
Implementing an embedded GPU language by combining
translation and generation

Calle Lejdfors
calle.lejdfors@cs.lth.se

Lennart Ohlsson
lennart.ohlsson@cs.lth.se

Department of Computer Science
Lund University, Lund, Sweden

ABSTRACT
Dynamic languages typically allow programs to be written
at a very high level of abstraction. But their dynamic nature
makes it very hard to compile such languages, meaning that
a price has to be paid in terms of performance. However
under certain restricted conditions compilation is possible.
In this paper we describe how a domain speci�c language
for image processing in Python can be compiled for execu-
tion on high speed graphics processing units. Previous work
on similar problems have used either translative or genera-
tive compilation methods, each of which has its limitations.
We propose a strategy which combine these two methods
thereby achieving the bene�ts of both.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors�Compil-
ers, Code generation, Interpreters ; I.4 [Image processing
and computer vision]: Miscellaneous; D.2.11 [Software
engineering]: Software architectures�Domain-speci�c ar-
chitectures, Languages

Keywords
GPU, image processing, dynamic languages, generative tech-
niques, compilation

1. INTRODUCTION
In this paper we introduce PyGPU, a domain-speci�c lan-

guage for writing image processing algorithms embedded
in the interpreted, object-oriented, dynamically typed lan-
guage Python. The PyGPU language consists of a number of
classes that allow image processing algorithms to expressed
clearly and succinctly. These classes use overloading to pro-
vide operations such as multiplying a color by a scalar, and
accessing an image, with intuitive semantics. For instance, a
function for multiplying every pixel of an image by a scalar
can be implemented as:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06,April 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004 . . . $5.00.

def scalarMul(c=Float, im=Image, p=Position):
return c*im(p)

Furthermore, this function can be compiled to native code
executing at very high speeds on the graphics processing
unit (GPU). However, as will be described below, the GPU
is a very restricted platform, and in order to compile a func-
tion type-annotations, as in the above example, are required.
The types used are exactly the above classes which here serve
the alternate purpose of encoding the restrictions and capa-
bilities of the GPU.
The outline of the rest of this paper is as follows. In Sec-

tion 2 we introduce the graphics processing unit (GPU) as
well as a more extensive example of using PyGPU. In Sec-
tion 3 we present the implementation of PyGPUs compiler
and in Section 4 we �nish up with a discussion.

2. GPUS
Most computers come equipped with a powerful 3D graph-

ics card capable of transforming, shading, and rasterizing
polygons at speeds in excess of those provided by the CPU
alone. These cards are also equipped with a programmable
graphics processing unit (GPU) that enable parts of the
polygon rasterization process to be programmatically rede-
�ned allowing, for instance, many image processing algo-
rithms to be implemented. And, since �oating-point perfor-
mance of the GPU is typically an order of magnitude higher
than that of a corresponding CPU [9] it is a very attractive
target platform.
The speed advantage of GPUs comes from their highly

speci�c nature; they employ a number of very long pipelines
executing in parallel and in order to e�ciently use this par-
allelism the computational model of the GPU is very re-
stricted. There is no dynamic memory allocation. Memory
is read-only and may only be accessed in the form of tex-
tures containing 4-dimensional �oating-point values. Fur-
thermore, �ow control structures such as branches and sub-
routines are not guaranteed to exist even on very modern
cards.

2.1 Existing GPU languages
There are a number of specialized language available for

programming the GPU. The �rst generations of GPUs pro-
vided limited forms of programmability trough assembler-
like languages speci�c to each vendor and graphics API.
With the increased power and maturity of GPUs a number
of higher level languages were introduced: Cg by NVIDIA
[11], HLSL by Microsoft [6], and GLSL by the OpenGL ARB

Figure 1: Sobel edge detected lena

[1]. These languages are all syntactic variants of C with
some added constructs and data-types suitable for express-
ing GPU programs.
Other projects aimed at providing embedded languages

for programming the GPU are Vertigo [4] and Sh [12]. Ver-
tigo uses Haskell [8] to program the vertex shader function-
ality of GPUs. Sh is embedded in C++ and uses a genera-
tive model for constructing GPU programs at run-time from
speci�cation written in C++. Sh also supports, through the
use of C++ templates, combining GPU program fragments
into new GPU programs [13].

