible to realize the same
functionality in different ways and thus a common function in different products
may require different tests.

4 Primary studies
Following the method defined in Section 2.2, we ended up in 64 peer reviewed
papers, published in workshops, conferences, journals and in edited books (RQ2).
The papers are published between 2001 and 2008, and summarized by publication
fora in Table 1.

Table 1: Distribution of publication fora

Publication Fora Type #
International Workshop on Software Product Line Testing
(SPLiT)

Workshop 23

International Workshop on Software Product-family Engineer-
ing (PFE)

Workshop 3

Software Product Lines – Research Issues in Engineering and
Management

Book chapter 3

Software Product Line Conference (SPLC) Conference 2
ACM SIGSOFT Software Engineering Notes Journal 1
Communications of the ACM Journal 1
Concurrency: Specification and Programming Workshop Workshop 1
Conference on Composition-Based Software Systems Conference 1

continued on next page

138 Software Product Line Testing – A Systematic Mapping Study

Table 1 – continued from previuos page
Publication Fora Type #
Conference on Quality Engineering in Software Technology
(CONQUEST)

Industry Confer-
ence

1

Development of Component-based Information Systems Book chapter 1
European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy, (ECIS)

Conference 1

European Workshop on Model Driven Architecture with Em-
phasis on Industrial Application

Workshop 1

Fujaba days Workshop 1
Fundamental Approaches to Software Engineering (FASE) Conference 1
Hauptkonferenz Net.ObjectDays Industry Confer-

ence
1

International Computer Software and Applications Conference Conference 1
International Conference on Advanced Information Systems
(CAiSE)

Conference 1

International Conference on Automated Software Engineering
(ASE)

Conference 1

International Conference on Computer and Information Tech-
nology (ICCIT)

Conference 1

International Conference on Engineering of Complex Com-
puter Systems (ICECCS)

Conference 1

International Conference on Software Engineering and Formal
Methods (SEFM)

Conference 1

International Conference on Software Reuse (ICSR) Conference 1
International Symposium on Computer Science and Computa-
tional Technology (ISCSCT)

Conference 1

International Symposium on Empirical Software Engineering
(ISESE)

Conference 1

International Symposium on Software Reliability Engineering
(ISSRE)

Conference 1

International Symposium on Software Testing and Analysis
(ISSTA)

Conference 1

International Workshop on Requirements Engineering for
Product Lines (REPL)

Workshop 1

International Workshop on Software Product Family Engineer-
ing (PFE)

Workshop 1

International Workshop on Product Line Engineering The
Early Steps: Planning, Modeling, and Managing (PLEES)

Workshop 1

International Workshop on Software Product Lines Workshop 1
International Workshop on Test and Analysis of Component
Based Systems (TaCOS)

Workshop 1

Journal of Software Journal 1
Nordic Workshop on Programming and Software Development
Tools and Techniques (NWPER)

Workshop 1

The European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE)

Conference 1

The Role of Software Architecture for Testing and Analysis
(ROSATEA)

Workshop 1

Workshop on Advances in Model Based Testing (A-MOST) Workshop 1
Workshop on Model-based Testing in Practice Workshop 1
Total 64

5 Classification Schemes 139

Table 2: Distribution over research focus
Research Focus 2001 2002 2003 2004 2005 2006 2007 2008 Total
Test Organization
and Process

1 1 1 2 1 1 1 2 10

Test Management 2 3 1 3 2 4 15
Testability 1 1 2
System and Ac-
ceptance Testing

1 4 4 3 7 2 5 26

Integration Test-
ing

1 1 2 4

Unit Testing 2 1 3
Automation 4 1 5
Total 1 2 9 15 6 13 8 11 65

Table 3: Distribution over publication types
Type of Publication 2001 2002 2003 2004 2005 2006 2007 2008 Total
Book Chapter 4 4 6%
Conference Paper 4 1 2 3 4 5 19 30%
Journal Paper 1 1 1 3 5%
Workshop Paper 1 2 5 13 4 4 4 5 38 59%
Total 1 2 9 15 6 12 8 11 64 100%

In Table 2 and Table 3, the distribution over time is reported for the 64 primary
studies. Note that one paper spans two research foci according to our classification
scheme. Hence the total number of classification items in Table 2 is 65.

5 Classification Schemes

Publications are classified into categories in three different dimensions: research
focus, type of contribution and research type. This structure is presented by Pe-
tersen et al. [58]. However the different categories are adapted to this particular
study. Establishing the scheme and mapping publications was done iteratively as
new primary studies were added. When the scheme was finally set, all classifica-
tions were reviewed again.

Six categories of research focus (RQ3) were identified through the keyword
method described by Petersen et al. [58]: i) test organization and process, ii) test
management, iii) testability, iv) system and acceptance testing (ST and AT), v) in-
tegration testing (IT), vi) unit testing (UT), and vii) automation. Test organization
and process includes publications with a focus on the testing framework, seeking
answers to how the testing activities and test assets should be mapped to the overall
product line development and also how product line testing should be organized

140 Software Product Line Testing – A Systematic Mapping Study

overall. Papers on product line testing in general are also mapped into this cat-
egory. Test management includes test planning and assessment, fault prediction,
selection of test strategies, estimates of the extent of testing and test coverage.
Papers on how to distribute resources (between domain engineering process and
application engineering process, between different test activities, and between dif-
ferent products) are included as well. Testability includes papers with a focus on
other aspects of product line engineering rather than the testing, but still with the
goal of improved testing. The test levels used in the classification are system and
acceptance testing, integration testing, and unit testing. Paper topics cover both
design of new test cases and selection of already existing test cases. Test cases
could be designed from requirements or from generic test assets. Some papers
focus on the automation of testing.

Contribution type is classified into five categories: Tool, Method, Model, Met-
ric, and Open items. Tools refer to any kind of tool support for SPL testing, mostly
in the form of research prototypes. Methods include descriptions of how to per-
form SPL testing, both as general concepts and more specific and detailed working
procedures. Models are representations of information to be used in SPL testing.
Metrics focus on what to measure to characterize certain properties of SPL testing.
Finally, Open items are identified issues that need to be addressed.

The classification of research types (RQ4) is based on a scheme proposed by
Wieringa et al. [78]. Research is classified into six categories: i) validation re-
search, ii) evaluation research, iii) solution proposals, iv) conceptual proposals,
v) opinion papers, and vi) experience papers. Validation research focuses on in-
vestigating a proposed solution which has not yet been implemented in practice.
Investigations are carried out systematically and include: experiments, simulation,
prototyping, mathematical systematically analysis, mathematical proof of proper-
ties etc. Evaluation research evaluates a problem or an implemented solution in
practice and includes case studies, field studies, field experiments etc. A Solution
proposal is a novel or significant extension to an existing technique. Its benefits
are exemplified and/or argued for. A Conceptual proposal sketches a new way
of looking at things, but without the preciseness of a solution proposal. Opinion
papers report on the authorsÂt’ opinions on what is good or bad. Experience pa-
pers report on personal experiences from one or more real life projects. Lessons
learned are included but there is no systematic reporting of research methodology.

6 Mapping

Figure 2 shows a map over existing research foci related to software product line
testing, distributed over type of research and type of contribution. The number of
publications on each side differs, since some publications provide multiple contri-
butions e.g. both a model and a method. Most research effort is spent on system
testing with contributions such as proposed methods for test case design, sketched

6 Mapping 141

Figure 2: Map of research focus on software product line testing. Research focus
on the Y axis; contribution type on the left side of the X axis, and research type on
the right side of the X axis

out in detail but not yet evaluated, i.e. solution proposals. An overview of research
presented by focus is given in sections 6.1.1 - 6.1.7.

6.1 Research focus

Figure 3 shows the distribution of research foci. A paper is assigned to several
foci if it has a clear contribution to more than one area. Each of the focus areas is
discussed below.

Test Organization and Process

Table 4 lists all papers on test organisation and process. McGregor points out the
need for a well designed test process, and discusses the complex relationships be-
tween platforms, products and different versions of both platforms and products

142 Software Product Line Testing – A Systematic Mapping Study

Table 4: Papers on test organization and process

Author Title Paper type Contribution
type

Shaulis [68] Salion’s Confident Approach to Testing Software
Product Lines

Experience
report

Tool

Knauber and
Hetrick [32]

Product Line Testing and Product Line Develop-
ment - variations on a Common Theme

Solution
proposal

Method

McGregor [41] Structuring Test Assets in a Product Line Effort Conceptual
proposal

Model

Weingärtner [76] Product family engineering and testing in the
medical domain-validation aspects

Opinion Model

Ganesan et
al. [18]

Comparing Costs and Benefits of Different Test
Strategies for a Software product Line: A study
from Testo AG

Validation
research

Model

Jin-hua et
al. [25]

The W-Model for Testing Software Product Lines Solution
Proposal

Model

Kolb,
Muthig [35]

Challenges in Testing Software Product Lines Opinion
paper

Open Items

Tevanlinna,
Taina, Kaup-
pinen [72]

Product Family Testing - a Survey Opinion
paper

Open Items

Kolb,
Muthig [37]

Techniques and Strategies for Testing
component-Based Software and Product Lines

Experience
Report

Open Items

Ghanam et
al. [20]

A Test-Driven Approach to Establishing & Man-
aging Agile Product Lines

Conceptual
proposal

Open Items

6 Mapping 143

Figure 3: Distribution of research foci

in his technical report [42]. He argues there and elsewhere [41] for a structure of
test assets and documentation in alignment with the structure of the constructed
products. This is further concretized by Knauber and Hetrick [32]. Kolb and
Muthig [35,37] discuss the importance and complexity of testing a software prod-
uct line and component-based systems. They pinpoint the need for guidelines and
comprehensive and efficient techniques for systematically testing product lines.
They also promote the idea of creating generic test cases. Tevalinna et al. ad-
dress the problem of dividing product line testing into two distinct instantiations
of the v-model; testing is product oriented and no efficient techniques for domain
testing exist [72]. Two problems are pointed out: First, complete integration and
system testing in domain engineering is not feasible, and second, it is hard to de-
cide how much we can depend on domain testing in the application testing. They
also discuss four different strategies to model product line testing: testing product
by product, incremental testing of product lines, reusable asset instantiation and
division of responsibilities [72]. Weingärtner discusses the application of product
family engineering in an environment where development was previously done ac-
cording to the V-model [76]. Jin-hua et al. proposes a new test model for software
product line testing, the W-model [25]. Ganesan et al. [18] compare cost benefits
of a product focused test strategy contra an infrastructure focused test strategy and
introduces a cost model to be able to quantify the influences on test costs from a
given product variant. Ghanam et al. [20] discuss testing in the context of agile
PL and highlights challenges in applying test driven development (TDD) in SPL.
Shalius reports on positive experiences of agile testing in the context of XP and
RUP [68]

144 Software Product Line Testing – A Systematic Mapping Study

Test Management

The research on test management contains several proposals and a few evaluated
research statements, see Table 5. Tevanlinna proposes a tool, called RITA (fRame-
work Integration and Testing Application) to support testing of product lines [73].
Kolb presents a conceptual proposal that sets focus on test planning and test case
design, based on risks [34]. Mc Gregor and Im make a remark that product lines
vary both in space and in time, and outline a conceptual proposal to address this
fact [44]. Oster et al. proposes a story driven approach to select which features to
be tested in different product instances [57].

McGregor discusses, in his technical report, the possibility of product line or-
ganizations to retrieve a high level of structural coverage by aggregating the test
executions of each product variant in the product line [42]. Schneidemann op-
timized product line testing by minimizing the number of configurations needed
to verify the variation of the platform [67]. Gustafsson worked on algorithms to
ensure that all features of a product line are covered in at least one product in-
stance [22]. Cohen et al. [8] define a family of cumulative coverage criteria based
on a relational model capturing variability in the feasible product variants, e.g. the
orthogonal variability model. Kauppinenen et al. propose special coverage criteria
for product line frameworks [29].

In order to reduce the test effort, McGregor proposes a combinatorial test de-
sign where pairwise combinations of variants are systematically selected to be
tested instead of all possible combinations [42]. Muccini and van der Hoek [48]
propose a variant of this approach for integration testing, “core first then big bang”,
and emphasize the need for a combination of heuristic approaches to combine in
order to effectively perform integration testing. Cohen et al. [8] propose applica-
tion of interaction testing and connect this to the combinatorial coverage criteria.

Al Dallal and Sorenson present a model that focuses on framework testing in
application engineering [10]. They identify uncovered framework use cases and
select product test cases to cover those. The model is empirically evaluated on
software, some 100 LOC in size.

Zeng et al. identify factors that influence SPL testing effort, and propose cost
models accordingly [80]. Dowie et al. evaluate different approaches to SPL test-
ing, based on a theoretical evaluation framework [13]. They conclude that the cus-
tomerâĂŹs perspective is missing in SPL testing, and must be included to make
the approach successful.

Jaring et al. propose a process model, called VTIM (Variability and Testability
Interaction Model) to support management of trade-offs on the binding point for a
product line instance [24]. They illustrate the model on a large-scale industrial sys-
tem. Denger and Kolb report on a formal experiment, investigating inspection and
testing as means for defect detection in product line components [11]. Inspections
were shown to be more effective and efficient for that purpose. Mc Gregor [43]
discusses the need for more knowledge on faults likely to appear in a product line

6 Mapping 145

Table 5: Papers on Test Management

Author Title Paper type Contribution
type

Tevanlinna [73] Product family testing with RITA Solution
Proposal

Tool

Kolb [34] A Risk-Driven Approach for Efficiently Testing
Software Product Lines

Solution
Proposal

Method

Scheidemann [67] Optimizing the selection of representative Con-
figurations in Verification of Evolving Product
Lines of Distributed Embedded Systems

Solution
Proposal

Method

Gustafsson [22] An Approach for Selecting Software Product
Line Instances for Testing

Validation
Research

Method

McGregor and
Im [44]

The Implications of Variation for Testing in a
Software Product Line

Conceptual
Proposal

Method

Oster et
al. [57]

Towards Software Product Line Testing using
Story Driven Modeling

Conceptual
Proposal

Method

Cohen et al. [8] Coverage and Adequacy in Software Product
Line Testing

Solution
Proposal

Model,
Method

Al Dallal and
Sorenson [10]

Testing software assets of framework-based
product families during application engineering
stage

Validation
Research

Model,
method, tool

Zeng et al. [80] Analysis of Testing Effort by Using Core Assets
in Software Product Line Testing

Solution
Proposal

Model

Dowie et
al. [13]

Quality Assurance of Integrated Business Soft-
ware: An Approach to Testing Software Product
Lines

Solution
Proposal

Model

Jaring et
al. [24]

Modeling Variability and Testability Interaction
in Software Product Line Engineering

Evaluation
Research

Model

McGregor [43] Toward a Fault Model for Software Product Lines Conceptual
Proposal

Model

Kauppinen et
al. [29]

Hook and Template Coverage Criteria for Testing
Framework-based Software Product Families

Conceptual
Proposal

Metric

Denger and
Kolb [11]

Testing and Inspecting Reusable Product Line
Components: First Empirical Results

Validation
Research

Open Items

Muccini
and van der
Hoek [48]

Towards Testing Product Line Architectures Opinion
Paper

Open Items

146 Software Product Line Testing – A Systematic Mapping Study

Table 6: Papers on Testability

Author Title Paper type Contribution
type

Kolb and
Muthig [36]

Making Testing Product Lines More Efficient by
Improving the Testability of Product Line Archi-
tectures

Conceptual
Proposal

Model,
Method

Trew [74] What Design Policies Must Testers Demand from
Product Line Architects?

Conceptual
Proposal

Open Items

instance, and outlines a fault model. Fault models may be used as a basis for test
case design and as help in estimating required test effort to detect a certain class
of faults.

Testability

McGregor discusses testability of software product lines in his technical report [42].
This refers to technical characteristics of the software product that helps testing.
We identified two papers on testability, see Table 6. Trew [74] identifies classes
of faults that cannot be detected by testing and claim the need for design policies
to ensure testability of an SPL. Kolb and Muthig [36] discuss the relationships
between testability and SPL architecture and propose an approach to improve and
evaluate testability.

