
Managing Natural Language Requirements

in Large-Scale Software Development

Johan Natt och Dag

Department of Communication Systems
Lund Institute of Technology

ii

ISSN 1101-3931
ISRN LUTEDX/TETS–1070–SE+222P
c© Johan Natt och Dag

Printed in Sweden
E-kop
Lund 2005

iii

“The Machines are only tools after all, which can help humanity progress faster
by taking some of the burdens of calculations and interpretations off its back.

The task of the human brain remains what it has always been; that of discovering
new data to be analyzed, and of devising new concepts to be tested.”

Hiram Mackenzie
Vice-Co-ordinator, The Northern Region

in ‘I, robot’ by Isaac Asmiov, 1950

iv

This thesis is submitted to Research Board FIME - Physics, Informatics,
Mathematics and Electrical Engineering - at Lund Institute of Technology,
Lund University in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Engineering.

Contact information:

Johan Natt och Dag
Department of Communication Systems
Lund University
PO Box 118
SE-221 00 LUND
Sweden

Phone: +46 46 222 08 83
Fax: +46 46 14 58 23
e-mail: johan.nattochdag@telecom.lth.se

Abstract

An increasing number of market- and technology-driven software develop-
ment companies face the challenge of managing several thousands of require-
ments written in natural language. The large number of requirements causes
bottlenecks in the requirements management process and calls for increased
efficiency in requirements engineering.

This thesis presents results from empirical investigations of using linguistic
engineering techniques to alleviate three requirements management activities
in large-scale software development: identification of duplicate requirements,
linkage of related requirements, and consolidation of different sets of require-
ments. The activities rely on one common activity: finding requirements that
are semantically similar, i.e., refer to the same underlying functionality.

Three case studies are presented, in which three different companies, com-
prising three different requirements management challenges, are investigated.
Simulation is used to explore process bottlenecks and two different sets of in-
dustrial requirements are used for evaluating suggested solutions. A controlled
experiment is also presented, evaluating a new open source support tool for
semi-automatic identification of similar requirements.

The results show that, for the investigated activities, lexical similarity be-
tween requirements may be a sufficient approximation of their semantic sim-
ilarity. It is also shown that automatic calculation of this similarity may sup-
port the activities and give valuable time-savings. The results from the pre-
sented research point in one direction: that simple, robust, and cost-efficient
linguistic engineering techniques can give effective support to requirements
management activities.

Acknowledgements

First of all, I want to thank Dr. Björn Regnell for supporting, encouraging,
guiding, and restraining me throughout my work. Your competence has been
so valuable. Also, special thanks to Prof. Per Runeson for invaluable support
and discussions in my research and in my studies.

I also want to thank Prof. Claes Wohlin for attracting my attention to
PhD studies in software engineering. My PhD studies have been a worthwhile
experience and have provided me with better tools and experience to draw
reasonable conclusions on phenomena in software engineering.

Many thanks to all co-authors and each and every one who have con-
tributed to the research presented in this thesis. Special thanks to my most re-
cent and closest collaborators, Dr. Vincenzo Gervasi and Prof. Sjaak Brinkkem-
per, whose collaboration I have enjoyed tremendously. My thoughts also goes
to all the researchers and industrial representatives that I have met, discussed
with, and been inspired by at conferences and meetings all over the world.

Thanks to all my colleges at the department with whom I have struggled
with a number of research issues, assignments, and teaching issues, as well as
a collection of more trivial but highly appreciated and amusing questions.

Last, but undoubtedly not least, thanks to friends and family who have
listened and cared. Invaluable and always remembered.