2.2 An image processing example
We will now provide an extended example of PyGPU by

implementing an edge detection algorithm. We will con-
struct a general edge detector which will then be used to
implementing the well known Sobel edge detector.

2.2.1 Edge detection in general
Edge detection is the process whereby sharp gradients in

image intensity are identi�ed. In general, this can be imple-
mented as the application of convolution kernels estimating
the image intensity gradient in the x and y-directions, re-
spectively. Consider the following function de�nition:

def edgeDetect(kernel, im=Image, p=Position):
Gx = convolve(kernel, im, p)
Gy = convolve(transpose(kernel), im, p)
return sqrt(Gx**2 + Gy**2)

This function applies an arbitrary kernel in the x and y-
directions (by symmetry the vertical gradient approximation
kernel is the transpose of horizontal approximation kernel)
and then computes the magnitude of the image gradient.

2.2.2 Gradient approximation kernels
There are many examples of gradient approximation ker-

nels. One common choice is the Sobel operator which can
be represented by the matrices

2
4
−1 0 1
−2 0 2
−1 0 1

3
5 and

2
4
−1 −2 −1

0 0 0
1 2 1

3
5

for the x and y-directions, respectively.

2.2.3 Complete edge detector
Using the general edge detection function and the kernel

from the previous section we can now create a Sobel edge
detector by partially specializing the general edge detection
function. To do this we call the PyGPU compiler passing
the kernel as a compile-time parameter:

sobelEdgeDetGPU = pygpu.compile(edgeDetect,
kernel=sobelKernel)

The function returned by the compiler runs entirely on the
GPU and can be applied to images just as a normal function.
However, the position parameter need not be speci�ed, the
returned function operates on whole images in parallel:

edgesLena = sobelEdgeDetGPU(lena)

The result of applying the Sobel edge detector to the stan-
dard Lena example image can be seen in Figure 1.

2.2.4 Example discussion
Interestingly, the general edge detection function presented

above can not be translated to native code on the GPU and
the reason lies in the kernel argument. Because the GPU
lacks support for dynamic memory allocation translating
the kernel argument to the GPU is impossible. PyGPU ex-
presses this by the fact that the kernel argument cannot be
given a type in PyGPUs type system. And, since these types
encode the capabilities of the GPU, an argument which can-
not be typed must be supplied as a value at compile-time.
As a consequence we are allowed to use external libraries

even when these libraries cannot be translated to the GPU.
For instance, the transpose function is taken directly from
Python Numeric, an array programming library implemented
in C and running on the CPU[14]. Clearly, this function can-
not be directly translated but, since the value of kernel
must be supplied at compile-time, it may still be used to
construct PyGPU functions.

3. COMPILER IMPLEMENTATION
The PyGPU compiler is implemented in Python and it

is responsible for two major tasks: compiling PyGPU func-
tions to programs running on the GPU, and providing the
necessary glue-code allowing these programs to be called
as ordinary Python functions. The implementation of the
latter is straightforward and will not be covered. The imple-
mentation of the translation from Python functions to GPU
programs is the focus of this section.

3.1 Related work
PyGPU lies at the intersection of two problem areas re-

lated to compilation: dynamic languages and embedded lan-
guages. It shares a number of problems from both areas all
of which must be overcome to allow e�ective compilation.
Furthermore, the restrictions of the target platform greatly
a�ects implementation choices.