System and Acceptance Testing

Table 7 lists paper on system and acceptance testing. Most research effort is spent
on system and acceptance testing, 40 %. The most frequent goal is automatic gen-
eration of test cases from requirements. Requirements may be model based, mostly
on use cases [62], formal specifications [47] or written in natural language [3].

Hartman et al. present an approach based on existing UML based tools and
methods [23]. Bertolino and Gnesi introduce PLUTO, product line use case test
optimization [4, 6], which is further elaborated by Bertolini et al. [4]. Kamsties et
al. propose test case derivation for domain engineering from use cases, preserving
the variability in the test cases [27].

Nebut et al. propose an algorithm to automatically generate product-specific
test cases from product family requirements, expressed in UML [51, 52], more
comprehensively presented in [50]. They evaluate their approach on a small case
study. Reuys et al. defined the ScenTED approach to generate test cases from
UML models [64], which is further presented by Pohl and Metzger [60]. Olimpiew
and Gomaa defined another approach using diagrams, stereotypes and tagged val-
ues from UML notations [53, 56] which was illustrated in a student project [55].
DueÃśas et al. propose another approach, based on the UML testing profile [14]

6 Mapping 147

Table 7: Papers on System and Acceptance Testing

Author Title Paper type Contribution
type

Hartmann et
al. [23]

UML-based approach for validating product lines Solution
Proposal

Tool

Bertolino and
Gnesi [5]

Use Case-based Testing of Product Lines Solution
Proposal

Method

Bertolino and
Gnesi [6]

PLUTO: A test Methodology for product Fami-
lies

Validation
Research

Method

Kamsties et
al. [27]

Testing Variabilities in Use case Models Solution
Proposal

Method

Nebut et
al. [51]

Automated Requirements-based Generation of
Test Cases for Product Families

Validation
Research

Method

Stephenson et
al. [71]

Test Data Generation for Product Lines - A Mu-
tation Testing Approach

Solution
Proposal

Method

Geppert et
al. [19]

Towards Generating Acceptance Tests for Prod-
uct Lines

Validation
Research

Method

Olimpiew and
Gomaa [53]

Model-based Testing for Applications Derived
from Software Product Lines

Solution
Proposal

Method

Reuys et
al. [64]

Model-Based System Testing of Software Prod-
uct Families

Evaluation
Research

Method

Mishra [47] Specification Based Software Product Line Test-
ing: A case study

Solution
Proposal

Method

Olimpiew and
Gomaa [55]

Customizable Requirements-based Test Models
for Software Product Lines

Evaluation
Research

Method

Pohl and Met-
zger [60]

Software Product Line Testing Conceptual
Proposal

Method

Reis et al. [62] A Reuse Technique for Performance Testing of
Software Product Lines

Evaluation
Research

Method

Reuys et
al. [66]

The ScenTED Method for TestingSoftware Prod-
uct Lines

Evaluation
Research

Method

Li et al. [39] Reuse Execution Traces to Reduce Testing of
Product Lines

Evaluation
Research

Method

Bashardoust-
Tajali and
Corriveau [3]

On extracting Tests from a Testable Model in the
Context of Domain Engineering

Solution
Proposal

Method

Kahsai et
al. [26]

Specification-based Testing for Software Pro-
ductLines

Solution
Proposal

Method

Olimpiew and
Gomaa [56]

Model-Based Test Design for Software Product
Lines

Solution
Proposal

Method

Uzuncaova et
al. [75]

Testing Software Product Lines Using Incremen-
tal Test Generation

Validation
Research

Method

Weißleder et
al. [77]

Reusing State Machines for Automatic Test Gen-
eration in Product Lines

Solution
Proposal

Method

Dueñas et
al. [14]

Model driven testing in product family context Solution
Proposal

Model

Nebut et
al. [50]

System Testing of Product Lines: From Require-
ments to Test Cases

Validation
Research

Model

Olimpiew and
Gomaa [54]

Reusable System Tests for Applications Derived
from Software Product Lines

Conceptual
Proposal

Model

Kang et
al. [28]

Towards a Formal Framework for Product line
Test Development

Solution
Proposal

Model,
Method

Nebut et
al. [52]

Reusable Test Requirements for UML-Model
Product Lines

Solution
Proposal

Model,
Method

Bertolino et
al. [4]

Product Line Use Cases: Scenario-Based Speci-
fication and Testing of Requirements

Solution
Proposal

Model,
Method

148 Software Product Line Testing – A Systematic Mapping Study

Table 8: Papers on Integration Testing

Author Title Paper type Contribution
type

Reuys et
al. [66]

The ScenTED Method for Testing Software
Product Lines

Evaluation
Research

Method

Kishi and
Noda [30]

Design Testing for Product Line Development
based on Test Scenarios

Solution
Proposal

Method

Li et al. [40] Automatic Integration Test Generation from Unit
Tests of eXVantage Product Family

Evaluation
Research

Method

Reis et al. [63] Integration testing in software product line engi-
neering; A model-Based Technique

Validation
Research

Method

and Kang et al. yet another process, based on UML use cases and a variability
model [28]. Weißleder et al. specifically reuse state machines and generate sets
suites, using OCL expressions [77].

Mishra [47] and Kahsai et al. [26] present test case generation models, based on
process algebra formal specifications. Uzuncanova et al. introduce an incremental
approach to test generation, using Alloy [75]. Bashardoust-Tajali and Corriveau
extract tests for product testing, based on a domain model, expressed as generative
contracts [3].

Stephensen et al. propose a test strategy to reduce the search space for test data,
although without providing any reviewable details [71]. Geppert et al. present a
decision model for acceptance testing, based on decision trees [19]. The approach
was evaluated on a part of an industrial SPL. Li et al. utilize the information in
execution traces to reduce test execution of each product of the SPL [39].

Integration Testing

Table 8 lists papers on integration testing. The ScenTED method is proposed also
for integration testing in addition to system and acceptance testing, and hence
mentioned here [66]. Reis et al. specifically validated its use for integration testing
in an experimental evaluation [63]. Kishi and Noda propose an integration testing
technique based on test scenarios, utilizing model checking techniques [30]. Li
et al. generate integration test from unit tests, illustrated in an industrial case
study [40].

Unit Testing

Table 9 lists papers on unit testing. Different approaches to create test cases based
on requirements including variabilities, are proposed with a focus on how to cover
possible scenarios. In ScenTED, [65], UML-activity diagrams are used to rep-
resent all possible scenarios. Nebut et al. [49] use parameterized use cases as

6 Mapping 149

Table 9: Papers on Unit Testing

Author Title Paper type Contribution
type

Feng et al. [16] A product line based aspect-oriented generative
unit testing approach to building quality compo-
nents

Validation
Research

Method

Reuys et
al. [65]

Derivation of Domain Test Scenarios from Activ-
ity Diagrams

Solution
Proposal

Model

Nebut et
al. [49]

A Requirement-Based Approach to test Product
Families

Validation
Research

Model,
Method,
Tool

Table 10: Papers on Test Automation

Author Title Paper type Contribution
type

Knauber and
Schneider [33]

Tracing Variability from Implementation to Test
Using Aspect-Oriented Programming

Conceptual
Proposal

Tool

Williams [79] Test Case Management of Controls Product Line
Points of Variability

Solution
Proposal

Tool

Condron [9] A Domain Approach to Test Automation of Prod-
uct Lines

Solution
Proposal

Tool

Ganesan et
al. [17]

Towards Testing Response time of Instances of a
web-based Product Line

Evaluation
Research

Tool

McGregor et
al. [45]

Testing Variability in a Software Product Line Evaluation
Research

Method

contracts on which testing coverage criteria may be applied. Feng et al. use an
aspect-oriented approach to generate unit tests [16].

Test Automation

Table 10 lists papers on test automation. McGregor et al. [45] propose and evaluate
an approach to design test automation software which is based on correspondence
between variability in product software and in test software. Condron [9] proposes
a domain approach to automate PL testing, combining test automation frameworks
from various locations in the entire product line where test is needed. Knauber
and Schneider [33] explore how to combine aspect oriented programming and unit
testing and thus reach traceability between implementation of variability and its
test. Ganesan et al. [17] focus on performance testing, reporting on a realization of
an environment for testing response time and load of an SPL. Williams presents an
approach to integrating test automation in an existing development environment
for control systems [79].

150 Software Product Line Testing – A Systematic Mapping Study

6.2 Research Type

Figure 4, shows the distribution of research types in the area of software product
line testing. The most frequent research type is solution proposals 41 %. Adding
solution, conceptual proposals and opinion papers sum up to 64 % of the papers.
14 % of the papers report on evaluation of the proposals and 3 % are experience
reports. 19 % present other types of validation, primarily off-line approaches.

Figure 4: Distribution of Research Type

7 Discussion

The surveyed research indicates software product line testing being a rather im-
mature area. The seminal paper is presented in 2001 [42], and most papers are
published in workshops and conferences; only one has reached the maturity of a
journal publication.

Software product line testing seems to be a “discussion” topic. There is a well
established understanding about challenges, as summarized in Section 6. However,
when looking for solutions to these challenges, we mostly find proposals. The
mapping shows that 64 % of the papers found include proposals, which contain
ideas for solutions of the identified challenges, but only 17 % of the research report
actual use and evaluation of proposals.

This is not unique for the SPL testing. Ramesh et al. reviewed publications
in 13 computer science journals, and found less than 3 % being case studies, field
studies or experiments [61]. Close to 90 % were of research type “conceptual
analysis”, which is close to our “proposals” categories. In software engineering,
the case is somewhat better. Glass et al. reported 2002 that “conceptual analysis”

8 Conclusions 151

also dominates in software engineering (54 %), while case study, field study and
experiment sum up to less than 10 % [21].

Product line testing is a large scale effort and evaluations are costly [72], which
is one of the explanations behind the limited share of empirical studies. However,
extensive experience in PL engineering exist within companies (Philips, Nokia,
Siemens etc. [59]) but no studies on testing can be found [72]. The distribution
across the research foci, with its major share on system testing is natural. This is
where product line testing may gain a lot from utilizing the fact that it is a soft-
ware product line. Testability issues, especially related to the product line archi-
tecture have an underdeveloped potential to be researched. Approaches that help
isolate effects of variability to limited areas of the software would help improve
the efficiency of product line testing. Test management issues have a reasonable
proportion of the studies, although issues of balancing e.g. domain vs. product
testing are not treated. Some sketched out proposals and many high-level opinions
on how this should be done are reported on but none of them has been evaluated
empirically.

Almost all of the proposed strategies for product line testing are idealistic in the
sense that they put specific requirements on other parts of the development process
than the testing. Hence, it is hard to find “useful approaches”, since they require
major changes to the whole software engineering process, e.g. formal models
for requirements and variability. In a majority of the publications the handling
of variability is in focus. Different approaches for test case derivation are based
on specific ways of documenting and handling variation points. This is natural
since variability is the core concept in product line development. However from
the perspective of system testing the main challenge is how to deal with the large
number of required tests of a range of product variants which are more or less
similar. How variability is handled may not always be possible to affect or even
visible at that stage. There is a need for strategies for test case design and selection,
which are feasible for incremental introduction and applicable in a testing context
regardless of the maturity of the product line organization.

The contribution type is mostly of “method” type. Product line engineering in
general, and testing in particular, need new methodological approaches. However,
methods need to be supported by underlying models for their theoretical founda-
tion, tools for their practical use and metrics for their management and evaluation.

8 Conclusions

We launched a systematic mapping study to get an overview of existing research
on software product line testing. We identified 64 papers published between 2001
and 2008.

The picture of research needs and challenges is quite clear and unanimous,
enabling a focused research endeavor. In response to RQ 1, the main challenges

152 Software Product Line Testing – A Systematic Mapping Study

are i) the large number of tests, ii) balance between effort for reusable compo-
nents and concrete products, and iii) handling variability. Still, there is a need
to address different focus: process and organization, management, testability, test
case design as well as test automation. To respond to RQ2, we conclude that the
research is mostly published in workshops (59 %) and conferences (30 %), with
only four book chapters and three journal publications issued so far. The research
topics identified are (RQ3) i) test organization and process, ii) test management,
iii) testability, iv) system and acceptance testing, v) integration testing, vi) unit
testing, and vii) automation, with high-level test case derivation as the most fre-
quent topic followed by test management. Research methods (RQ4) are mostly of
proposal type (64 %) with empirical evaluations and experience as a minor group
(17 %).

With a clear picture of needs and challenges, we encourage the research com-
munity to launch empirical studies that use and evaluate the proposals, in order to
give a solid foundation for software product line testing in industry. Further, trade-
off management issues seem to be in need of deeper understanding and evaluation.

References 153

References
[1] Wasif Afzal, Richard Torkar, and Robert Feldt. A systematic review of

search-based testing for non-functional system properties. Information and
Software Technology, 51(6):957–976, June 2009.

[2] John Bailey, David Budgen, Mark Turner, Barbara A. Kitchenham, Pearl Br-
ereton, and Stephen Linkman. Evidence relating to object-oriented software
design: A survey. In Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pages 482
–484, September 2007.

[3] Soheila Bashardoust-Tajali and Jean-Pierre Corriveau. On extracting tests
from a testable model in the context of domain engineering. In Proceed-
ings of the IEEE 13th International Conference on Engineering of Complex
Computer Systems (ICECCS 2008), pages 98–107, April 2008.

[4] Antonia Bertolino, Alessandro Fantechi, Stefania Gnesi, and Giuseppe Lami.
Product line use cases: Scenario-based specification and testing of require-
ments. In Software Product Lines - Research Issues in Engineering and Man-
agement, pages 425–445. Springer-Verlag, 2006.

[5] Antonia Bertolino and Stefania Gnesi. Use case-based testing of product
lines. In Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Founda-
tions of software engineering (ESEC/FSE-11), pages 355–358, 2003.

[6] Antonia Bertolino and Stefania Gnesi. PLUTO: a test methodology for prod-
uct families. In Software Product Family Engineering Software Product Fam-
ily Engineering, volume 3014 of Lecture Notes in Computer Science, pages
181–197. Springer-Verlag, 2004.

[7] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-Line Approach. Addison-Wesley, 2000.

[8] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and ade-
quacy in software product line testing. In Proceedings of the Workshop on
Role of software architecture for testing and analysis (ROSATEA ’06), pages
53–63, 2006.

[9] Chris Condron. A domain approach to test automation of product lines.
In Proceedings International Workshop on Software Product Line Testing
(SPLiT), Technical Report: ALR-2004-031, pages 27–35. Avaya Labs, 2004.

[10] Jehad Al Dallal and Paul Sorenson. Testing software assets of framework-
based product families during application engineering stage. Journal of Soft-
ware, 3(5):11–25, 2008.

154 Software Product Line Testing – A Systematic Mapping Study

[11] Christian Denger and Ronny Kolb. Testing and inspecting reusable product
line components: first empirical results. In Proceedings of the ACM/IEEE
international symposium on Empirical software engineering (ISESE ’06),
pages 184–193, 2006.

[12] Oscar Dieste, Anna Grimán, and Natalia Juristo. Developing search strate-
gies for detecting relevant experiments. Empirical Software Engineering,
14(5):513–539, October 2009.

[13] Ulrike Dowie, Nicole Gellner, Sven Hanssen, Andreas Helferich, and Georg
Herzwurm. Quality assurance of integrated business software: An approach
to testing software product lines. In Proceedings of the 13th European Con-
ference on Information Systems, Information Systems in a Rapidly Changing
Economy, ECIS, 2005.

[14] Juan C. Dueñas, Julio Mellado, Rodrigo Cerón, José L. Arciniegas, José L.
Ruiz, and Rafael Capilla. Model driven testing in product family context. In
University of Twente, 2004.

[15] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, January 2010.

[16] Yankui Feng, Xiaodong Liu, and Jon Kerridge. A product line based aspect-
oriented generative unit testing approach to building quality components. In
Proceedings of th 31st Annual International Computer Software and Appli-
cations Conference, pages 403–408, July 2007.

[17] Dharmalingam Ganesan. Towards testing response time of instances of a
web-based product line. In Proceedings of the International Workshop on
Software Product Line Testing (SPLiT 2005), pages 23–34, 2005.

[18] Dharmalingam Ganesan, Jens Knodel, Ronny Kolb, Uwe Haury, and Gerald
Meier. Comparing costs and benefits of different test strategies for a software
product line: A study from testo AG. In Proceedings of the International
Software Product Line Conference, pages 74–83, 2007.