Johan Natt och Dag
Lund, January 2005

Table of Contents

Abstract vi

Acknowledgements viii

List of papers 1

Related publications 2

Introduction 5
1 Background . 7
2 Requirements Engineering 9
3 Linguistic engineering . 16
4 Research in applying linguistic engineering to RE 18
5 Requirements similarity . 26
6 Research methodology . 30
7 Research questions . 42
8 Contribution . 42
9 Further work . 48
References . 50

PAPER I: Exploring Bottlenecks in Market-Driven Requirements Man-
agement Processes with Discrete Event Simulation 61
1 Introduction . 62
2 The REPEAT process . 63

x

3 The simulation model . 66
4 Model implementation . 70
5 Results . 71
6 Conclusions . 80
References . 81

PAPER II: A Feasibility Study of Automated Support for Similar-
ity Analysis of Natural Language Requirements in Market-Driven
Development 85
1 Introduction . 86
2 Requirements similarity analysis 90
3 Automated similarity measurement 92
4 Empirical investigation . 96
5 Further applications . 107
6 Further improvements . 110
7 Conclusions . 111
References . 111

PAPER III: Speeding up Requirements Management in a Product Soft-
ware Company: Linking Customer Wishes to Product Require-
ments through Linguistic Engineering 115
1 Introduction . 116
2 Requirements management case study 117
3 Case study requirements data 121
4 Technical approach . 127
5 Evaluation . 132
6 Related work . 138
7 Further work . 140
8 Conclusions . 141
References . 142

PAPER IV: A Linguistic Engineering Approach to Large-Scale Re-
quirements Management 145
1 Introduction . 146
2 Market-driven requirements management 146
3 A linguistic-engineering approach 147
4 Experiment: The Baan requirements set 150
5 The ReqSimile tool . 155
6 Further work . 157

xi

References . 158

PAPER V: An Experiment on Linguistic Tool Support for Consoli-
dation of Requirements from Multiple Sources in Market-Driven
Product Development 161
1 Introduction . 162
2 Background . 163
3 Industrial problem description 165
4 Experimental conception 169
5 Experimental preparation 170
6 Experimental planning . 179
7 Experimental operation . 184
8 Analysis . 186
9 Discussion . 190
10 Conclusions . 191
References . 192

APPENDIX A: ReqSimile Technical Architecture 195
1 Change history . 195
2 Introduction . 195
3 Background and related work 196
4 Definitions . 196
5 Architectural representation 196
6 Architectural views . 198
References . 222

1

List of papers

The following papers are included in this thesis:

[I] Exploring Bottlenecks in Market-Driven Requirements Management
Processes with Discrete Event Simulation
Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, &
Christian Nyberg
Journal of Systems and Software, 59, pp. 323–332, 2001.

[II] A Feasibility Study of Automated Support for Similarity Analysis of
Natural Language Requirements in Market-Driven Development
Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson, &
Joachim Karlsson
Requirements Engineering, 7 (1), pp. 20-33, 2002.

[III] Speeding up Requirements Management in a Product Software
Company: Linking Customer Wishes to Product Requirements through
Linguistic Engineering
Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, & Björn Regnell
Proceedings of the 12th International Requirements Engineering Conference,
RE2004, pp. 283–294, Kyoto, Japan, September 2004. IEEE CS.

[IV] A Linguistic Engineering Approach to Large-Scale Requirements
Management
Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, & Björn Regnell
IEEE Software, 22(1), pp. 32–39, 2005

[V] An Experiment on Linguistic Tool Support for Consolidation of
Requirements from Multiple Sources in Market-Driven Product
Development
Johan Natt och Dag, Thomas Thelin, & Björn Regnell. Submitted to
Empirical Software Engineering. 2005.

[A] Appendix: ReqSimile Technical Architecture
Johan Natt och Dag
Technical Report, CODEN:LUTEDX(TETS-7206)/1-28/(2005)&local1,
Department of Communication Systems, Lund University, Sweden, 2000.

2

Related publications

The following papers are related but not included in the thesis:

[VI] Exploring Bottlenecks in Market-Driven Requirements Management
Processes with Discrete Event Simulation
Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, &
Christian Nyberg
Paper presented at the Software Process Simulation Modeling Workshop,
London, UK, July, 2000.
This paper is an earlier version of Paper I. It was selected and extended for a
special issue of Journal of Systems and Software.