3.1.1 Compiling dynamic languages
Compiling dynamic languages is, in general, a very di�-

cult problem. Most of what we know from static languages
cease being true: function implementations can be changed
at run-time, arbitrary code can be executed via eval , and
classes can be dynamically constructed or changed. One ap-
proach is to restrict the dynamism of the language. This is
used in PyPy [15] and Starkiller [17], two projects targeted
at compiling Python. Both projects perform static analysis
such as type inferencing to translate general Python code
into lower-level compilable code.
Alternatively, the dynamism can be kept by performing

run-time specialization to compile functions at call-time.
This is the approach taken by Psyco [16], a just-in-time com-
piler for Python.

3.1.2 Compiling embedded languages
By construction, embedded languages can typically be

compiled by the host language compiler. The problem with
compiling embedded language however is that they typi-
cally target a di�erent platform than that supported by
the host language. Some examples of such platforms are
co-processors [12], VHDL designs [2], and midi sequencers
[7].
The most direct approach for implementing an embed-

ded language compiler is to view the host language merely
as syntax for the embedded language. A traditional com-
piler can then be implemented by reusing the front-end for
the host language and implementing a new back end. Such
translative methods work well when the features of the em-
bedded language closely match the capabilities of the target
platform. In such cases translative methods can be imple-
mented fairly directly.
An alternate approach is to use the overloading capabili-

ties of the host language. By implementing a suitable set of
abstractions it is possible to execute a program in the em-
bedded language in such a way that it generates a program
on the target platform. These types of generative meth-
ods are typically straightforward to implement since much
of the existing compiler infrastructure is reused. They are
however restricted to translating only those features of the
host language that can be overloaded. Conditionals, loops,
and function calls, for instance, cannot be overloaded in
most languages and consequently cannot translated using
this approach. Examples of projects using a generative ap-
proach are Pan [5], Vertigo [4], and Sh [12]. Pan and Vertigo
are Haskell domain-speci�c embedded languages for writing
Photoshop plugins and vertex shaders, respectively. Both
use a tree-representation constructed at run-time to generate
code for their respective platforms. Sh is a GPU program-
ming language embedded in C++ that uses overloading to
record the operations performed by a Sh program. This �re-
tained� operation sequence is then analyzed and compiled to
native GPU code. We will use a combined approach giving
the bene�ts of both these methods.

3.2 Combining translation and generation
Given that we use Python as host language for PyGPU

we are faced with a di�cult decision. The restrictions of
the GPU makes direct translation of features such as lists
and generators impossible, requiring either restricting the
languages or implementing advanced compiler transforma-
tions. Using a generative method we are required to supply
our own conditionals and loop-construct thereby sacri�cing
the syntactic brevity of our host language. Ideally one would
like to use a translative approach for those features that ad-
mit direct translation and a generative approach for those
that do not.
We propose that this can be achieved by combining two

features commonly found in dynamic high-level languages:
introspection and dynamic code execution. Introspection is
the ability of a program to access and, in some cases, mod-
ify its own structure at run-time. Dynamic code executing
allows a running program to invoke arbitrary code at run-
time. For instance, we can use the introspective ability of
Python to access the bytecode of a function, where elements
such as loops and conditionals are directly represented. This
allows using a translative approach where possible. Using
dynamic code execution we can reuse large parts of the stan-

dard Python interpreter to thereby giving the bene�ts of
translative methods.

3.3 The compilation process
As explained above (see Section 2.2.4) PyGPU requires

that types of all free variables are known at compile-time.
Parameter which cannot be given a type must be supplied
by value. Hence, for every parameter of a function we know
either its type or its value. The compilation strategy thus
becomes: if the value is known we evaluate generatively, if
only the type is known we perform translation.
The compiler is implemented in the usual three stages:

front end, intermediate code generation, and back end. The
intermediate code generation and back end stages are imple-
mented using well-known compiler techniques. We use static
single-assignment (SSA) [3] for representing the intermedi-
ate code. This enables many standard compiler optimiza-
tion, such as dead-code elimination and copy propagation,
to be implemented e�ectively. The optimized SSA code is
then passed to a back end native code generator. At the
moment we use Cg [11] as a primary code generation target
allowing optimizations of that compiler to be reused.
The front end however, di�ers from the standard method

of implementing a compiler. Instead of using text source
code it operates directly on a bytecode representation and
it is the front end that implements the above compilation
strategy. How this is implemented using the dynamic code
execution features of Python will now be described in detail.