[19] Birgit Geppert, Jenny Li, Frank Rößler, and David M. Weiss. Towards gener-
ating acceptance tests for product lines. In Software Reuse: Methods, Tech-
niques, and Tools, volume 3107 of Lecture Notes in Computer Science, pages
35–48. Springer Berlin Heidelberg, 2004.

[20] Yaser Ghanam, Shelly Park, and Frank Maurer. A test-driven approach to es-
tablishing & managing agile product lines. In Proceedings of the Fifth Inter-
national Workshop on Software Product Line Testing (SPLiT 2008), page 46,
2008.

References 155

[21] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in soft-
ware engineering: an analysis of the literature. Information and Software
Technology, 44(8):491–506, 2002.

[22] Thomas Gustafsson. An approach for selecting software product line in-
stances for testing. pages 81–86, 2007.

[23] Jean Hartmann, Marlon Vieira, and Axel Ruder. A UML-based approach for
validating product lines. In Proceedings of the International Workshop on
Software Product Line Testing (SPLiT 2004), pages 58–65, August 2004.

[24] Michel Jaring, René L. Krikhaar, and Jan Bosch. Modeling variability and
testability interaction in software product line engineering. In Seventh In-
ternational Conference on Composition-Based Software Systems (ICCBSS),
pages 120–129, 2008.

[25] Li Jin-hua, Li Qiong, and Li Jing. The w-model for testing software product
lines. In Computer Science and Computational Technology, International
Symposium on, volume 1, pages 690–693, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[26] Temesghen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
Specification-based testing for software product lines. In Proceedings of the
IEEE Sixth International Conference on Software Engineering and Formal
Methods (SEFM’08), pages 149–158, 2008.

[27] Erik Kamsties, Klaus Pohl, Sacha Reis, and Andreas Reuys. Testing variabil-
ities in use case models. In Proceedings of the 5th International Workshop
on Software Product-Family Engineering (PFE-5), pages 6–18, November
2003.

[28] Sungwon Kang, Jihyun Lee, Myungchul Kim, and Woojin Lee. Towards a
formal framework for product line test development. In Proceedings of the
Computer and Information Technology, pages 921–926, 2007.

[29] Raine Kauppinen, Juha Taina, and Antti Tevanlinna. Hook and template
coverage criteria for testing framework-based software product families. In
Proceedings of the International Workshop on Software Product Line Testing
(SPLIT), pages 7–12, 2004.

[30] Tomoji Kishi and Natsuko Noda. Design testing for product line development
based on test scenarios. In Proceedings of the International Workshop on
Software Product Line Testing (SPLiT 2004), pages 19–26, August 2004.

[31] Barbara Kitchenham. Guidelines for performing systematic literature re-
views in software engineering. Technical report, and Department of Com-
puter Science, University of Durham, Version 2.3, 2007.

156 Software Product Line Testing – A Systematic Mapping Study

[32] Peter Knauber and W. A. Hetrick. Product line testing and product line devel-
opment - variations on a common theme. In Proceedings of the International
Workshop on Software Product Line Testing (SPLiT 2005), 2005.

[33] Peter Knauber and Johannes Schneider. Tracing variability from implemen-
tation to test using aspect-oriented programming. In Proceedings of the In-
ternational Workshop on Software Product Line Testing (SPLiT), Technical
Report: ALR-2004-031, pages 36–44. Avaya Labs, 2004.

[34] Ronny Kolb. A risk driven approach for efficiently testing software product
lines. In 5th GPCE Young, Researches Workshop, Erfurt, Germany, 2003.

[35] Ronny Kolb and Dirk Muthig. Challenges in testing software product lines.
In Proceedings of CONQUEST’03, pages pp. 81–95, Nuremberg, Germany,
September 2003.

[36] Ronny Kolb and Dirk Muthig. Making testing product lines more efficient
by improving the testability of product line architectures. In Proceedings of
the ACM ISSTA workshop on Role of software architecture for testing and
analysis (ROSATEA ’06), pages 22–27, 2006.

[37] Ronny Kolb and Dirk Muthig. Techniques and strategies for testing
component-based software and product lines. In Development of component-
based information systems, number 2 in Advances in Management Informa-
tion Systems, pages 123–139. 2006.

[38] Beatriz Pérez Lamancha, Macario Polo Usaola, and Mario Piattini Velthius.
Software product line testing–a systematic review. pages 23–30, 2009.

[39] J. Jenny Li, Birgit Geppert, Frank Rößler, and David M. Weiss. Reuse execu-
tion traces to reduce testing of product lines. In Proceedings of the 11th Inter-
national Conference Software Product Lines. Second Volume (Workshops),
pages 65–72, 2007.

[40] J. Jenny Li, David M. Weiss, and J. Hamilton Slye. Automatic integration
test generation from unit tests of eXVantage product family. In Proceedings
of the 11th International Conference Software Product Lines. Second Volume
(Workshops), pages 73–80, 2007.

[41] John D. McGregor. Structuring test assets in a product line effort. In Pro-
ceedings of the Second International Workshop on Software Product Lines:
Economics, Architectures, and Implications, pages 89–92, May 2001.

[42] John D. McGregor. Testing a software product line. Technical Report
CMU/SEI-2001-TR-022, ESC-TR-2001-022, Software Engineering Insti-
tute, Carnegie Mellon University, 2001.

References 157

[43] John D. McGregor. Toward a fault model for software product lines. In
Proceedings Fifth International Workshop on Software Product Line Testing,
(SPLiT 2008), 2008.

[44] John D. McGregor and Kyungsoo Im. The implications of variation for test-
ing in a software product line. In Proceedings of the International Workshop
on Software Product Line Testing (SPLiT 2007), 2007.

[45] John D. McGregor, P. Sodhani, and S. Madhavapeddi. Testing variability
in a software product line. In Proceedings of the international workshop
on software product line testing (SPLiT), Technical Report: ALR-2004-031,
pages 45–50. Avaya Labs, 2004.

[46] Marc H. Meyer and Alvin P. Lehnerd. The Power of Product Platforms. Free
Press, reprint edition, 1997.

[47] Satish Mishra. Specification based software product line testing: A case
study. In Concurrency, Specification and Programming (CS&P 2006), 2006.

[48] Henry Muccini and André Van Der Hoek. Towards testing product line archi-
tectures. In Proceedings of International Workshop on Testing and Analysis
of Component Based Systems, pages 111–121, 2003.

[49] Clémentine Nebut, Franck Fleurey, Yves Le Traon, and Jean-marc Jézéquel.
A requirement-based approach to test product families. Proceedings of the
5th workshop on product families engineering, pages 198–210, 2003.

[50] Clémentine Nebut, Yves Le Traon, and Jean-marc Jézéquel. System testing
of product families: from requirements to test cases. Software Product Lines,
pages 447–478, 2006.

[51] Clémentine Nebut, Simon Pickin, Yves Le Traon, and Jean-marc Jézéquel.
Automated requirements-based generation of test cases for product families.
In Proceedings of the IEEE 18th International Conference on Automated
Software Engineering, pages 263–266, October 2003.

[52] Clémentine Nebut, Simon Pickin, Yves Le Traon, and Jean-marc Jézéquel.
Reusable test requirements for UML-Modeled product lines. In Proceedings
of the Workshop on Requirements Engineering for Product Lines (REPL’02),
pages 51–56, 2002.

[53] Erika Mir Olimpiew and Hassan Gomaa. Model-based testing for applica-
tions derived from software product lines. In Proceedings of the 1st interna-
tional workshop on Advances in model-based testing (A-MOST ’05), pages
1–7, 2005.

[54] Erika Mir Olimpiew and Hassan Gomaa. Reusable system tests for applica-
tions derived from software product lines. pages 8–15, 2005.

158 Software Product Line Testing – A Systematic Mapping Study

[55] Erika Mir Olimpiew and Hassan Gomaa. Customizable requirements based
test models for software product lines. In Proceedings of the International
Workshop on Software Product Line Testing (SPLiT), August 2006.

[56] Erika Mir Olimpiew and Hassan Gomaa. Model-based test design for soft-
ware product lines. 2008.

[57] Sebastian Oster, Andy Schürr, and Ingo Weisemöller. Towards software
product line testing using story driven modeling. In Proceedings of 6th In-
ternational Fujaba Days, pages 48–55, 2008.

[58] Kai Petersen, Robert Feldt, Mujtaba Shahid, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. Proceedings of the 12th
International Conference on Evaluation and Assessment in Software Engi-
neering, pages 71–80, 2008.

[59] Klaus Pohl, Günther Böckle, and Frank J. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, 1
edition, September 2005.

[60] Klaus Pohl and Andreas Metzger. Software product line testing. Communi-
cations of the ACM, 49:78, December 2006.

[61] V. Ramesh, Robert L. Glass, and Iris Vessey. Research in computer sci-
ence: an empirical study. Journal of Systems and Software, 70(1–2):165–
176, February 2004.

[62] Sacha Reis, Andreas Metzger, and Klaus Pohl. A reuse technique for perfor-
mance testing of software product lines. In Proceedings of the international
workshop on software product line testing. Mannheim University of Applied
Sciences, 2006.

[63] Sacha Reis, Andreas Metzger, and Klaus Pohl. Integration testing in soft-
ware product line engineering: a model-based technique. In Proceedings of
the 10th international conference on Fundamental approaches to software
engineering, pages 321–335, 2007.

[64] Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. Model-based
system testing of software product families. In Advanced Information Sys-
tems Engineering, volume 3520, pages 519–534. Springer Berlin Heidelberg,
2005.

[65] Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. Derivation of
domain test scenarios from activity diagrams. In Proceedings of the Interna-
tional Workshop on Product Line Engineering: The Early Steps: Planning,
Modeling, and Managing (PLEES’03), Erfurt, 2003.

References 159

[66] Andreas Reuys, Sacha Reis, Erik Kamsties, and Klaus Pohl. The ScenTED
method for testing software product lines. In Proceedings of the Software
Product Lines - Research Issues in Engineering and Management, pages
479–520, 2006.

[67] Kathrin D. Scheidemann. Optimizing the selection of representative con-
figurations in verification of evolving product lines of distributed embedded
systems. In Proceedings of the 10th International on Software Product Line
Conference (SPLC ’06), pages 75–84, 2006.

[68] Carl L. Shaulis. SalionâĂŹs confident approach to testing software product
lines. In Proceedings of International Conference on Product Line Testing
(SPLiT 04), 2004.

[69] Mary Shaw. What makes good research in software engineering. Inter-
national Journal on Software Tools for Technologyfor Technology Transfer
(STTT), 4:1–7, 2002.

[70] Mats Skoglund and Per Runeson. Reference-based search strategies in sys-
tematic reviews. In Proceedings of the 13th international conference on Eval-
uation and Assessment in Software Engineering (EASE’09), pages 31–40,
2009.

[71] Zoë Stephenson, Yuan Zhan, John Clark, and John Mcdermid. Test data
generation for product lines–a mutation testing approach. volume 3154 of
Lecture Notes in Computer Science. Heidelberg, 2004.

[72] Antti Tevanlinna. Product family testing with RITA. In Proceedings of
the Eleventh Nordic Workshop on Programming and Software Development
Tools and Techniques (NW- PER’2004), Turku, Finland, 2004.

[73] Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Product family testing:
a survey. SIGSOFT Software Engineering Notes, 29(2):12, March 2004.

[74] Tim Trew. What design policies must testers demand from product line ar-
chitects? In Proceedings of the International Workshop on Software Product
Line Testing, Technical Report: ALR-2004-031, pages 51–57. Avaya Labs,
2004.

[75] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid, and Don Batory. Testing
software product lines using incremental test generation. In Proceedings of
the 19th International Symposium on Software Reliability Engineering (IS-
SRE 2008), pages 249 –258, November 2008.

[76] Josef Weingärtner. Product family engineering and testing in the medical
domain–validation aspects. In Software Product-Family Engineering, num-
ber 2290 in Lecture Notes in Computer Science, pages 383–387. Springer
Berlin Heidelberg, January 2002.

160 Software Product Line Testing – A Systematic Mapping Study

[77] Stephan Weißleder, Dehla Sokenou, and Bernd-Holger Schlingloff. Reusing
state machines for automatic test generation in product lines. In Proceedings
1st Workshop on Model-based Testing in Practice (MoTiP’08), pages 19–28,
June 2008.

[78] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: a proposal and
a discussion. Requirements Engineering, 11(1):102–107, March 2006.

[79] Jamie J. Williams. Test case management of controls product line points
of variability. In International Workshop on Software Product Line Testing
(SPLiT), 2004.

[80] Hui Zeng, Wendy Zhang, and David Rine. Analysis of testing effort by
using core assets in software product line testing. In Proceedings of the
International Workshop on Software Product Line Testing, Technical Report:
ALR-2004-031, pages 1–6. Avaya Labs, 2004.

PAPER V

TEST OVERLAY IN AN
EMERGING SOFTWARE

PRODUCT LINE – AN
INDUSTRIAL CASE STUDY

Abstract

Context: In large software organizations with a product line development ap-
proach, system test planning and scope selection is a complex task. Due to re-
peated testing: across different testing levels, over time (test for regression) as
well as of different variants, the risk of redundant testing is large as well as the
risk of overlooking important tests, hidden by the huge amount of possible tests.
Aims: This study assesses the amount and type of overlaid manual testing across
feature, integration and system test in such context, it explores the causes of po-
tential redundancy and elaborates on how to provide decision support in terms of
visualization for the purpose of avoiding redundancy. Method: An in-depth case
study was launched including both qualitative and quantitative observations. Re-
sults: A high degree of test overlay is identified originating from distributed test
responsibilities, poor documentation and structure of test cases, parallel work and
insufficient delta analysis. The amount of test overlay depends on which level
of abstraction is studied. Conclusions: Avoiding redundancy requires tool sup-
port, e.g. visualization of test design coverage, test execution progress, priorities
of coverage items as well as visualized priorities of variants to support test case
selection.

Emelie Engström and Per Runeson
Journal of Information and Software Technology 55(3):582-594, 2013

162 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Figure 1: Testing in a product line context is repeated across three dimen-
sions [17]: testing within different test activities (e.g. unit tests, integration tests
and system tests), testing across versions (e.g. the continuous software updates),
testing of multiple variants (e.g. adaptations to different hardwares). Testing at
different levels covers the system from different perspectives (e.g. expectations,
different types and detail levels of requirements, design or code)

.

1 Introduction

In large software organizations with a product line development approach, selec-
tive testing of product variants is necessary in order to keep pace with the avail-
able time to market for new products. The number of testing combinations in such
variability-intensive contexts is extensive, since testing is repeated across three
dimensions [17]: 1) the traditional testing at different levels of abstraction (unit,
integration, system etc.), 2) regression testing as the system evolves over time, and
3) testing over different product variants, sharing a common code base, see Fig-
ure 1. This entails a high risk of redundancy in the testing and also the reverse, that
important aspects of the differences between the tested versions and variants are
overlooked. One of the major challenges in testing a software product line (SPL)
is the balancing of testing efforts across these three dimensions [6].

To handle the combinatorial explosion of possible tests in software product
line development, regression testing approaches are suggested to be applied not
only to versions but also to variants [6]. Regression test selection strategies aim
at optimizing the testing after a change by focusing the testing on parts that may
have been affected by a change.

We study the amount of test overlay (i.e. multiple tests of the same entity)
and the extent to which it is redundant (i.e. one could be replaced by the other)
in a large-scale real life software product line development context. An in-depth

2 Case study design 163

case study was launched including both qualitative and quantitative observations.
Recent systematic literature reviews on regression testing have indicated the lack
of industrial case studies [8, 24]. Most studies are done in the small, and hence
questions of scalability and usability are left unanswered [8]. We aimed to bridge
the gap between research and practice, for which a better understanding of the
real-life context is needed, and thus we launched a case study [18].

The studied case is the testing in the case company’s development of Android
embedded devices. For the in-depth analysis, the testing of one function is stud-
ied. The function exists in several product variants, depends on hardware variants,
evolves in different versions over time, and is adapted to continuous upgrades of
the Android platform. The development organization is complex, involving a glob-
ally distributed development, and the market situation involves delivery of tailored
product variants to customers, based on varying market and country specifica-
tions. From a business perspective a product line strategy is in place. However,
the technical and methodological benefits of the systematic reuse are not yet fully
exploited, hence we call it an emerging product line.