[VII] An industrial case study of usability evaluation
Johan Natt och Dag & Ofelia S Madsen.
Master Thesis, Report No.
CODEN:LUTEDX(TETS-5390)/1–190/(2000)&local8. Department of
Communication Systems, Lund Unviersity, Sweden, 2000.
This thesis contains the basis for the research presented in Paper VIII. It
contains more elaborate background information and more research data.

[VIII] An industrial case study of usability engineering in market-driven
packaged software development
Johan Natt och Dag, Björn Regnell, Ofelia S Madsen, & Aybüke Aurum.
M. J. Smith, G. Salvendy, D. Harris & R. J. Koubek (Eds.), Proceedings of
HCI International: Vol 1. Usability Evaluation and Interface Design: Cognitive
Engineering, Intelligent Agents and Virtual Reality, pp. 425–429, Mahwah,
NJ: Erlbaum, 2001.
This paper presents the results and experiences from conducting two known
usability evaluation, using a questionnaire and a heuristic evaluation, at a
large software development company.

[IX] Visualization of agreement and satisfaction in distributed prioritization
of market requirements
Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark, &
Thomas Hjelm
A. L. Opdahl, K. Pohl & M. Rossi (Eds.), Proceedings of the Sixth
International Workshop on Requirements Engineering: Foundation for Software
Quality, pp. 125–136. Essen, Germany: Essener Informatik Beiträge, 2000.

This paper is an earlier version of Paper IX. It was selected and extended for
publication in a special issue of Requirements Engineering.

3

[X] An industrial case study on distributed prioritisation in market-driven
requirements engineering for packaged software
Björn Regnell, Martin Höst, Johan Natt och Dag, Per Beremark, &
Thomas Hjelm
Requirements Engineering, 6 (1), pp. 51–62, 2001
This paper presents an industrial case study where a distributed prioritization
process is proposed, observed, and evaluated. The paper also presents an
approach to visualize the priority distribution among stakeholders, together
with measures on disagreement and satisfaction.

[XI] Evaluating automated support for requirements similarity analysis in
market-driven development
Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson, &
Joachim Karlsson
C. Saliensi, A. L. Opdahl, K. Pohl, & M. Rossi (Eds.), Proceedings of the
Seventh International Workshop on Requirements Engineering: Foundations for
Software Quality, pp. 190-201. Essen, Germany: Essen Informatik Beiträge,
2001.
This paper is an earlier version of Paper II. It was selected and extended for
publication in a special issue of Requirements Engineering.

[XII] An industrial survey of requirements interdependencies in software
release planning
Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, &
Johan Natt och Dag. Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering, pp. 84–91. Los Alamitos, CA: IEEE Computer
Society Press, 2001.

This contains an automated analysis of interrelationships between
requirements. The techniques used are those in Paper II.

[XIII] Requirements mean decisions! - Research issues for understanding and
supporting decision-making in requirements engineering
Björn Regnell, Barbara Paech, Aybüke Aurum, Claes Wohlin, Allen Dutoit,
& Johan Natt och Dag.
Proceedings of the First Swedish Conference on Software Engineering Research
and Practise, pp. 49–52) (Report No. 2001:10). Ronneby, Sweden: Blekinge
Institute of Technology, Department of Software Engineering and Computer
Science, 2001.
This paper presents research issues with focus on requirements engineering as
a decision-making process.

4

[XIV] Market-driven requirements engineering challenges: an industrial case
study of a process performance declination
Robert Booth, Björn Regnell, Aybüke Aurum, Ross Jeffery, &
Johan Natt och Dag.
A. Aurum & R. Jeffery (Eds.), Proceeding of the Sixth Australian Workshop on
Requirements Engineering, pp. 41–47. Sydney, Australia: University of New
South Wales, The Centre for Advanced Software Engineering Research,
2001.
This paper presents a second study of the requirements engineering process at
Telelogic AB.