3.3.1 Bytecode translation
The front end parses the stack-based bytecode of Python

and translates it to a �ow-graph which is passed to the inter-
mediate code generator. Throughout this process the types
of all variables are tracked allowing the compiler to check
for illegal uses as well as performing dispatch of overloaded
operations.
Simple opcodes, such as binary operations, are translated

directly. More complicated examples such as function calls,
that would not be translatable using a generative approach,
are handled using the above strategy:

elif opcode == CALL_FUNCTION:
args = stack.popN(oparg)
func = stack.pop()
if isValue(args):

stack.push(func(*args))
else :

compiledF = compileFunc(func, args)
result = currentBlock.CALL(compiledF, args)
stack.push(result)

That is, if all the arguments are values then the function is
evaluated directly in the standard interpreter. This is done
by using the dynamic code execution abilities of the stan-
dard interpreter to call the function via func(*args) . This
allows the PyGPU compiler to reuse functionality present
in external libraries (even compiled ones) generatively. Note
that, in general this kind of constant-folding of function calls
is not permitted. The function being called may depend on
global values whose value may change between invocations.
But, since the GPU lacks globals variables PyGPU does not
allow global values to be changed after a function has been
compiled and consequently this transformation is valid.
If the value of at least one argument is not known then

the callee is compiled and a corresponding CALL-opcode is
added to the current block of the �ow-graph.

This strategy is not restricted to the case of function calls,
it can be used to handle loops as well. Consider the fragment

for i in range(n):
acc += g(i)

If n is known at compile-time then we may evaluate range(n) .
Consequently the sequence being iterated over is known and
the loop can be trivially unrolled. If n is not known the frag-
ment is translated to an equivalent loop in the GPU. The
code for handling loops is similar to that of handling func-
tion calls albeit slightly more complicated.

3.4 An illustrative example
The compilation strategy presented above is very straight-

forward and it is not obvious how this strategy enables us
to translate more complicated examples. Consider the im-
plementation of the convolve function used in Section 2.2:

def convolve(kernel, im=Image, p=Position):
return sum([w*im(p+d)

for w,d in zip(ravel(kernel),
offsets(kernel))])

The implementation reads: to compute the convolution we
�rst compute the column-�rst linearization of the kernel us-
ing the function ravel . The o�set to each kernel element is
computed and each o�set is associated with its correspond-
ing kernel element. The image is accessed at the correspond-
ing locations and the intensities are weighted by the kernel
element. Finally the resulting list of intensities is summed
and the result returned.
Note that here we use a number of features which cannot

be directly translated to the GPU: the compiled Numeric
[14]function ravel , list-comprehensions, and the built-in
Python functions zip and sum both which operates on lists.
However, using the above strategy compilation proceeds as
follows: The value of kernel must be known at compile-
time and, consequently, the values of ravel(kernel) and
offsets(kernel) can be computed. Hence the arguments
to zip are known which implies that it may, in turn, be eval-
uated at compile-time. The resulting list is used to unroll
the list-comprehension resulting in a known number of im-
age accesses which can be directly translated to the GPU.
The code for summing these accesses and returning is gen-
erated similarly thereby concluding the translation of the
above function.