The focus in this study is on manual testing of functional and quality require-
ments, since this is the most personnel resource demanding testing. Manual testing
is characterized by a higher degree of creativity for the tester and less detailed doc-
umentation, although some general principles on test redundancy are shared with
automated testing. Relations between different test executions and implicit testing
goals are identified and expressed in terms of coverage items (CovI:s), captur-
ing different levels of abstraction with respect to functionality as well as different
purposes of tests. For the assessment of coverage and overlay, a method for visu-
alization of test execution progress is proposed and illustrated.

To our knowledge, no exploratory case studies of test overlay in a variability-
intensive context have been reported earlier. However, the complexity of the issue
is well known and is discussed from many different perspectives: software product
line testing [6], testing incrementally evolving software [10], testing of component
based systems [23], testing of web based applications [1] and of service oriented
architectures [3], as well as from a configuration management perspective [2, 21].

The article is organized as follows. Section 2 describes the design of the case
study, including the theoretical framework, the case study context and methods
used. Analysis criteria for the quantitative assessment of overlay are introduced in
Section 3 and the quantitative results are presented in section 4. Quantitative and
qualitative results are analyzed in Section 5 (Existence and causes of redundancy)
and Section 6 (Visualization). Section 7 concludes the findings of the study.

2 Case study design

The design of this case study is outlined below in line with the guidelines by Rune-
son et al. [18], and contains accordingly:

164 Test Overlay in an Emerging Software Product Line – An Industrial . . .

• the rationale for the study,

• the objectives and research questions,

• the case study context,

• a description of the case and its units of analysis,

• the theoretical frame of reference for the study

• propositions

• concepts studied and related measures

• procedures for the case study

• methods for data collection and analysis, and

• issues related to the validity of the study.

These items are presented in the following subsections.

2.1 Rationale
This work continues our research on regression testing and software product line
testing. We have reviewed the research on regression test selection [8] and prod-
uct line testing [6], conducted a survey on industrial practices [5], and applied
regression test selection procedures in-the-small [7, 9].

Several challenges for testing a software product line have been brought up by
researchers, one of the most urgent is how to handle the huge amount of possible
tests [6]. A common proposal for how to support test planning and test selection in
such variability-intensive context, is the application of regression testing strategies
to variants of the software, as well as to versions [20].

Even though regression testing has been researched to a large extent [8, 24],
the application of research outcomes to software engineering practice is not easily
done. The gap between research and practice is large, the evidence base is incon-
sistent and most techniques for regression test selection are evaluated off-line in
small scale experiments, hence questions of scalability and usability are not re-
searched [8]. In order to enable bridging the gap between research and practice, a
better understanding of the real-life context is needed, which is the motivation for
our choice of the case study methodology.

Our focus on test overlay is motivated by the underlying assumptions of most
regression testing techniques, i.e. it is possible to predict which test cases are most
likely to trigger failures that help detecting faults based on available information
on, for example, changes and test execution history. The regression tests focus
on changed parts and potential side effects, assuming that previous test results are
only valid for reuse if not related to these categories. Applied to a SPL-testing

2 Case study design 165

contexts and according to the 3D model in Figure 1, test results could also be
reused across test activities (e.g. between domain testing and application testing
as defined by Pohl et al. [15]) and variants based on the same assumptions. This
implies that a subset of the test cases is redundant, and that testing would be more
efficient if guided by an analysis of the differences between the system under test
and the previously tested version or variant of the system.

2.2 Objective

Our objective is to investigate the phenomenon of “test overlay” in a large-scale
product line context, for the purpose of gaining a better understanding of the po-
tential for selective testing approaches in this context and identification of how to
guide test planning and selection based on regression testing concepts. Three main
questions are investigated:

RQ1 How much testing in a variability-intensive context is overlaid, and which is
redundant? – In a SPL context testing is repeated across abstraction levels,
evolution over time (versions) and over space (variants) which could imply
that multiple testing is done on the same items. How much of the overlaid
testing is really redundant?

RQ2 When and why does overlaid testing appear? – If overlaid testing exist,
which factors are causing the overlaid testing?

RQ3 How can visualization support test scoping decisions? – We assume that
visualization is a powerful tool when handling large volumes of data, see
for example Zaidman et al. [25], which is the case for SPL testing. Thus it
is relevant to study prerequisites for visualization in this context.

The first research question is mostly descriptive, the second is explanatory,
while the third question comprises an improving component [18].

2.3 Context

This section presents the study context, as much as we can do for confidentiality
reasons. The case study is conducted at a company developing mobile devices with
embedded real-time software in a domain which is very competitive both regarding
quality and innovation. The development process is highly iterative, and the same
software basis is used in several product versions and variants. The facets of the
context is described below according to the framework proposed by Petersen and
Wohlin [14]. The terminology in the context description is changed to align to
generally accepted definitions, if needed.

166 Test Overlay in an Emerging Software Product Line – An Industrial . . .

!"#"$%&' ()"*+,*'

!"#"$%"&'()*+,-$.()' /-(0,'1&2$'3$+"&

-)"$%./$'

0"!+/#'

/-(0,'1&&'()*+,-$.()' 1$/23*.'

4))&+*%5/#('

/#$4(-5&'()*+,-$.()' 1&%6/$7'

1&%6/$7'8/9:%$"'

1&%6/$7';%$2:%$"'

Figure 2: Configuration view of the product line under study.

Products and market

This section describes the different types of variability and commonality in our
case. The products under study are mobile devices with embedded real-time soft-
ware. The products are based on the Android platform, which in itself comprises
more than 10 million lines of code. The platform is adapted and extended to com-
prise more and specialized features, and to fit the specific hardware of the device.
Instances of specific combinations of hardware and software platforms are referred
to as platform configurations in Figure 2.

The product line products, developed in a software project, comprise differ-
ent product variants (about 10), called product configurations in Figure 2. The
products are in turn customized for a number of different customers and market
segments (hundreds) which have different software requirements, and are called
release configurations. Each release is packaged in a product package, including
physical packaging, defaults settings etc. Several (a handful) projects are ongoing
in parallel and software is reused across projects as well.

The quality requirements are traditionally high in the telecom domain, espe-
cially regarding performance and reliability [11], and since the market is very com-
petitive and fast changing, on time delivery is crucial.

Organization and process

The development organization is globally distributed, applies incremental devel-
opment practices, and distributes testing tasks over different organizational units.
In more detail:

2 Case study design 167

• Incremental development – The software development process is an incre-
mental process, where each feature is developed and integrated in small it-
erations. Thus there is a need for continuous regression testing during de-
velopment.

• Organizational distribution – The software development is distributed over
three organizational units (core software, application software and product
composition, see I in Figure 3), where they primarily focus on platform,
product and release configurations, respectively, as defined in Figure 2. Ta-
ble 1 shows the main foci with respect to domain and application testing
for the different organizational units. Within the core software and applica-
tion software organizations, the software is divided into different functional
areas and for each area there is a team of developers and testers.

• Global distribution – Parts of the organizations are distributed over three
continents.

• Test activities – Testing in each of the core software and application software
organizations are conducted in (at least) three main test activities, which
involves repeated testing of common parts. Feature testing (unit testing,
structural and functional testing) are carried out by the functional area teams
while Integration testing and system testing are carried out by dedicated test
teams. Domain testing [15] of both platform commonality and product com-
monality, see Table 1 are mainly conducted within these two units. Within
the third organization, at the product composition level, all product configu-
rations are tested with system tests and all product packages are acceptance
tested. Regression testing is conducted within all test activities and organi-
zational units.

• Test practices – There is no centralized strategy for neither test case design
nor test selection, only guidelines and working practices for organizational
units exist. For each new feature, several new test cases are created based
on the feature requirements. Test cases are selected based on practitioners’
experience.

Tools

All test case descriptions and the execution data are stored in a commercial tool,
HP’s Quality Center (QC). QC is a web based test database that supports essen-
tial aspects of test management. Test planning, test design and test reporting is
performed in the QC environment.

Test execution is done both manually and automatically, the latter using a com-
bination of proprietary and in-house tools. However, this study focuses only on the
manual test execution.

168 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Table 1: The foci on domain versus application testing [15] within the main test
activities of the organizational units. Domain and application testing of platform
variants are denoted DomPl and AppPl respectively and corresponding denotations
for product variants are DomPr and AppPr respectively.

Core SW
org.

Application SW
org.

Product composition
org.

Feature testing DomPl,
DomPr

DomPl, DomPr —

Integration testing DomPl,
DomPr

DomPl, DomPr —

System testing AppPl AppPl AppPl, DomPr
Acceptance testing — — AppPr

2.4 Case and units of analysis

This study is a single-case study [18] in the emerging product line development
context, see Figure 3, where we define two study contexts, one of which is a sub-
set of the other. The larger context, the case development context, has the three
development organizations as its main unit of analysis. The sub-context is scoped
down to the sub-case function development context, which scopes one single func-
tion, tested from different perspectives across CovIs and organizations.

The function selected for the sub-case context is not aimed to be representative
in any means. It was chosen to include functionality which is complex and chal-
lenging enough to span over several components and product variants, and cause
interaction with several organizational units. This is illustrated in Figure 3. The
selected function is one out of five main functions of a feature, which in turn is a
bring up to the current project based on an application developed at another site.
The size of the feature is about 35.000 LOC.

The main units of analysis are the three main organizational units: Core soft-
ware, Application software and Product composition. Each organization conducts
several superior testing activities (feature tests, integration tests, and system tests)
and for each superior test activity, several sub-test activities with differences in
scope and focus are carried out, see Figure 3. The sub-units of analysis represents
several test activities and organizational units. The activities are selected because
of their frequency and costliness in comparison to other test activities within the
same superior test activity. Since the studied function belongs to one of the func-
tional areas of Application software development and is not explicitly tested at
Core software development, this organizational unit is not part of the sub-case.
The sub-case is further limited to one project and two platform variants.

In summary, the case is a space, set up by the four dimensions:

• Part of product

2 Case study design 169

Sub
-ca

se

va
ria

bil
ity

Sub-‐	
case	

Sub-case function

S
ub

-c
as

e
pr

oc
es

s

I
II

III

IV

V

VI

Figure 3: The case covers three organizational units and four superior test activ-
ities (I). The scope of the sub-case is delimited to one single function (III) which
is one out of five main functions of a feature area (II). Furthermore the sub-case
comprises two organizational units and three levels of test (I) and a share of the
variability, i.e. one out of a handful parallel projects (IV); two product variants (V)
and about half of the available product configurations (VI).

• Organizational units (core software, application software and product com-
position)

• Test activities (feature test, integration test and system test), and

• Configurations (platform, product variant, release and product packages)

The feature testing is carried out by the functional area team, which consists
of 17 people, all of whom are working with both development and test and have
a common responsibility for the quality of the feature. A team of ten testers have
the responsibility of integration testing. In the product composition organization,
testing is distributed over many teams specialized on different markets.

170 Test Overlay in an Emerging Software Product Line – An Industrial . . .

In the case study, testing is studied under a period of 22 weeks (from bring
up of the source to release of the feature to which it belongs). The test overlay
is analyzed at five different levels of abstraction of the test cases, as explained in
Section 3. All feature testing is included in the study, as well as the major part of
the integration testing (the commonality testing before realization into 6 variants)
and a minor part of the testing at product level.

2.5 Theoretical frame of references
In this work, we frame the research based on Pohl et al’s concepts of common-
ality and variability. SPL engineering offers a systematic approach for handling
variability and for parallel development of several product variants derived from
a common base. Systematic reuse in terms of testing could refer to reuse of test
artifacts e.g. test models or test cases or to reuse of test results.

In our work, we extend the testing part of the Pohl model to include three
dimensions for test variability, see Figure 1 [17]:

1. The traditional testing at different levels (unit, integration, system etc.)

2. Regression testing as the system evolves over time, and

3. Testing over the variation in the product space.

The variability across the three dimensions entail a high risk of costly redundancy
in the testing and also the reverse: that important aspects of the differences be-
tween the tested artifacts are overlooked. However, in the studied case, the pro-
cesses for commonality and variability are not distinctly separated from each other
as in Pohl’s conceptual model, which seems to be the case in many real-life prod-
uct line processes. However, some good examples are presented by van der Linden
et al. [12].

2.6 Propositions
Propositions are predictions about the world that may be deduced logically from
theory [19]. Below, we define propositions for the current study. P1 is derived from
the theory in Section 2.5 and P2 is a basic assumption about redundant tests. P3–P8
cannot be derived from an explicit theory, but rather from our general assumptions
underpinning the study. Advised by Verner et al. [22] we link propositions to
research questions.

P1 - The amount of overlaid testing is high in a product line context [RQ1] P2
- Redundant tests do not detect new faults [RQ1] P3 - Distribution of test respon-
sibilities causes overlaid testing [RQ2] P4 - Parallel development causes overlaid
testing [RQ2] P5 - Insufficient delta analysis causes redundant testing [RQ2] P6
- Poor documentation and structure cause redundant testing [RQ2] P7 - Redun-
dant testing can be avoided if test selection is supported by visualization of test

2 Case study design 171

data. [RQ3] P8 - The visualization must be correct, understandable and relevant,
in order to fulfill its purpose [RQ3]

2.7 Concepts and measures

In this section, we define some concepts and terms which we use throughout the
paper.

A software product line is a “set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in
a prescribed way" [4]. An emerging software product line is one where the “pre-
scribed way” is not well defined yet.

Commonality denotes the shared set of features while variability denotes the
possible specializations.

A coverage item (CovI) is an entity describing the scope of a test or set of
tests. All test cases are designed to cover at least one CovI. The scope is defined
in terms of part of product (e.g. feature) and test purpose (e.g. response time).
A coverage item may be defined hierarchically, i.e. a high-level coverage item
consists of several low-level coverage items.

A test case executes a specific version and variant of the software system or
subsystem. The delta denotes the change between two versions or the difference
between two variants.

Test overlay refers to a test case, which partly or fully covers another test case.
Test design overlay refers to multiple test cases covering the same coverage item,
although they may cover different coverage items at a less abstract level. Test
execution overlay refers to multiple executions of test cases, covering the same
coverage item.

Redundant tests refers to overlaid test cases where any differences between
the tests do not affect the outcome of the tests. Test design redundancy refers to
multiple test cases designed to cover the same coverage item at the lowest level
of abstraction. Test execution redundancy refers to multiple test executions, where
neither differences in coverage items nor delta between test objects affect the out-
come of the test.

2.8 Data collection and analysis

The case study comprises both qualitative and quantitative observations, and data
collection and analysis is carried out in an iterative manner, successively increasing
our understanding about the case. Five different phases describe the data collec-
tion and analysis procedure from our starting point to the conclusions drawn, see
Figure 4.

In the first phase the general context was described and explored for the pur-
pose of framing the case study and increasing our understanding of the general

172 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Phase 1
descriptive,
exploratory
explanatory

Phase 3 descriptive,
explanatory

Phase 2
exploratory

Propositions

Analysis
critera

Case
description,
Hypotheses
RQ1, RQ2

Results
RQ1, RQ2

Phase 4
improving

Phase 5
validating

Hypothesis
RQ3

Results
RQ3

Interviews

Test data
analysis

Presentation
and

discussion

Figure 4: The different phases of the case study

case, product line testing at the case company. Interviews were held with nine
persons from different units of the organization: one from the core software devel-
opment organization, five from the application software development organization
(of which two were from the feature team responsible for the sub-case function)
and three from the product composition organization. The interviewees covered a
variation of roles: three test architects, three test leaders, one software architect,
one configuration manager, and one line manager, see Table 2. The interviews had
the format of open discussions covering a number of high level topics listed in Ta-
ble 2. During the interviews notes were taken and some interviews were recorded
for later reference, but not transcribed. Process documentation and training mate-
rial were also a source of information in the first phase.

A model describing the case context, was created and gradually improved for
each interview, eventually leading to Figures 2 and 3. This was done based on
notes from interviews, the documentation referred to in each interview, and the
responses to the model as it was presented to the interviewees. In addition to the
case description, the outcome of this phase was the scoping and final definition
of the sub-case and hypotheses regarding the documented test executions in the
sub-case. The hypotheses originate from our initial propositions as well as from
the observations in the first phase.