[XV] Challenges in market-driven requirements engineering - an industrial
interview study
Lena Karlsson, Åsa G. Dahlstedt, Johan Natt och Dag, Björn Regnell, &
Anne Persson
C. Saliensi, K. Pohl, & B. Regnell (Eds.), Proceedings of the Eighth
International Workshop on Requirements Engineering: Foundation for Software
Quality, pp. 37–49. Essen, Germany: Essener Informatik Beiträge, 2002.
This paper presents preliminary results from an interview study of five
market-driven software development companies in Sweden.

[XVI] Market-Driven Requirements Engineering Processes for Software
Products - A Report on Current Practices
Åsa G. Dahlstedt, Lena Karlsson, Johan Natt och Dag, Björn Regnell, &
Anne Persson
Proceedings of the First International Workshop on COTS and Product Software,
Monterey Bay, CA, 2003.
This paper presents a further analysis of the interview study in Paper XV
comprising a comparison to the characteristics of market-driven development
reported in the literature.

Introduction

Software development keeps increasing in scope and pace. As software systems
encompass increased functionality, new application areas, and new markets
and customers, competition intensifies, expectations rise, and development
complexity increases. In this seemingly never-ending upward spiral, market-
and technology-driven companies are facing a challenge of dealing with infor-
mation flows that may overwhelm their management and analysis capabilities.

Of all the artifacts produced and gathered within software development,
requirements are particularly difficult to manage effectively due to their un-
structured nature. Requirements also have a potential to grow to such volumes
and arrive at such rates that specific information and knowledge management
challenges emerge: an increasing difficulty to identify and maintain require-
ments inter-relationships and deterioration of the requirements repository in
terms of duplicate, outdated, and improperly updated requirements.

Requirements management processes may be very different in design and
implementation (Kotonya & Sommerville, 1997; Robertson & Robertson,
1999). Nevertheless, companies that acknowledge both customer involve-
ment and their own innovative potential as rewarding means for discovering
successful product services and functionality are faced with a common chal-
lenge: analyzing and evaluating every incoming requirement, customer wish
and technical suggestion as soon and as thoroughly as possible.

A major contributing reason for these difficulties is that requirements are
communicated in natural language, which induces several problems in soft-
ware development, like imprecision, ambiguity, incompleteness, conflict, and
inconsistency – all of which take time to resolve. As there often are insuffi-

6 1. I

cient resources available to resolve these requirement quality issues, supportive
requirements management techniques that are more resilient to inferior lin-
guistic quality would be desirable. As proper requirements engineering and
management is regarded as an important success factor (Hofmann & Lehner,
2001), additional support would be of value to industry.

This thesis presents the results from research conducted during a period
of 4 years. The major results are presented in separate articles, which are in-
cluded in their original form. In the first paper, results from an empirical
investigation into a market-driven requirements management process are pre-
sented. The investigation shows that there is a need for better support in the
continuous management process, as it easily becomes overloaded. The need
for better support gave rise to the idea of investigating if linguistic engineering
techniques could support activities in the management of several thousands
of requirements written in natural language. Empirical investigations are pre-
sented that address the following specific requirements management activities:

Duplicate identification With a steady stream of incoming requirements,
emerging from different stakeholders and stored in a database, there is
a high probability that there are several instances of requirements that
address the same functionality. To avoid requirements deterioration,
duplicate requirements are preferably removed or grouped together. As
it is a problematic and time-consuming task to find the duplicates, au-
tomated assistance would be of great value (Paper II).

Linking similar requirements Requirements that emerge from the market
and from within the organization are, for different reasons, preferably
kept separated. However, assistance in finding and linking requirements
that address the same functionality, is of great value in order to align
business goals with customer satisfaction. (Paper III; Paper IV).

Requirements consolidation Huge requirements documents that arrive from
key customers at several different occasions should be consolidated with
the requirements currently stored in the database. New requirements
should be added and analyzed, but in order to avoid reanalyzing ar-
riving requirements that are already stored in the database repository
(with accompanying additional information), assistance in finding the
overlap is of great value (Paper V).