4. DISCUSSION
We have shown how a compiler for an embedded language

can be implemented to combine the advantages of previ-
ous methods. By taking advantage of introspection and dy-
namic code execution features of the host language Python
we could implement this compiler very compactly. As an ex-
ample, The compiler and run-time consists of around 1500
lines of code with the bytecode to �ow-graph translator oc-
cupying 400 of those lines. By compiling for the GPU, per-
formance in excess to that of optimized CPU code can be
obtained. Furthermore, the relative increase in speed for
new GPU generations is greater than the corresponding in-
crease for CPUs making the GPU a very attractive platform.
A recent area of research is using the GPU for general

purpose computations. Examples of algorithms which have
been implemented on the GPU are �uid simulations [10],
linear algebra [9], and signal processing [18]. Future work
includes extending the PyGPU compiler to allow program-
ming all aspects of the GPU including general purpose nu-

merical algorithms. Also, the presented method ought to
be suitable for compiling embedded languages to other plat-
forms such as ordinary CPUs.
Another interesting area for future research is studying

how the approach used here integrates with that of PyPy [15].
Of particular interest is reusing parts of the PyPy framework
to be able to handle more general examples, including the
above general purpose uses of the GPU as well as targeting
other platforms.

5. REFERENCES
[1] 3D Labs. OpenGL 2.0 Shading Language White Paper,

1.2 edition, February 2002.
[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh.

Lava: hardware design in haskell. In ICFP '98:
Proceedings of the third ACM SIGPLAN international
conference on Functional programming, pages
174�184, New York, NY, USA, 1998. ACM Press.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. E�ciently computing static single
assignment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systems, 13(4):451�490, October 1991.

[4] C. Elliott. Programming graphics processors
functionally. In Haskell '04: Proceedings of the ACM
SIGPLAN workshop on Haskell, pages 45�56, New
York, NY, USA, 2004. ACM Press.

[5] C. Elliott, S. Finne, and O. de Moor. Compiling
embedded languages. In SAIG '00: Proceedings of the
International Workshop on Semantics, Applications,
and Implementation of Program Generation, pages
9�27, London, UK, 2000. Springer-Verlag.

[6] K. Gray. DirectX 9 programmable graphics pipeline.
Microsoft Press, 2003.

[7] P. Hudak, T. Makucevich, S. Gadde, and B. Whong.
Haskore music notation - an algebra of music. Journal
of Functional Programming, 6(3):465�483, 1996.

[8] S. P. Jones, editor. Haskell 98 Language and Libraries.
Cambridge University Press, April 2003. ISBN:
0521826144.

[9] J. Krüger and R. Westermann. Linear algebra
operators for gpu implementation of numerical
algorithms. ACM Trans. Graph., 22(3):908�916, 2003.

[10] Y. Liu, X. Liu, and E. Wu. Real-time 3d �uid
simulation on gpu with complex obstacles. In
Proceedings of Paci�c Graphics 2004, pages 247�256,
October 2004.

[11] W. R. Mark, R. S. Glanville, K. Akeley, and M. J.
Kilgard. Cg: a system for programming graphics
hardware in a c-like language. ACM Trans. Graph.,
22(3):896�907, 2003.

[12] M. McCool, Z. Qin, and T. Popa. Shader
metaprogramming. In T. Ertl, W. Heidrich, and
M. Doggett, editors, Graphics Hardware, pages 1�12,
2002.

[13] M. McCool, S. D. Toit, T. Popa, B. Chan, and
K. Moule. Shader algebra. ACM Trans. Graph.,
23(3):787�795, 2004.

[14] Numerical python. http://numpy.org .
[15] Pypy - an implementation of python in python.

http://codespeak.net/pypy/ .

[16] A. Rigo. Representation-based just-in-time
specialization and the psyco prototype for python. In
PEPM '04: Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-based
program manipulation, pages 15�26, New York, NY,
USA, 2004. ACM Press.

[17] M. Salib. Starkiller: a static type inferencer for
python. In Proceedings of the Europython conference,
2004.

[18] S. Whalen. Audio and the graphics processing unit.
www.node99.org/projects/gpuaudio/
gpuaudio.pdf , 2005.