In the second phase the sub-case was further explored. The test management

2 Case study design 173

Table 2: Interviews held in the study, with different roles in the organization:
Configuration manager = CM, Manager = M, System architect = SA, Test lead =
TL, Test architect = TA.

Phase Topic Core
SW org.

Application
SW org.:

Application SW
org.:

Product
composition

feature testing integration testing org.
1 Test strategies and

activities
TA TL TA TA

1 Variability space TA SA, TL CM, TA M, TL, TA
1 Risk for test redun-

dancy
TA TL TL, TA TA

1 Configuration man-
agement activities

CM M, TA

1 Challenges in release
management

M

1 Branching strategies CM M, TA

2 Overview of feature SA, TL
2 Test case design TL TL
2 Test selection TL TA TL
2 Test documentation TL TA TL

database was manually searched for test cases and test executions related to the
selected case. The test documentation was analyzed with an exploratory approach:

1. Search for test cases, testing the function

2. Identify parameters of variability in test executions

3. Classify test cases with respect to those parameters

4. Define relevant dimensions of coverage items with respect to identified classes
of test cases

5. Identify a relevant abstraction hierarchy of coverage items with respect to
identified classes of test cases

In addition, three of the interviewees were asked additional questions about the
sub-case.

The outcome of this step was the analysis criteria, used for testing the hy-
potheses from the previous phase. More details and the result of this step is given
in Section 3.

In phase three, test overlay was assessed from different perspectives and at
different abstraction levels (RQ1). This was done by applying the analysis crite-
ria from phase two to the test execution data. The hypotheses together with this

174 Test Overlay in an Emerging Software Product Line – An Industrial . . .

quantitative assessment of different types of test overlay (RQ2), see results in Sec-
tion 4, formed the basis for the qualitative analysis in Section 5. This analysis was
inspired by Miles and Huberman’s graph models [13].

In the fourth phase, proposals for visualization of test coverage and overlay
(RQ3) are derived. These proposals originate from the analysis criteria (how to
capture the actual purposes of the tests?), the test documentation (which informa-
tion is available?), and our conclusions regarding overlay and redundancy (RQ 1
and RQ2).

The proposals from phase four are partly validated in the fifth phase when
presenting our results at three different occasions for different test architects and
managers. The quantitative assessment were presented as well as our proposals for
visualization. The responses and questions from the practitioners given at these
occasions were also part of the input to the study.

2.9 Validity
This section discusses possible threats to the validity of the study, based on Rune-
son et al.’s guidelines [18], and reports actions taken to reduce the threats, where
feasible.

Construct validity concerns the match or mismatch between the study context
and the researcher’s context and research questions. Of special interest to construct
validity is the definitions of terms and concepts in the case context, vs. the research
context. The authors of this paper have both spent considerable time in the case
study context to adopt their terminology, and then transformed it into generally
accepted terms in the research domain. Specific terms of interest include:

• Coverage, which we refer to as design and execution coverage, respectively,
which is fairly well accepted in the case, although not perfectly.

• Coverage item, which here is a more general term than used in research,
where it is often related to code coverage.

• Redundancy, which is used in a general sense in the case, while we here
have a very precise definition of redundancy.

• Software product line, which in the software engineering literature is more
of a technical perspective, while in this context it is very much a market
approach.

We have continuously adjusted our understanding of the case terminology re-
lated to the research terminology in order to be as precise as possible. Further, the
combined use of qualitative and quantitative data helps triangulating the observa-
tions and improve the construct validity.

Reliability concerns the extent to which the research is dependent on specific
researchers. This is a threat in any study using qualitative (and quantitative!) data.

3 Analysis criteria 175

The observations are of course filtered through the perception and knowledge pro-
file of the researchers. Counteractions to these threats are that two researchers are
involved in the study, and the observations are triangulated with quantitative and
qualitative data. Another threat to the reliability is that the study design is very
flexible, with several options in every step of the study. However, the overall re-
search goal is kept the same during the course of the study, ensuring that the overall
results of the study are reliable, although parts of the study would most probably
have be done differently with another set of researchers. Furthermore, within the
organization, they conducted a more pragmatic study in parallel on the topic, and
the results from that study is well in line with this, strengthening the reliability of
this study.

Internal validity is concerned with casual relationships among factors. In our
case, the quantitative analysis is not interpreted in isolation, and it is not even
feasible to infer statistical analysis, due to the incompleteness of the data. The
analyses about casual relationships are instead based on qualitative analysis to
generate hypotheses, which are validated using quantitative data. Feeding back the
analysis results to interviewees is another action taken to reduce internal validity
threats.

External validity regards the ability to generalize beyond the studied case.
Each case of course has their own specifics, and in that sense there is no gen-
eral case. However, some key characteristics of the case may be general and, for
other cases with similar contexts, the results may be used as a reference. In order
to allow external comparison, we have presented the context as clearly as possible,
given the confidentiality constraints we have. On the risk side, there are so many
variation factors in the context, that we may have focused on other than the key
ones. Only replicated studies may help assessing the external validity of our study.

3 Analysis criteria

Based on our initial, exploratory study phase, the criteria for the analysis of the
case are worked out. The analysis criteria include concept and terms which are
assumed to be relevant for the deeper analysis of the case, as defined in Section 2.7.

3.1 Identification of test purposes

The basis for our analysis of overlay is the coverage items, i.e. the parts and aspects
of the system which the testing is supposed to cover, and it is crucial for the rele-
vance of our findings that our identification of coverage items are in line with the
testers’ purposes. We wanted to analyze test overlay at several levels of abstraction
and from different perspectives. For the purpose of finding relevant definitions of
coverage items, all test cases were classified with respect to their purpose and fo-
cus and mapped into a hierarchical structure. This was done in cooperation with

176 Test Overlay in an Emerging Software Product Line – An Industrial . . .

the interviewees in the second phase of the study, see Table 2. Following is a list
of variation factors of the executed test cases:

1. Focus – Which functionality is in focus.

2. Purpose of the test – Six different types of tests were found: duration, func-
tionality, interoperability, performance, power consumption and stress tests.

3. Interaction – Except for plain tests of the case function or its variants, inter-
action with ten other important functions were tested.

4. Abstraction level – There is always a possibility to detail the testing further
and add variations to a test case.

5. Software version – New versions of the software are released for testing,
approximately twice a week.

6. Hardware – Testing on two different product variants is covered by the case.

We decided to include the first four variation factors in our definition of the
coverage item while the latter two are considered variations in the test object and
as such possible subjects for delta analysis with respect to the coverage items.

3.2 Definition of coverage items
The four identified factors of variation can be described by two-dimensional cov-
erage items. One dimension represents the focus of the test, such as a specific
function, and the second represents the purpose of the test which could be, for ex-
ample, testing the interaction with other features. The two parameters, focus and
purpose, are in turn hierarchical values, see Figures 5 and 6, which enable a pair-
wise coverage analysis of general and specific test requirements at different levels
of abstraction.

3.3 Definition of data points for analysis
The 192 test cases in our sub-case cover coverage items distributed over five differ-
ent levels of abstraction. This is illustrated in Table 3, where the columns represent
the different levels of the ‘purpose’ parameter and the rows represent the levels of
the ‘focus’ parameter. The numbers in the cells denote the number of test cases,
explicitly designed to cover the corresponding pair of parameter values. The ba-
sis for our analysis (i.e. the data points) is the five different levels covered by test
cases. Note that in order to retrieve the total number of test cases covering a pair
of parameter values, the test cases designed for lower levels are included, as well
as the test cases with no further details defined. Purpose level 1 and Focus level 3
(P1@F3) is thus covered by 192 test cases while P2@F4 is only covered by 2 test
cases, see Table 3.

3 Analysis criteria 177

Table 3: Number of test cases explicitly designed for each coverage item, com-
posed of a ‘focus’ and a ‘purpose’ parameter. The rows of the table represent the
levels of the ‘focus’ parameter and the columns represent the levels of the ‘pur-
pose’ parameter.

Level Purpose Purpose Purpose
level 1 (P1) level 2 (P2) level 3 (P3) Total

Name In
te

ra
ct

io
n

In
te

ro
pe

ra
bi

lit
y

5
qu

al
ity

at
tri

bu
te

s

10
in

te
ra

ct
in

g
fu

nc
tio

ns

40
br

an
ds

11
2

m
od

el
s

Fo
cu

s
3 GUI 0 0 10 2 0 0 12

Other application 0 0 1 0 0 1
Bluetooth 0 0 4 0 0 59 63
Mem1/Mem2 0 1 16 15 4 53 89

Fo
cu

s
4 8 GUI scenarios 0 0 13 2 0 0 15

4 other applications 0 0 8 0 0 0 8
Single/Multiple 0 0 4 0 0 0 4

Total 0 1 56 19 4 112 192

178 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Figure 5: The hierarchical structure of the ‘focus’ parameter in a coverage item.
The first level of details contains the divisions of the system in functional areas.
Level 2 contains the main functions of a functional area. The ‘sub-case function’
node at level 2 is included in the analysis in this study.

The coverage item definitions used for this analysis is not a general proposal
for structuring tests but a means to capture the testing goals within this context.

4 Quantitative data

In total we found 517 test executions of 192 different test cases, which tested the
case function, over a period of 22 weeks, see Figure 7. Given the narrow scope of
the case function under study, this is a high number of test executions and it was far
more than expected by the test managers. The failure rate is generally low: 15 of
the 517 test executions failed, with a concentration to week 3 where 11 executions
failed in the system testing. Feature testing and integration testing run only one
failing execution each. The quantitative data is summarized in Table 4 and the data
for pairwise overlay between activities is summarized in Table 5.

4.1 Overlay in test design

We found 192 different test cases, testing the case function. At the highest level of
coverage abstraction (Purpose level 1 and Focus level 3 – P1@F3), these 192 test
cases cover 19 unique coverage items, see Figure 8. Hence, 90% of the test cases
could be considered overlaid since they do not cover any unique coverage items.
Out of the test cases explicitly designed at this level 75% are redundant according
to our definition (see Section 2.7) In Table 4 it can be seen that Feature testing
covers 7 CovI:s with 18 test cases, integration testing covers 11 CovI:s with 33
test cases and system testing covers 15 coverage items with 141 test cases at this
level. Furthermore the design overlay between test activities at this level is 40%.

4 Quantitative data 179

Table 4: Coverage data and overlay within each test activity for the coverage
items. Legend: F = Feature testing, I = Integration testing, S = System testing, Tot
= Total, O = Overlay between test activies

Level Purpose level 1 (P1) Purpose level 2 (P2) Purpose level 3 (P3)
F I S Tot O F I S Tot O F I S Tot O

Fo
cu

s
le

ve
l3

(F
3)

#Executions 91 191 235 517 12 83 180 275 0 0 172 172
#Failed executions 1 1 13 15 0 1 13 14 0 0 13 13
Failure rate 1% 1% 6% 3% 0% 1% 7% 5% 0% 0% 8% 8%
#TC:s 18 33 141 192 3 15 117 135 0 0 112 112
#Covered CovI:s 7 11 15 19 14 3 10 43 54 2 0 0 112 112 0
Coverage 20% 31% 43% 54% 74% 1% 4% 17% 22% 1% 0% 0% 20% 20% 0%
Design overlay 61% 67% 89% 90% 8% 0% 33% 63% 60% 2% 0% 0% 0% 0%
Design redundancy 43% 71% 56% 75% 25% 0% 31% 0% 24% 20% 0% 0% 0% 0%
Execution overlay 92% 94% 94% 96% 75% 88% 76% 80% 0% 0% 35% 35%

Fo
cu

s
le

ve
l4

(F
4)

#Executions 31 85 18 134 0 12 0 12
#Failed executions 0 0 0 0 0 0 0 0
Failure rate 0% 0% 0% 0% 0% 0% 0% 0%
#TC:s 8 13 6 27 0 2 0 2
#Covered Items 8 12 5 20 5 0 2 0 2 0
Coverage 9% 13% 5% 22% 25% 0% 0% 0% 0% 0%
Design overlay 0% 8% 17% 26% 71% 0% 0% 0% 0%
Design redundancy 0% 9% 17% 28% 71% 0% 0% 0% 0%
Execution overlay 74% 86% 72% 85% 0% 83% 0% 83%

180 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Figure 6: The hierarchical structure of the ‘purpose’ parameter in a coverage
item. The first level of abstraction includes the main quality attributes. At level
2 the ‘Interaction’ node is extended with different interacting functionalities and
the ‘Interoperability’ node is extended with different brands of the two memory
types and of the communicating devices. These nodes are then extended further
with details on different models. Here the root node represents the scope of the
analysis.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	

System	 test	

Integra7on	 test	

Feature	 test	

Figure 7: Test executions per test activity and week.

A large share of the design overlay identified at the highest level of abstraction
(P1@F3) can be attributed to the variability of the test cases, i.e. most of the test
cases are different variants at a more detailed level of coverage analysis. There
are, for example, 112 different system test cases designed at level P3@F3 to test
the function in terms of compatibility with different models of devices and types
and sizes of memories.

Decreasing the abstraction level of the ‘purpose’ parameter to P3@F3, there
is no overlay between the two test activities: integration and system testing (see
Table 4), and no overlay within feature testing (see Table 5). There is still design
overlay within integration testing and system testing at this level, 33% and 63%,
respectively (see Table 4).

5 Existence and causes of test overlay – RQ1 and RQ2 181

Table 5: Pairwise test design overlay between test activities for each of the five
coverage items.

Coverage items Overlay between pairs Unique coverage
F/I I/S S/F F I S

P1@F3 13% 44% 29% 14% 18% 20%
P1@F4 5% 13% 18% 63% 75% 20%
P2@F3 8% 0% 5% 33% 100% 98%
P2@F4 0% 0% NA NA 100% NA
P3@F3 NA 0% 0% NA NA 100%

4.2 Overlay in test execution

Overlay in test execution could origin both in overlay in the test design and the
re-execution of a test case. However the overlaid test is not redundant if it has
been affected by a change since the last execution or if the delta between the vari-
ants have no effect on the execution. In this case study we did not have informa-
tion about the delta between versions, and hence we could only measure an upper
bound of redundancy.

At the highest level of abstraction (P1@F3), 517 test executions tested the case
function. 96% of these are overlaid. The share of overlaid tests remains high even
at lower abstraction levels indicating a possibility to reduce a large amount of tests
due to redundancy.

5 Existence and causes of test overlay – RQ1
and RQ2

This chapter reports the analysis related to the research questions on existence and
causes of test overlay.

5.1 Amount of test overlay

The context for our main case under study showed to be very variability-intensive,
as reported in Section 2.3, and we expected a large amount of the testing to be
overlaid (Proposition 1). This belief was also shared by most of the interviewees.
All but one of the nine interviewees expressed a feeling that a lot of overlay testing
was carried out and they helped us identify critical test activities for the in-depth
analysis. This led us to state two hypotheses: H1) Among the test executions
a large share is overlaid and potentially redundant and consequently: H2) the
testing carried out is inefficient, since redundant test cases are not expected to
detect new faults (Proposition 2).

182 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Figure 8: Coverage items covered by the feature testing (blue outline), integration
testing (red outline) and product testing (green outline). Numbers within parenthe-
ses is the number of designed test cases and the numbers without is the executions.

Both hypotheses were to some extent confirmed by our quantitative data. Four
out of five data points show more than 80% overlay, i.e. 80% of the test executions
were re-executions of tests for coverage items covered previously in the project.
The remaining data point shows a total overlay of 35%. The data point with less
overlay represents the lowest level of compatibility tests with a lot of variant spe-
cific test cases. Note, however, that this is just an upper limit for the redundancy
according to our criteria, defined in Section 3. No consideration has been taken
to the changes between versions or the delta between product variants (two prod-
uct variants were included in the analysis). The numbers indicate where improved
change impact analysis or delta analysis could be beneficial. The failure rate is
low as well: 1% at feature testing and integration testing and 6% at system testing.
The concentration of failed executions to one test session and four variants on the
memories at analysis level P2@F3 is also an indicator of test redundancy.