The first part of this thesis presents the background to and summarizes
the research work. The second part comprise the five papers that constitute
the main contribution of the thesis.

B 7

1 Background

The research and the associated results presented in this thesis apply to the
field of software engineering, in which methods, techniques, and tools are uti-
lized to overcome the challenges in development and maintenance of complex
software systems (Sommerville, 2001). About 15 years ago, a sub-discipline
within software engineering emerged due to specific challenges in handling
customers’ wishes and needs (Sommerville & Sawyer, 1997). The sub-discipline,
termed requirements engineering (RE), involves the activities in software de-
velopment where customers’ wishes and needs, i.e. the requirements, are
elicited, specified, analyzed and selected before proceeding with software de-
sign, implementation, verification and validation.

The last years, a new approach to developing software, market-driven de-
velopment or packaged software development (Sawyer et al., 1999), has gained
increasing importance as software development companies turn to new and
larger markets. The significance of market-driven development is also indi-
cated by the growing interest in commercial off the shelf (COTS) develop-
ment in the RE research community (Wieringa & Ebert, 2004). In market-
driven development, software is developed to satisfy the needs of a range of
different customers and end-users, as opposed to in contractual development
where there is only a single customer. The approach affects requirements en-
gineering in several ways. Competition in the market must be defeated, and
one way to do this is by secretly developing successful solutions and presenting
them to the market before any competitor. The competition puts a schedule
constraint where short time-to-market is crucial (Sawyer, 2000). Further-
more, to keep the competitive advantage, negotiation with customers and
end-users is very limited. Instead, many requirements are invented within
the developing company (Potts, 1995). Constantly striving to be ahead of
competitors, the market-driven development company therefore frequently
delivers new and improved releases of a software system, in order to keep old
customers satisfied and to win new ones (Potts, 1995; Carlshamre & Regnell,
2000).

The characteristic differences between contractual, or bespoke, software
development and market-driven software development have been summa-
rized by Carlshamre (2002). This summary is found in Table 1.1 (derived
from Kamsties et al. 1998; Keil & Carmel 1995; Lubars et al. 1993; Novorita
& Grube 1996; Potts 1995; Yeh 1992 with minor additions from Lubars et
al. 1993; Robertson & Robertson 1999). In particular, fundamental organi-
zational issues, such as the primary goal, the success measurements and the

8 1. I

Table 1.1: Comparison of bespoke software development and market-driven
software development characteristics (from Carlshamre 2002 with
additions from Lubars et al. 1993; Robertson & Robertson 1999)

Characteristic Bespoke development Market-driven
development

Primary goal Compliance to
requirements specification.

Time-to-market.
Requirements are jettisoned
rather than allowing delay
of release.

Measure of success Satisfaction, acceptance. Sales, market share,
product reviews.

Life cycle One release, then
maintenance.

Several releases, as long as
there is a market for the
product.

Requirements conception Elicited, analyzed,
validated.

Invented. Either the market
(marketing department)
permits a feature, or
technology does.

Requirements specification Used as a contract between
customer and supplier.

Rarely exists in orthodox
RE terms, if so, they are
much less formal.
Requirements are
communicated verbally.

Users/end-users1 Known or easily
identifiable.

Difficult to identify or
initially unknown.

Customers1 Software orderer. Contract
negotiator.

Agents for different
markets. Key customers
may get tailored software.

Physical distance to users Usually small. Usually large.
Main stakeholder Customer organization. Developing organization.
Specific RE issues Elicitation, modeling,

validation, conflict
resolution.

Managing a steady stream
of requirements.
Prioritizing,
cost-estimating, release
planning.

Developer’s association
with the software

Short-term (until end of
project).

Long-term, promoting e.g.
investment in
maintainability.

Validation Ongoing process. Very late, e.g. at trade
affairs.

Use of RE standards and
explicit methods

More common. Rare.

Use of iterative
development

Less common. More common.

Domain expertise available
on the development team.

More common Less common (product
development often breaks
new ground).

1 The terms user and customer are here further elaborated compared to Carlshamre (2002).

R E 9

Waterfall Iterative XP

System requirements

Software requirements

Analysis

Program Design

Coding

Testing

Operations

Ti
m

e

Figure 1.1: Software development process models (Royce, 1970; Beck, 1999)

product life cycle, are very unlike. The differences are so pervading that many
traditional requirements engineering practices are unusable for the market-
driven company. In the next section requirements engineering is further elab-
orated, including the specific characteristics of requirements engineering in
market-driven software development.

2 Requirements Engineering

The main objective of requirements engineering is to correctly understand the
needs of the system’s customers or users. During the requirements engineer-
ing process, these needs are transformed into a coherent formal specification,
which describes what the resulting software system should accomplish. The
discipline traditionally stipulates to write an as flawless specification as possi-
ble, which essentially means to fulfill the quality attributes listed in Table 1.2
(Davis, 1993).

By accurately describing what the system should do, the requirements
specification can act as an agreement, and even as a formal contract, be-
tween the customer and the software development organization. Solutions are
banned from the specification and, traditionally, it has to be finalized before
any successive work in the development process is initiated. This waterfall de-
velopment approach, illustrated by the leftmost process model in Figure 1.1,
was a first solution to the chaotic development in the late 60’s and was strongly
advocated.

At that time, software was very simple compared to the complex systems
developed today. It was possible to specify, once and for all, what the system

10 1. I

Table 1.2: Quality attributes for the software requirements specification (derived
from Davis, 1993)

Attribute Description

Correct Every requirement represents something required by the
system.

Unambiguous Every requirement has only one interpretation.
Complete Everything the software is supposed to do is included.
Verifiable There exists a cost-effective process with which a person or

machine can check that the actual as-built software prod-
uct meets every requirement.

Consistent No requirements in a given subset within the specification
conflict with each other.

Understandable by customers Requirements should be negotiated in a form that suits the
customer or user who usually do not understand formal
methods.

Modifiable Structure and style are such that any necessary changes
to the requirements can be easily, completely, and consis-
tently executed.

Traced The origin of each requirement is clear.
Traceable The specification is written to facilitate referencing of each

requirement.
Design independent The specification does not imply a specific software archi-

tecture or algorithm.
Annotated The necessity of each requirements is denoted essential,

desirable or optional. Volatility is indicated by a textual
annotation.

Concise Given two specifications of the same system, each exhibit-
ing identical levels of all the above qualities, the shorter
specification is the better one.

Organized Requirements are easy to locate.

should do, then design the system, code it, test it and finally deliver it. How-
ever, as software complexity has increased, so has the complexity and difficulty
of requirements engineering. The goal of accurately specifying requirements
and verifying and validating these before actual development starts, requires
software developers to be very rigorous.

Unfortunately, the rigorousity is insufficient. Customers and user’s are
not able to express all their needs at the beginning of the development project.
Due to the complexity of software systems, contradictions and changed minds
emerge throughout development. As changes to the specification in the later

R E 11

phases of the waterfall model is extremely costly, the waterfall model has gone
through several refinements. For example, shorter development cycles have
been reached through an iterative development approach, where the waterfall
development approach is repeated in smaller increments. This approach is
depicted in the middle of Figure 1.1.

Recently, agile software development (Martin, 2002) has gained a lot of
interest in industry. The most known agile development approach, extreme
programming (XP), turns the waterfall process sideways (i.e. all activities are
performed simultaneously) and repeats it in extremely small increments, as
shown to the right in Figure 1.1 (Beck, 1999). The benefits of the waterfall
model are utilized, such as its straight-forwardness, while some of the draw-
backs are avoided, such as the need for heavy documentation and the lack of
support for parallel activities, user involvement, and quick results.