5.2 Factors causing overlay
In the interviews, several factors increasing the test overlay, and consequently the
risk for redundant testing, were pointed out:

1. Absence of complete requirements specifications – “Requirements are not
very detailed; main requirements are features from which user stories are

5 Existence and causes of test overlay – RQ1 and RQ2 183

developed by the feature team in cooperation with the scope owner." (Sys-
tem architect – Feature testing)

2. Redundancy in requirements – “Beside the user stories, detailed technical
specifications (Req:s) exist. This combination introduces redundancy in re-
quirements. Quality requirements are handled in another [organizational
unit] which in turn put requirements on this [organizational unit]. Require-
ments specification is extended post hoc based on operators error reports."
(System architect – Feature testing)

3. Legacy – The feature test suite was originally developed at another site. Due
to frequent changes in the organization, responsibilities change.

4. System testing of generic areas – “Product testing do a lot of duplicate test-
ing in all generic areas since they are supposed to work with the customer
requirements. Many of the customer requirements are the same." (Test Ar-
chitect – Core software) “With Android a lot of the product verification gets
double since the risk in customization does no longer exist. (Test Leader –
Integration testing)

5. The use of static test suites – Integration testing repeatedly runs the same
test suite.

6. Parallel testing – “They test the platform. We test it through our application
and at the same time the whole is tested in the main branch." (Test Leader
– Feature testing) “Unless the customer have specific customizations for an
application, they can reuse test results from application software and from
core software. (Test Architect – Core software)

These factors are in line with our initial propositions and form a basis for our
continued analysis together with the other qualitative data (process documentation
and test artifacts). A chain of causes and effects which are relevant in our sub-case
was outlined, see Figure 9, and lead to some additional hypotheses regarding our
quantitative data: H3–H6 in Table 6.

The lack of complete requirements specifications in combination with a con-
stantly changing organization is interpreted as “poor documentation and structure"
(Proposition 6) and as such a cause of test design overlay in feature testing. The
constant evolution of organization, processes and tools affects all three units of
analysis and consequently they all have to deal with legacy, which in turn increases
the inconsistency in test documentation which may also count as “poor documen-
tation and structure". Integration testing and system testing is distributed between
several teams of testers which further increases the risk of design overlay within
those two activities (Proposition 3). According to the same proposition there is
overlay between all three test activities.

Two types of delta analysis is referred to as insufficient in the interviews: the
change impact analysis in integration testing and the commonality analysis in the

184 Test Overlay in an Emerging Software Product Line – An Industrial . . .

Testing of generic areas (S)

Evolving organization (F,I,S)

Distribution of test
responsibilities (I, S, O)

Poor documentation
and structure

Legacy

Execution
redundancy

Absence of complete requirements
specification available for testers (F)

Inconsistent documentation of
test cases (I)

Redundancy in requirements (F)

Insufficient commonality
analysis

Use of static test suites for
regression testing (F, I)

Insufficient change impact
analysis

Insufficient
delta analysis

Design
redundancy

Parallel
work (O)

Figure 9: Graph illustrating the hypotheses derived from the qualitative analysis.
Text in bold represents our initial propositions. Letters within parentheses denote
which units of analysis the hypotheses concern. Arrows A1–13 are linked to the
hypotheses in Table 6. Dashed arrows indicate relations partly contradicted by the
quantitative data. F = Feature testing, I= Integration testing, S = System testing, O
= Overlay between test activities.

system testing. Thus there is an increased risk for execution redundancy within
these two activities (Proposition 5). Since a static test suite was used for regres-
sion testing in feature testing as well, this risk is present there too. The parallel
work lead to execution overlay (Proposition 4) only if there is an overlay in design
between the test activities.

In addition to the hypotheses in Table 6, interviewees expressed their assump-
tions. It was explicitly said in the interviews that there is a high degree of design
overlay between feature testing and integration testing (in line with H4a) and that
the problem of test overlay was solved within system testing thanks to a well de-
fined process and good communication (in contrast with H4b and H4c).

5.3 Test of hypotheses

The analysis in this section is structured according to our initial propositions (i.e.
nodes with bold text in the graph, see Figure 9). Each hypothesis is related to one

5 Existence and causes of test overlay – RQ1 and RQ2 185

Table 6: List of generated hypotheses linked to the arrows, A1–13, in Figure 9.

H1 Among the test executions a large share is overlaid. (A1–3)
H2 The testing carried out is inefficient. (A1–3)
H3 There is a high degree of design overlay within each of the test levels (A7, A12, A13): a) feature

testing (A9, A11) b) integration testing (A6, A10) and c) system testing (A6).
H4 There is a high degree of design overlay between each pair of test activities: a) feature testing

vs. integration testing b) integration testing vs system testing and c)system testing vs. feature
testing.(A6)

H5 There is a high degree of execution overlay within each of the test activities: a) feature testing (A5,
A8) b) integration testing (A5, A8) and c) system testing (A4).

H6 If H4 holds there is a high degree of execution overlay (A3)

or more chains of arrows within the graph and one arrow may relate to more than
one hypothesis.

Distribution of test responsibilities

The proposition that distribution of test responsibilities causes overlaid testing (P3)
is not unconditionally true. Even though a general overlay in test design is con-
firmed by the quantitative data, see Design overlay in Table 4, there is some vari-
ation between abstraction levels as well as between test activities. The overlay
within a test activity is more frequent than the overlay between test activities for
two out of three data points, where design overlay is present. The total design
overlay at level P1@F3 is 90% of which only 8% can be attributed to overlay
between the test activities. On the other hand do these 8% represent 74% of the
reached coverage. At level P1@F4 the relationships are the reverse: 71% of the
design overlay can be attributed to overlay between test activities but only 25% of
the reached coverage.

To test hypothesis H4, the share of test overlay between the test activities is
analyzed with respect to the reached coverage. Pairwise overlay is analyzed for
three pairs of testactivities (feature testing vs. integration testing, integration test-
ing vs. system testing and system test vs. feature testing) and is related to the
the aggregated coverage of the two overlaid levels analyzed. We also analyze the
share of unique coverage in relation to the total coverage within each test activ-
ity, see Table 5. Pairwise overlay occurs mainly at the highest abstraction levels
i.e. the general test cases overlay between the different test activities while the de-
tailed test cases varies in focus between the test activities. Both integration testing
and system testing have 100% unique coverage at their lowest level of abstraction
(detailed interaction tests at integration testing and compatibility tests at system
testing). Feature testing does not reach to more than 63% of unique coverage at
any level.

186 Test Overlay in an Emerging Software Product Line – An Industrial . . .

In our sub case, organizational distribution seems to have greater impact on
overlay than geographical. Feature testing and integration testing both belong to
the application software organization, while system testing belongs to the prod-
uct composition organization. Both integration testing and system testing are dis-
tributed globally. At abstraction level P1@F3 the share of unique coverage is low
for all three test activities (between 14% and 20%) i.e. most of the covered CovI:s
at this abstraction level is covered within another test activity as well, which sup-
ports H4 to some extent. H4b and H4c are supported, while H4a is not, which is
in contrast with the interviewees’ intuitions. The pairwise design overlay between
feature testing and integration testing is less than 15% at all abstraction levels. The
other two pairs has larger overlay at the higher abstraction level; between 29–44%.

The geographical distribution of system tests does not seem to prevent the
different teams to design non-overlaying sets of test cases. Analysis at the lowest
level of abstraction shows no overlay within system testing, contradicting H3c but
33% overlay within integration testing, see Table 4. This weak support of H3b is
partly explained by the inconsistent document structure, see Section 5.3.

Documentation and structure

The proposition that poor documentation and structure causes redundancy (P6) is
not unconditionally true. At the highest abstraction level of analysis (P1@F3) H3
is confirmed: There is 61% overlaid feature test cases; 67% overlaid integration
test cases, and 89% overlaid system test cases, see Table 4. However if decreasing
the level of abstraction the data does not fully support the hypothesis. No inter-
nally overlaid (i.e. overlay within a test activity) feature tests exist at this abstrac-
tion level (P2@F3). This means that H3a is not supported. Absence of complete
requirements does not necessarily cause redundancy, neither does redundancy in
the requirements. From the perspective of a higher abstraction level (the manager’s
or test leader’s perspective) the testing may be unbalanced with respect to the cov-
erage items but not much is redundant since there are small variations in most of
the test cases. The relevance of this variation is however unclear.

The size of the test suites and the number of involved test managers determines
the need for proper documentation. The highest degree of internal design overlay,
also at the more detailed level of analysis, exists within the integration test suite.
33% of the integration test cases are overlaid and 31% is redundant at level P2@F3
which weakly supports H3b, i.e. inconsistent test documentation of test cases could
cause test redundancy. However, legacy does not cause design overlay since design
overlay is not observed in the feature testing. Only executed test cases are included
in the scope of this study and among those there are no overlaid feature test cases at
the detailed levels. One difference between feature testing and integration testing
may be the awareness of the inconsistency, which was expressed in the interviews
in the case of feature testing. The integration test suite is larger and managed by
testers from several teams, while the feature test suite is mainly managed by one

6 Visualization – RQ3 187

person. Also the lack of complete requirements specification and redundancy in
requirements seems to be manageable in the small.

Delta analysis

Visualization of test coverage, as exemplified in Figure 8, helps the testers and
test managers overview the intended coverage and thus assess its feasibility. The
high degree of overlaid test cases at level P1@F3 could be attributed to the many
variants of test cases for compatibility tests, which also explains the low degree of
overlay where this variation is considered in the analysis (P3@F3). Here the data
supports that the lack of delta analysis of the customer requirements is a cause of
overlay.

Hypotheses H5 and H6 regard overlaid test executions. The share of overlaid
test executions is high within all test activities and at all abstraction levels, inde-
pendently of the share of design overlay. Hence we can not reject H5 and H6,
stating that insufficient delta analysis causes redundant test executions.

Summary

In summary, geographical distribution of testing does not cause test overlay but
organizational distribution might do. Poor requirements documentation does not
directly cause overlaid testing but poor test documentation might do. Insufficient
delta analysis may cause a high degree of overaly within this context.

6 Visualization – RQ3
The third research question regards how to support test scoping decisions. It is as-
sumed that redundant testing can be avoided with good visualization (proposition
P7). The condition under which we assume this holds is that the visualization is
correct (correctness), that the receivers of the information interpret the informa-
tion correctly (understandability), and that the visualized information is relevant
with respect to the decisions it is supposed to support (relevance) (proposition
P8). Below, we elaborate on the visualization with respect to these three condi-
tions. Our conclusions regarding visualization in this section are achieved with
analytical reasoning based on the observed needs for improvement with respect to
RQ1 and RQ2 as well as our experience in analyzing overlay within this context.

6.1 Correctness

In this study the documentation and visualization of test coverage, and conse-
quently the overlay analysis, was based on the identified coverage items. It was
clear from the interviews that in order for this visualization to be correct it should
cover not only the focus of the tests but also the purpose. “We may use the same

188 Test Overlay in an Emerging Software Product Line – An Industrial . . .

test case but with another purpose, such overlaps we cannot avoid" – TA-core
software.

With our two-dimensional and hierarchical structure of the coverage items,
which was quite easy to visualize, we managed to capture all the documented
variations regarding both focus and purpose in the 192 test cases. Hence it seems
to be a useful model for documenting and visualizing test coverage. The model
was the result of our exploratory analysis of the test set related to the sub case.
There might of course exist non-documented intentions of test cases as well as
different implementations of a test case depending on the tester and the situation.
Such variation is impossible to visualize with a tool and could motivate a certain
degree of visible overlay.

6.2 Relevance

In the study, several possible causes of redundancy were identified, see Section 5.
These were related to insufficient delta analysis, distribution of test responsibili-
ties, poor documentation and structure of tests, and parallel work, If any visualiza-
tion could enable improvement of these situations, it is considered relevant.

Two types of delta analyses need improvement (Section 5.3): 1) change impact
analysis between consecutively tested versions of the software, and 2) commonal-
ity analysis between the different possible variants of the software which are to be
verified. In both cases the need is to support the de-scoping of tests by identifying
overlay and possible redundancy. In the first case the task is to reduce the amount
of test cases while in the second case the task is to reduce the amount of variants
on which the test cases should be executed.

Thus two different views could offer relevant support: one visualizing the pri-
orities of coverage items and one visualizing the priorities of the variants. In both
cases priorities could be calculated guided by existing regression testing tech-
niques [8, 24]. However, most of these techniques are very context dependent,
and in many cases only useful for small systems or small test cases [16].

Distribution of test responsibilities across organization raise high demands on
communication between the parties if redundancy in testing shall be avoided. First
of all, a common definition of coverage items is needed in order to clarify the divi-
sion of responsibilities. The modeling of coverage items used in this study is one
example of how to make these definitions transparent. Based on the definition of
coverage items, a test design view visualizing the test scope of the different parties
would offer support in pinpointing overlay. Some of the test overlay identified in
our study could be attributed to such gaps in communication (Section 5.3), indicat-
ing a need for such support. In case of overlay in test design scope in combination
with parallel work, a view of the aggregated test execution progress would support
decisions on execution scoping over time.

Poor documentation and structure of tests prevents a proper visualization and
could not be improved by visualization itself. On the other hand could transparent

7 Conclusions 189

definitions of coverage items (i.e. using the CovI model) guide and improve the
documentation. Exploratory testing is a part of the testing strategy in our case
under study and the idea of strict test documentation was met with skepticism.
However, the introduction of a clear structure and rules for documentation does
not necessarily put requirements on the level of detail, and even in the case of
exploratory testing some documentation is necessary.

6.3 Understandability
In order for a tester or manager to understand the coverage view, the amount
and type of information must be adapted to their information needs. The two-
dimensional coverage is simple to visualize with a matrix as we did in our analy-
sis, see Figure 8, and the type and level of detail can be selected according to the
tree views presented in Figures 5 and 6. In our case study this navigation between
detail levels supported the qualitative analysis of the nature of existing overlay, as
well as our communication with managers at different levels in the organization.
It helped them identify test areas with unreasonably large amounts of tests.

6.4 Summary
In summary, the CovI model used in this study may be a useful model for doc-
umenting and visualizing test coverage in SPL. The model supports communi-
cation through increased transparency and enables relevant views to support test
design and test planning decisions. Within this context the model was sufficient
for covering the test variability in terms of focus and purpose of tests and it en-
abled navigation between levels of details which in turn supports communication
across organizational levels. Following views would be relevant to provide for the
purpose of improving test scope selection within this context: test design coverage
and test execution progress, priorities and dependencies between test cases as well
as between different test objects.

7 Conclusions
An in-depth case study was launched for the purpose of investigating test overlay
in a large-scale SPL context. The SPL testing context under study is complex in
terms of the large-scale (millions of lines of code) and variability of the system
(realized in hundreds of different system configurations), distributed and paral-
lel development (both geographically and and organizationally), and iterative and
agile development process. Testing is repeated in three dimensions: over time (re-
gression testing) in space (variant testing) and over testing levels. Variability is
realized at compile time and in runtime.

Conclusions drawn are based on our interpretation of both quantitative and
qualitative observations. Following is a list of contributions of this paper:

190 Test Overlay in an Emerging Software Product Line – An Industrial . . .

The amount of overlay was in general large (RQ1) but varied with: different
testing levels, different purposes of tests and the different abstraction levels of
the coverage analysis. Overlay is measured in terms of repeated executions of
tests with respect to coverage items (CovI:s). The CovI:s describe the focus and
purpose of the test and enables coverage analysis at different levels of abstraction.
The study shows a high degree of both design overlay and execution overlay at all
levels of test.

Overlay seems to be caused by several factors such as (RQ2):

1. Distribution of test responsibilities – Organizational distribution had greater
impact than geographical.

2. Inconsistent documentation of test cases – The importance of consistency
in design and documentation of test cases seems to depend on the size of
the test suite and the number of involved test managers. In contrast to the
intuition of the practitioners, redundancy in requirements or the absence of
a complete requirement specification did not cause design overlay in the
testing.

3. Insufficient delta analysis – Lack of commonality analysis of the variation
in space as well as lack of regression analysis of the variation in time were
the two main causes of overlaid test executions.

Visual decision support could be provided with (RQ3):

1. Visualization of test design coverage – Both focus and purpose of test should
be visualized.

2. Visualization of priorities of coverage items as well as priorities of variants.

3. Visualization of aggregated test execution progress.

Testing could be more effective by improving delta analyses of the SPL and
with a more consistent way of documenting the work, not saying testing has to be
specified in detail up front. Coverage items may be identified post hoc and work
as a basis for test progress visualization which in turn could improve test selection
decisions.

Acknowledgments
The authors are very thankful to the case company and its employees, for letting
us access them and their data, as well as giving valuable feedback on our findings.
We also thank Dr Mika Mäntylä at Lund University as well as the journal review-
ers, for valuable review comments to an earlier version of the paper. The research
was in part funded by the EASE Industrial Excellence Center on Embedded Appli-
cations Software Engineering, http://ease.cs.lth.se. Emelie Engström is a member
of the SWELL research school, Swedish V&V Excellence, http://www.swell.se.

References 191

References

[1] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing web
applications by modeling with FSMs. Software and Systems Modeling,
4(3):326–345, 2005.

[2] Ulf Asklund, Lars Bendix, Henrik BÃęrbak Christensen, and Boris Magnus-
son. The unified extensional versioning model. In Proceedings of the 9th
International Symposium on System Configuration Management (SCM-9),
pages 100–122, 1999.

[3] Gerardo Canfora and Massimiliano Di Penta. Service-oriented architectures
testing: A survey. In Andrea De Lucia and Filomena Ferrucci, editors,
Software Engineering, volume 5413 of Lecture Notes in Computer Science,
pages 78–105. Springer Berlin / Heidelberg, 2009.

[4] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, 2001.

[5] Emelie Engström and Per Runeson. A qualitative survey of regression testing
practices. In M. Ali Babar, Matias Vierimaa, and Markku Oivo, editors,
Product-Focused Software Process Improvement, volume 6156 of Lecture
Notes in Computer Science, pages 3–16. Springer Berlin / Heidelberg, 2010.

[6] Emelie Engström and Per Runeson. Software product line testing–a sys-
tematic mapping study. Information and Software Technology, 53(1):2–13,
2011.

[7] Emelie Engström, Per Runeson, and Andreas Ljung. Improving regression
testing transparency and efficiency with history based prioritization–an in-
dustrial case study. In Proceedings of the 4th International Conference on
Software Testing Verification and Validation (ICST’11), pages 367 –376,
2011.

[8] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, January 2010.

[9] Emelie Engström, Per Runeson, and Greger Wikstrand. An empirical evalu-
ation of regression testing based on fix-cache recommendations. In Proceed-
ings of the 3rd International Conference on Software Testing Verification and
Validation (ICST’10), pages 75–78, 2010.

[10] Mary Jean Harrold. Testing: a roadmap. In Proceedings of the Conference
on The Future of Software Engineering, ICSE ’00, pages 61–72, 2000.

192 Test Overlay in an Emerging Software Product Line – An Industrial . . .

[11] ISO/IEC. 9126-1:2001(e), international standard software engineering prod-
uct quality part 1: Quality model. technical report. Technical report, 2001.

[12] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Prod-
uct Lines in Action: The Best Industrial Practice in Product Line Engineer-
ing. Springer, 1 edition, July 2007.

[13] Matthew B. Miles and A. M. Huberman. Qualitative data analysis: an ex-
panded sourcebook. SAGE, January 1994.

[14] Kai Petersen and Claes Wohlin. Context in industrial software engineering
research. In Proceedings of the 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM ’09), pages 401–404, Octo-
ber 2009.

[15] Klaus Pohl, Günther Böckle, and Frank J. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, 1
edition, September 2005.

[16] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen
Kallakuri, and Brian Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02), pages 130–140, 2002.

[17] Per Runeson and Emelie Engström. Software product line testing–a 3D re-
gression testing problem. In Proceedings of the IEEE Fifth International
Conference onSoftware Testing, Verification and Validation (ICST), pages
742 –746, April 2012.

[18] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering–Guidelines and Examples. Wiley, 2012.

[19] Graeme Shanks. Guidelines for conducting positivist case study research
in information systems. Australasian Journal of Information Systems,
10(1):76–85, 2002.

[20] Antti Tevanlinna. Product family testing with RITA. In Proceedings of
the Eleventh Nordic Workshop on Programming and Software Development
Tools and Techniques (NW- PER’2004), Turku, Finland, 2004.

[21] Cheng Thao, Ethan V. Munson, and Tien Nhut Nguyen. Software configu-
ration management for product derivation in software product families. In
Proceedings of the 15th IEEE International Conference on Engineering of
Computer-Based Systems, pages 265–274, 2008.

[22] June M. Verner, Jennifer Sampson, Vladimir Tosic, Nur Azzah Abu Bakar,
and Barbara A. Kitchenham. Guidelines for industrially-based multiple case

References 193

studies in software engineering. In Proceedings of the Third International
Conference on Research Challenges in Information Science, pages 313–324,
2009.

[23] Eleaine J. Weyuker. Testing component-based software: a cautionary tale.
IEEE Software, 15(5):54–59, October 1998.

[24] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, March 2012.

[25] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer.
Studying the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining. Empirical Soft-
ware Engineering, 16(3):325–364, 2011.

PAPER VI

SUPPORTING TEST SCOPING
WITH VISUAL ANALYTICS

Abstract
Test managers have to repeatedly select test cases for test activities during evolu-
tion of large software systems to detect as many faults as possible at a reasonable
cost. We explored the use of visual analytics on test data for decision support by
creating prototype visualizations and let test managers evaluate them in three fo-
cus groups. Our analysis comprises: data extraction, data transformation, visual
mapping, user interaction as well as which tasks to support. Although all test man-
agers in the study found the visual analytics useful for supporting test planning, our
results show that different tasks and contexts require different types of visualiza-
tions. This multitude, together with the many degrees of freedom in transforming
data to views and combining data from different sources, makes it challenging to
design the best visualization for a specific purpose. Our results may be used to
support the introduction of visual test analytics in an organization.

Emelie Engström, Mika Mäntylä, Per Runeson and Markus Borg
Technical report LU-CS-TR: 2013-252

1 Introduction
In the evolution of large software systems, test management has to repeatedly se-
lect test cases for test activities to detect as many faults as possible at a reasonable
cost. Research on regression testing has introduced several techniques for test se-
lection; we found 28 empirically evaluated techniques [8]. However, most of the
techniques do not involve human interaction in the scoping procedure and thus they
offer limited support in a complex and variability intensive industrial environment.
Furthermore the techniques are only applicable under certain circumstances which
could be related to the complexity and type of system under test or to which lan-
guage software is written in. Similarly, we have searched test scoping techniques

196 Supporting Test Scoping with Visual Analytics

for software product line testing, which means managing parallel variants of prod-
ucts from the same software core in addition to sequentially existing versions [5].
We found the primary challenge to be the large number of potential tests. These
observations call for new approaches to test scoping, which handle large number
of test cases, are flexible to context variations and allow dynamic interaction with
test managers to utilize their experience.

Visual analytics [12] can support any task requiring interplay between humans
and computers in order to reason from complex data. It is defined as “the science of
analytical reasoning facilitated by interactive visual interfaces” [2]. One example
of visual analytics of test data is project managers using visualization of failure
rates of testing to assess product quality and answer questions like: What areas
need more defect fixing effort? or: When can we release the product? The focus
of this study is to use visual analytics for the purpose of improving test quality
or planning of testing, for example, answering questions like: Are there gaps or
redundancy in our testing? or: What do we need to test due to this change?

Introducing visual analytics into a context involves four stages of development
and validation [10]. 1) The first stage is to characterize the problem and the avail-
able data. We have previously studied the test scoping problem through a survey
on regression testing practices [4], an action based case study on regression test im-
provement [7] and an in depth case study on test overlay [6]. This paper builds on
our experiences from those studies. The following three stages are more creative
and involve three different design problems: 2) to map the problem characteriza-
tion to an information visualization problem e.g. data types and operations, 3) to
design the visual encoding and interaction and 4) to implement this design with an
effective algorithm. In this paper, which is addressed to practitioners in the field,
we provide advice for the second and third stages based on a case study. We used
an existing visualization front end to create hands on prototypes. Validation of its
implementation is not within the scope of the paper.

2 Case study

We explored how visual analytics on test data can support test scoping decisions in
different industrial contexts. We did this by creating prototype visualizations and
evaluate their usefulness in focus group meetings with test managers. We used data
from three real-world software contexts and created between three and six different
prototype variants per context to focus the evaluation on different aspects of the
visual analytics. In addition to the variation in data set, prototypes varied in terms
of amount of simultaneous information, how different dimensions of the testing
were mapped to the visual structure and whether or not similarities in execution
patterns were visualized.

In the focus group meetings, we altered discussions with practical exercises.
The practitioners used the prototypes to perform test scoping tasks, T1-4 below,

2 Case study 197

The empirical study in this article has characteristics of a case study, in that it “studies
a contemporary phenomenon within its real-life context” (Runeson 2012, p12). However,
we isolate a portion of the context, in terms of test data from the three cases, and add the
prototype visualizations as an intervention in the study. Further, we use focus groups for
data collection (Runeson 2012, p54-55), to make the data collection more efficient, and for
the added value of interaction between the study participants. The focus group participants
conducted a set of test evaluation and scoping tasks, reported and discussed their findings
during the tasks, and the researchers observed their actions and reflections. The primary
steps of the procedure are:

• Design the study – set up the study goals, collect the test data, pre-process it for use
in MosaiCode, define focus group procedures and questions, schedule meetings.

• Collect data – run the focus group meetings and have participants do the tasks, cat-
alyze discussions, observe actions, take notes.

• Analyze data – collect notes from participants and observers. Three authors indepen-
dently coded the notes and grouped them into findings, we used these sets of findings
to form the conclusions. The fourth author coded the notes based on the merged cod-
ing scheme from the first three. The outcome was then used for validation.

• Report – write this article.

Reference
Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study Research in Soft-
ware Engineering–Guidelines and Examples. Wiley, 2012.

for specified development scenarios:

T1 Get an overview of what is included in the test data base. Is the amount of
designed test cases reasonable?

T2 Assess test execution progress. Which areas are well-tested? Which areas
need more testing? Is the test coverage sufficient? Explain! Which areas
lack test cases?

T3 Plan a test session for a new platform (no changes in functionality). How
many/which test cases need to be run?

T4 Select and prioritize test cases after a change. How many/which test cases
need to be run?

We collected feedback on which views and interactions were used, why, how
and in which order as well as which were not useful and which were missing.

Table 1 shows an overview of the three data sets used for prototyping visual
analytics. In the first focus group meeting, testing consultants from three different
organizations evaluated visual analytics of the Firefox data. In the other two meet-
ings, practitioners from organization A and organization B, respectively, evaluated
prototypes based on their own data in addition to the Firefox data.

198 Supporting Test Scoping with Visual Analytics

Table 1: The three data sets on which prototypes were created

Case Organization A Organization B Firefox
Characteristics Emerging software product

line
Safety critical software Open source

Scope Testing of one single func-
tion across organization

7 consecutive executions
for a specific release

Full functional test suite
for releases 2.0-9.0

Test cases 192 1 059 1 524
Test case exe-
cutions

517 1 456 272 832

Time period 22 weeks 19 months 6 years

3 Prototype visualizations

As a front end for the visualization, we used the MosaiCode prototype tool [9],
which was originally designed for visualizing structure and source code metrics of
large scale software, see Figure 1. The tool consists of the primary Mosaic win-
dow (1), with structural elements displayed as tiles which are grouped in rectangles
(containers). We mapped the test cases or test coverage items1, TCIs [6]2, to these
tiles, i.e. each tile represents one test coverage item from one perspective of the
testing. Each element is associated with a set of attribute values which may be
visualized with different colors for different ranges of values. A tree browser win-
dow (2) visualizes the hierarchical structure of the elements and enables selection
of elements to study. Below the tree browser there is functionality for searching el-
ements. Finally, a summary window (3) shows a bar chart of the data visualized in
the mosaic window. However, the front end is just the visible part of the analytics,
which also involves data extraction, data transformations and visual mappings [1].

4 Aspects of visual analytics

This section reports the outcome of our evaluation. We synthesized the feedback
from the focus groups, and our experiences from creating the prototypes, accord-
ing to the different facets of information visualization as described by Card et
al. [1]: the task to support with the visualization, the available data, the transfor-
mations (from raw data to data tables, to visual structures, to views) and the user
interaction in the transformations. A summary is provided in Table 2.

1Entities describing the scope of a test or set of tests
2In the referenced paper the term used is only coverage items

4 Aspects of visual analytics 199

Figure 1: MosaiCode tool visualization [9]

4.1 Test management tasks to support with visual ana-
lytics

Visual analytics can support several goals in test management. In a previous case
study we identified three types of visualizations that could support test manage-
ment: visualization of test design coverage, test execution progress and visualiza-
tions of priorities of tests related to changes or variability in a system [6]. Visual
analytics can also be used for communication with managers: See these red mo-
saic tiles have not been executed yet. Are you sure you want to release now?, or to
assign test cases to software testers: When selecting test cases, keep in mind that
our goal for this week is to turn the red mosaic tiles into blue.

In the focus groups, we asked the participants to perform concrete tasks with
the help of our prototype visualizations. The tasks involved getting an overview of
testing (T1), assess its sufficiency (T2) and make decisions about what to test, plan
test, in two different situations: after a specified functional change (T3) and after
porting to a new platform without any changes in functionality (T4). Following is
one example workflow based on practitioners’ feedback and our observations: 3

1. I use the mosaic view where tiles are grouped according to functionality
under test to get an overview of the test coverage.

3Statements in this example are not verbatim quotes from the focus groups, rather they represent
the synthesis of our intention with the visual analytics, the practitioners’ feedback and our observation
of how they actually used the prototype visualizations.

200 Supporting Test Scoping with Visual Analytics

2. Depending on the purpose of the specific test session I may assess the suffi-
ciency of coverage.

3. The colors of the tiles help me assess to what extent different parts of the
system have been previously tested.

4. To set the scope for a new platform I chose to study the attribute variable:
“execution similarity over platforms”.

5. I use few (two or three) tile colors to distinguish different ranges of attribute
values.

6. I select a set of test cases with low platform similarity.

7. By changing the limits of the value ranges I may control the size of the
selection

8. I also added test cases that failed in the latest release

Based on the hands-on usage of the prototype visualizations, all participants
perceived that the visual analytics could be used for many purposes, for example,
reducing test resources and evaluating aspects of the testing, but also for generat-
ing new test ideas. Following list summarizes the practitioners’ feedback on the
usefulness of the visual analytics in relation to different tasks.

• Getting an overview of testing – All participants found the visual analytics
useful to get an overview and for browsing test data. Some participants
also requested mosaic views where other perspectives of the testing were
exposed, for example the time, project, or quality dimensions.

• Assessing test sufficiency – When assessing test design coverage (T1), the
participants saw that test case execution data could provide information
about which areas are well covered. To identify areas lacking testing, they
wished to combine this information with information from other sources
such as customer feedback: “ It is the areas where failures end up in the
hands of users.” or the defect tracking system. While some of this addi-
tional information is well documented and maintained in data bases, some is
not equally accessible but may exist in distributed reports or informal email
conversations. Thus, combining information from several sources in an ef-
fective way to make informed test scoping decisions is attributed to the test
managers’ experience and expertise. This illustrates the need to incorporate
humans in the loop rather than to design a fully automated decision sup-
port system, although a visual analytics system may evolve incrementally
towards higher levels of automation.

• Assessing test execution progress – When assessing test execution progress
(T2), participants’ where positive: “The visualization could be used to show

4 Aspects of visual analytics 201

everyone’s progress.” “The visualization could pinpoint areas to improve
during spare time.” In cases where the participants were well familiar with
the test scope, the gain in visualization was less “By experience I know what
to keep track of”.

• Planning testing – For both the decision making tasks (T3 and T4), all
participants found views that they perceived supportive: “Deciding on scope
the visualization helps identify similarities and to sort out.”“Good support
to make hope informed decision”

4.2 Test execution history data

We focused on visualizing historical test information and extracted data from the
test documentation in the three organizations. In the Firefox case, we extracted
test data from their open, web-based, test management system, Litmus, with a
web crawler. In organization A data are stored in a similar commercial system, HP
Quality Center, from which we manually extracted test information. In organiza-
tion B, test executions were documented in MS Word documents and stored in a
general document management system. We extracted this data (semi-) automati-
cally.