As a consequence of the new approaches to software development, the
activities in requirements engineering has changed. One notable difference
is that the concept of the requirements specification for a particular system
is not always meaningful. Requirements are increasingly often stored in a
central repository, such as a requirements database, which comprise all re-
quirements ever captured and which functions as a source for decisions on
which requirements to implement. In particular, regarding the incremental
and evolutionary development models, it has been realized that complete-
ness is sometimes impossible to achieve (Siddiqi & Shekaran, 1996; Goguen,
1996). In extreme programming, which advocates even smaller increments
and continuous requirements analysis together with a customer or a represen-
tative, the traditional requirements specification has been abandoned to make
way for the new concept of user stories, initially specified and documented on
plain paper cards.

2.1 Requirements engineering in market-driven software devel-
opment

Due to its specific characteristics, market-driven development makes it partic-
ularly difficult and sometimes unfeasible to comply to all of the requirements
specification quality attributes in Table 1.2. There are three main, interlinked
reasons.

Continuous elicitation Requirements arrive continuously, throughout de-
velopment from several different sources, such as the marketing de-
partment, usability architects, support, developers, etc. Requirements

12 1. I

may arrive in bursts of thousands at several different occasions or ar-
rive at a rather even pace throughout development, averaging to 3-5
requirements a day (Paper I; Regnell et al. 1998). As a consequence,
the requirements repository eventually comprises several thousand re-
quirements (see Paper II and Paper III). Many of these requirements are
never selected for implementation. It is therefore not motivated to only
speak about the requirements specification. At best, there is a coherent
repository of requirements, rather than a diverse set of separate require-
ments specifications. Ideally then, the repository of requirements could
be regarded as a set of requirements that should be quality assured. But,
as a large amount of requirements are elicited and invented that are
never selected for implementation, it is not feasible to pursue such an
endeavor for the whole requirement set.

Time-to-market constraints The time-to-market constraint forces the de-
velopment organization to implement requirements before all quality
attributes have been properly checked. Several requirements may at
an early stage have been found to bring competitive advantage and are
therefore selected for implementation. When development of a new
release is initiated, there is no complete requirements specification. De-
liberately, implementation is started before every requirement has been
selected. This situation makes a quality attribute such as ‘completeness’
impossible to assure before the release of a new version of the software
product. In fact, it is virtually impossible to know when analysis is
complete. It is always possible to do more analysis and improve the re-
quirements. In market-driven development the completion criterion is,
unfortunately to a large extent, the date.

Market competition Competition in the market place forces the developing
company to accept changes to the selected requirements throughout
the development cycle. As opposed to contractual development, the
risk is on behalf of the developing company. Decisions on which re-
quirements to include in the next release must be made early in the
development, based on the information available. Later on in develop-
ment, these decision may be found incorrect or outdated. Competitor
analysis and market strategies may call for changes to the requirements
that were initially selected. Constraints put by the hardware, which of-
ten must be decided upon early in the development process, may also
require changes to the requirements. For the companies to stay ahead

R E 13

of competitors, new versions of the software have to be released as soon
as there is a major improvement available. Often it is required to re-
lease new versions more frequently than it is, with acceptable quality,
possible to develop.

Market-driven requirements engineering is thus a continuous process. Af-
ter an initial version of a product has been released, there is a need for a
dynamic process of elicitation, analysis, and prioritization (Paper I; Regnell
et al. 1998). The consequence is a constant change and evolution of require-
ments, which is a general particular challenge in software development (Jones,
1996). The origins to changing requirements have been identified by Parker
et al. (1993):

Environmental turbulence Markets change, materials and means of produc-
tion offer new opportunities, government policies and legislation may
be changed, and different structures and management practices are em-
ployed. The goals are not likely to be the same at the time development
starts and at the time of delivery.

Stakeholder engagement in requirements elicitation At the start of devel-
opment, stakeholders find it very difficult to produce a complete set of
requirements. It takes time to formally identify stakeholders’ goals, un-
derstand how technical opportunities may serve the goals, make stake-
holders agree, resolve priorities and conflicts, etc.