The focus group participants perceived that visualization of test execution his-
tory was useful for assessing test sufficiency and for making decisions. As stated
above, some participants also suggested that the visual analytics tool should col-
lect data from additional data sources such as the source code repository: “We
need a link to software delta”, requirement management system “Link to require-
ments would be powerful as well.” and the defect tracking system. Such a sys-
tem would have similarities with project intelligence platforms which enable trend
and comparative analyses by collecting process and product metrics from sev-
eral sources [3]. However, a prerequisite for enabling such analyses is that the
information is available, and that organizations have policies allowing informa-
tion integration. Unfortunately, large organizations often manage information in
different content management systems, typically offering limited interoperability
(i.e. resulting in “information silos”) [11].

4.3 Dimensions and attributes of the test coverage items

In our visualization proposal, we transform test execution information to data ta-
bles or “cases by variable arrays” [1] were test coverage items (TCIs) are the cases.
A TCI describes the scope of a test or set of tests [6] and is defined by a set of vari-
able values. We differ between two types of variables: dimension variables with
textual values and attribute variables with numerical values. A dimension value
describes the hierarchical position of the TCI from one perspective, for example:

202 Supporting Test Scoping with Visual Analytics

Dimension: Functionality = System/Social phonebook/Add contact
or

Dimension: Variant = All/Blue star/US-market

TCIs may be defined at different levels of abstractions depending on test strat-
egy, for example, when exploratory testing is applied, TCIs are defined at a high
abstraction level while scripted testing enables finer analysis. The abstraction level
of the TCI determines the derived values of the attributes which could be for ex-
ample:

Attribute: Number of executions = 13
or

Attribute: Number of days since last execution = 30

There is no limitation in how many variables to include in the analysis. How-
ever, the number of TCIs increases exponentially with the number of dimension
variables. In total, we visualized five different dimension variables: project and
functionality, for all data sets; execution patterns, for the Firefox and organization
B data; platform variants, for the Firefox and organization A data; and process for
the organization A data. Some dimension values we could extract directly from the
documentation, such as project information (in terms of release numbers), platform
variants and process information (in terms of test activities). To derive the hier-
archical structure of the functionality dimension we had to interpret the test case
descriptions in the light of available documentation and expertise. In the Firefox
and organization B cases we based this classification on keywords, while in the
organization A case we did it manually. The execution patterns dimension refers
to a classification based on similarities between test cases with respect to when, on
what and with which verdict they have been executed.

Dimensions – Our evaluation revealed needs to visualize different dimensions
of the testing, depending on the user’s role and tasks. In the organization A focus
group, one of the participants suggested an organizational dimension to evaluate
the testing by teams or even by individuals. The functionality dimension was use-
ful to get an overview of the scope and to navigate the information. The classifica-
tion based on similarities in execution patterns were appreciated for planning but
was not intuitive and thus required certain user skills. Preferably, several dimen-
sions should be available at the same time, for example with multiple tabs. In our
prototype visualizations we did not make use of the two-dimensional positioning
in the mosaic window, which could enable pairwise overviews of TCI dimensions,
for example functionality versus different quality attributes. Instead we created
a two-dimensional overview by mapping the dimension values of one dimension
variable to a set of attribute variables.

4 Aspects of visual analytics 203

Attributes – Our evaluation also showed the need to measure different attributes
of the TCIs for different tasks. Failure rate showed to be useful for evaluating the
test design coverage. Several attributes were considered by at least one of the par-
ticipants when evaluating execution progress: #builds tested, #languages tested,
#platforms tested, #days since last execution, #executions, #failures, failure rate
and #days since first execution. In addition to these attributes they used measure-
ments of similarity of execution patterns over different platforms to plan testing of
new product variants. It is important that the naming or description of attributes
are clear and thus consistently understood by all users of the tool.

4.4 The visualization front end

The main components of a visual structure are the use of space, the marks and
the graphical properties of the marks [1]. In the prototype visualizations we used
spatial position to encode the dimension values of the TCIs in the mosaic window.
The MosaiCode tool [9] only supported unstructured type of axis [1] in the mosaic
window. This means that the coordinates of the tiles had no meaning while the
arrangement of tiles into containers carried meaning. Thus, the dimension values,
or the hierarchal position, are visible to the user through the grouping of tiles and
in the tree browser, see Figure 1. The attribute values are visible in the colors of
the mosaic tiles and in the bar chart view on the right.

This lack of a coordinate system in the mosaic window was frustrating for
the testers. Participants in all focus groups requested at least a fixed position of
tiles. They also suggested that the meaning of the containers should be visible, not
only in the tree browser window, but also in the mosaic window. This could be
done by adding text labels to the containers or to nominal axes. Participants also
commented on the number of colors used to represent different ranges of values of
the attributes. The general opinion was that only few colors should be used; two
or three would be enough.

In the evaluation, we studied how the participants used the different views to
solve the tasks. The tree browser view showed to be useful for navigating when
participants were familiar with the test scope and the structure of TCIs. The mosaic
view provides a good overview of both TCI design coverage and TCI execution
progress and showed to be useful when they were new to the data or when the data
set was large.

204 Supporting Test Scoping with Visual Analytics

Table 2: Overview of the facets of visual test analytics (tasks, raw data, data transformation,
visual structures and human interaction) evaluated in our study. The columns show how and if it
was implemented in a prototype and the main observations and suggestions from the focus group
discussions.

Facets Implemented in
prototypes

Observations Suggestions

Ta
sk

s

Overview test cases

Performed in fo-
cus groups

Visual analytics was
useful

Assess test design
coverage

Visual analytics was
useful to identify well
tested areas

Add more information
to identify gaps

Assess test execu-
tion progress

Visual analytics
was useful

Plan testing after
change
Plan testing for new
platform

R
aw

D
at

a Test execution his-
tory

Test reports from
test management
data bases and MS
word documents

Visual analytics was
good to overview
large amounts of data

Aggregate all data in
organization and en-
able filtering

Change impact
analyses Not in prototype Would improve test

planning support
Link to delta informa-
tion from source code
repository and defect
database

System informa-
tion

Would support assess-
ment of test design
coverage

Link to requirements
and source code
statistics

D
at

a
Tr

an
sf

or
m

at
io

n

TCIs Test cases Easily extracted from
existing documenta-
tion

Implicit testing
goals

Requires more effort,
reveals test overlay
in complex organiza-
tions

Dimension vari-
ables of TCIs

Project Good for assessing
progress

Visualize organiza-
tional dimension to
evaluate teams or indi-
viduals. Visualize time
dimension to assess
progress. Visualize
multiple dimensions of
the TCI:s

Functionality Good to get overview
of scope

Execution pattern Good for planning,
less intuitive

Platform variants Good for planning
Process

Attribute variables
of TCI:s

Similarity in exe-
cution patterns over
different platforms

Useful for planning
testing on new plat-
form

#Executions, #Fail-
ures, #Builds,
#Languages, #Plat-
forms, #Days since
first execution,
#Days since last
execution

Useful for planning
and assessing execu-
tion progress

continued on next page ...

4 Aspects of visual analytics 205

Table 2 – continued from previous page
Facets Implemented in

prototypes
Observations Suggestions

failure rate Useful for all tasks

V
is

ua
lS

tr
uc

tu
re

s Marks TCI:s mapped to
Mosaic tiles

Provides a good
overview of both
test design coverage
and TCI execution
progress, especially
when data set is large

Use of space Arranged in con-
tainers

Add text labels on
containers

Positioned in
unstructured coor-
dinate system

Maintain spatial posi-
tion, Map TCI dimen-
sions to nominal axes

Graphical proper-
ties of marks

Attribute values
mapped to colors

Only few colors are
needed

Additional
views

Dimension values
mapped to tree
structure

Useful for navigating
when familiar with
scope

Summary in bar
chart

Useful for planning

H
um

an
In

te
ra

ct
io

n Interactive data
transformation Not in prototype Human interaction

is important

Enable manual filter-
ing of data

Interactive visual
mapping

Enable manual map-
ping of TCI dimen-
sion to spatial position
Enable manual map-
ping of attribute val-
ues to colors

Interactive view
transformation

Control of tile size Prefer automatic set-
ting Enable selection and

counting of test cases
to support test plan-
ning

Control number of
colors
Search Useful for planning

testing after change
Browsing
Zooming Very useful

4.5 Human interaction

Participants in all three focus groups stressed the importance of human interaction.
Several techniques exist to let the user control the different types of data transfor-
mations in the visual analytics process [1]. In the prototype visualizations, the
transformation from raw data into data tables as well as the mapping from data
tables to visual structures was hard coded. Thus, the user interaction provided in
focus groups, with respect to these transformations, was limited to selecting which
prototype visualization to use for a certain task. Participants in all focus groups re-
quested a possibility to filter the displayed data on different criteria, e.g. visualize
test execution history of functional area F by team A from Q4.

Participants discussed two types of interactive visual mapping which they con-
sidered useful namely 1) the selection of which TCI dimension to be mapped to

206 Supporting Test Scoping with Visual Analytics

the spatial position in the mosaic view and 2) the setting of percentiles in the bar
chart, that is, the mapping of colors to attribute values.

The MosaiCode tool provides interactive view transformations in terms of
browsing and zooming as well as controlling the tile size and number of differ-
ent colors on tiles. In addition, automatic mapping between the different views
enables searching for elements in, for example, the tree browser by selecting them
in the mosaic window. Practitioners considered the zooming function very useful
and stressed the importance of a direct mapping between different views i.e. if a
certain test coverage item is selected in the tree browser view the same item should
be selected in the mosaic view. Furthermore they requested automatic setting of
tile sizes but manual setting of tile color ranges based on the TCI attributes. Ad-
ditionally, they wanted to be able to select and count test cases to support the test
planning.

5 Conclusion

Table 2 provides an overview of the results from our case study. Five main facets
of visual analytics were analyzed: 1) the tasks to support, 2) the raw data to use,
3) the transformation to data structures, 4) the mapping to visual structures and
5) the human interaction. The second left column contains the topics analyzed
while the two rightmost columns contain observations and suggestions to guide
the implementation of visual analytics.

All study participants confirmed potential usefulness of the visual analytics for
test scoping as well as for communicating decisions with managers and subordi-
nate testers. Tasks to support relate to the assessment of test design coverage and
test execution progress as well as to the planning of testing after a change or for a
new platform. Visual analytics seem to be especially beneficial if it enables aggre-
gation of all test execution data across the organization as well as the parallel and
consecutive projects, combined with the ability to filter the displayed data. Test
execution data may be transformed to sets of dimensions and attributes, TCI:s,
where the dimension variables represent different perspectives of the testing and
the attribute variables represent different properties of the TCI:s. The mapping of
dimensions variables to the spatial position is important but not obvious. Differ-
ent tasks require views from different perspectives. Testing goals and strategies
include several dimensions of variability. Thus a visualization tool needs to be
flexible and allow multiple perspectives on the testing.

5 Conclusion 207

Organization A develops mobile devices based on the Android platform which comprises
more than 10 million lines of code. The development context is variability intensive i.e. a
software project comprises about 10 different product variants, instances of specific com-
binations of hardware and software, which in turn are customized for hundreds of different
pairs of customers and market segments. The development organization is globally dis-
tributed over three continents. Testing tasks are organizationally distributed over three main
units: core software, application software and product composition. Organization A applies
incremental development practices which imply a need for continuous regression testing at
all levels of test.
The four participants in the organization A focus group represent different levels of test and
organizational units. All participants analyze test results in their work but with different
purposes, e.g. test management in specific development projects, general test process im-
provement, line management and product quality assessment.

Mozilla foundation develops the Firefox web-browser. Currently, Firefox has roughly 10
million lines of code and the typical number of people committing code at least once monthly
is over 200. Developers perform lower level testing, and developers and feature managers
test that new features have been implemented correctly and large crowds participate in the
alpha and beta-testing of the upcoming product releases. Main regression testing involves
about 30 active individuals frequently reporting test results to the open test management data
base. Testing is done mainly for three major platforms: Windows, MacOSX and Linux.
In the mixed focus group, three software testing consultants from three different organiza-
tions studied the visualizations of test execution data from the Firefox projects. The partic-
ipants had worked in various roles, e.g. a test manager, test competence manager, coach of
software testing, software test and process auditor, and project manager. They all had hands
on as well management experience in software testing. The least experienced participant had
five years of software testing experience while the most experienced had over ten years.

Organization B is a large multinational company operating in robotics and in the power
and automation sector. The studied development context comprises safety-critical embedded
development in the domain of industrial control systems. The development site adheres to
the safety standard IEC 61511, and the product is certified to a Safety Integrity Level of 2 as
defined by IEC 61508. The number of developers is in the magnitude of hundreds; a project
has typically a length of 12-18 months and follows an iterative stage-gate project manage-
ment model. The verification process covers software testing on several different abstraction
levels, partly conducted by independent testers. Furthermore, the process includes a partly
automated suite of test cases that are executed daily, as well as a suite of regression tests that
are executed prior to releasing new versions.
In the organization B focus group, a test manager and a project manager participated. Both
participants had experience of planning test activities, including resource allocation and pri-
oritization. Two central work tasks for test management relate to test selection. First, man-
agers define a test scope for new releases, which depends on how the system has changed.
Second, they specify which test cases should be included in the formal regression test suite.
Moreover, as an external agency certifies the selection, it is less feasible to change. Finally,
following up test progress is critical. Currently, graphs based on earned value management
visualize test progress.

208 Supporting Test Scoping with Visual Analytics

Acknowledgement
The authors are very thankful to the case companies and focus group participants,
for letting us access them and their data, as well as giving valuable feedback on our
findings. We also thank the SERG reading group for valuable review comments
to an earlier version of the paper. This work was partly funded by ELLIIT (The
Linköping-Lund Initiative on IT and Mobile Communication, www.elliit.liu.se)
and EASE (Industrial Excellence Center on Embedded Applications Software En-
gineering, ease.cs.lth.se). Emelie Engström and Markus Borg are members of the
SWELL research school, (Swedish V&V Excellence, www.swell.se).

References 209

References

[1] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman, editors. Readings in
Information Visualization: Using Vision to Think. Academic Press, 1 edition,
February 1999.

[2] Kristin A. Cook and James J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical Report PNNL-SA-
45230, Pacific Northwest National Laboratory (PNNL), Richland, WA (US),
May 2005.

[3] Florian Deissenboeck, Elmar Juergens, Benjamin Hummel, Stefan Wagner,
Benedikt Mas y Parareda, and Markus Pizka. Tool support for continuous
quality control. IEEE Software, 25(5):60 –67, October 2008.

[4] Emelie Engström and Per Runeson. A qualitative survey of regression testing
practices. In M. Ali Babar, Matias Vierimaa, and Markku Oivo, editors,
Product-Focused Software Process Improvement, volume 6156 of Lecture
Notes in Computer Science, pages 3–16. Springer Berlin / Heidelberg, 2010.

[5] Emelie Engström and Per Runeson. Software product line testing–a sys-
tematic mapping study. Information and Software Technology, 53(1):2–13,
2011.

[6] Emelie Engström and Per Runeson. Test overlay in an emerging software
product line–an industrial case study. Information and Software Technology,
55(3):581–594, March 2013.

[7] Emelie Engström, Per Runeson, and Andreas Ljung. Improving regression
testing transparency and efficiency with history based prioritization–an in-
dustrial case study. In Proceedings of the 4th International Conference on
Software Testing Verification and Validation (ICST’11), pages 367 –376,
2011.

[8] Emelie Engström, Per Runeson, and Mats Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14–30, January 2010.

[9] Jonathan I Maletic, Daniel J. Mosora, Christian D. Newman, Michael L. Col-
lard, Andrew Sutton, and Brian P. Robinson. MosaiCode: visualizing large
scale software: A tool demonstration. pages 1–4, September 2011.

[10] Tamara Munzner. A nested model for visualization design and validation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):921 –
928, December 2009.

210 Supporting Test Scoping with Visual Analytics

[11] Jamshid A. Vayghan, Steven M. Garfinkle, Christian Walenta, Donald C.
Healy, and Zulma Valentin. The internal information transformation of IBM.
IBM Systems Journal, 46(4):669–684, 2007.

[12] Pak Chung Wong and J. Thomas. Visual analytics. IEEE Computer Graphics
and Applications, 24(5):20–21, October 2004.