System use and user development As a system is delivered and put in use
it may stimulate new ways of working. This may generate new and
changing requirements. Pilot systems, prototypes, demonstrations, and
scenarios may stimulate the stakeholders during development. The ori-
gin of change would in that case be stakeholder engagement in require-
ments elicitation.

Situated action and task variation The performance of a system is matched
to the specific task conditions, existing at the time. Therefore, systems
must be made sufficiently flexible to permit customization and person-
alization. A certain set of requirements are requirements for change to
be an inherent and on-going capability of the delivered system.

Constraints of planned organizational development Both organizational pro-
cess and existing systems put constraints on the requirements. As the

14 1. I

processes change and existing systems are replaced, affected require-
ments must be systematically enhanced or replaced.

To manage changes to requirements there is a distinguishable process
within requirements engineering, requirements management, that aims at un-
derstanding and controlling change. In addition to managing change, require-
ments management comprise concerns for requirements storage and traceabil-
ity issues (Sommerville, 2001). A European survey of 4,000 companies has
shown that management of requirements was one of the major problem areas
in software development (Kotonya & Sommerville, 1997).

The challenge of managing change is generally difficult because require-
ments most often are written and communicated in natural language (Mich
et al., 2004). In market-driven requirements, the huge amount of require-
ments makes it particularly difficult. After years of rewarding research that
has helped us understand and improve the way requirements may be speci-
fied and formulated, the state of the practice is generally that such guidelines
are rarely applied. There is a large gap between the formal models advocated
by many researchers and the informality that dominates in industry. Several
reasons can be identified to why requirements are initially specified in natural
language and in many cases kept in that form throughout the development
process:

• Natural language is our primary communication language that is shared
by all stakeholders and participants in the development process. Formal
languages require specific training, which is unrealistic to expect from
every stakeholder in particular customers or end users.

• Requirements engineering is a social and evolutionary process where
requirements are elicited and specified at different levels of abstraction,
at different points in the development process.

• Natural language is universal, meaning that it can be used to talk about
arbitrary domains and at arbitrary levels of abstraction. Few formal
languages, if any, have this strength.

• As mentioned above, in market-driven development there are compar-
atively few of the proposed requirements that are actually selected for
implementation. Since not all requirements are expected to be imple-
mented, there is little motivation for spending time formalizing them.
In particular, experience tells us that companies, which value close in-
teraction with their customers and rapid reaction to changing market

R E 15

conditions, do not find it cost-beneficial to translate all requirements
into formal specifications.

• Many formal methods do not offer any support for the management
and analysis of erroneous, incomplete, or partially-specified require-
ments. In contrast, natural language techniques adapt naturally to such
situations, that in practice make up a large part of a requirement life
cycle.

• While formal languages can improve our ability to check internal con-
sistency and completeness of requirements (a process often referred to
as verification), they can not capture external properties of the require-
ments, e.g. correspondence between the requirements and the actual
user intentions. It requires good communication and interaction with
the stakeholders to verify such properties (validation) – and to this end,
natural language is a more suited language.

So, despite its recognized and infamous deficiencies there are few incen-
tives to avoid natural language. We should therefore expect that natural lan-
guage use can not be escaped. This is also noted by Jackson, stating that
requirements engineering is where the informal meets the formal (Jackson,
1995). Hence, the gap between the users’ needs and a new release of the soft-
ware system must be bridged using methods and techniques that acknowl-
edge, in some form, communication in natural language.

The challenges of managing enormous amounts of requirements, written
in natural langauge, that continuously must be analyzed, reanalyzed and con-
solidated is still generally left untouched. This is partly reflected by current
requirements management tools. The tools do provide the functionality to
store huge volumes of requirements, define different views of requirements,
and assign links between requirements. However, they do not give appropri-
ate assistance in the actual matching of thousands of incoming requirements
with those already analyzed. Requirements management tools could do better
than providing simple keyword search facilities to alleviate the manual burden
of consolidating large amounts of requirements.

Companies facing these challenges may arrive at a cross-road where the
choice is to reduce the flow of incoming requirements or to assign more re-
sources to handle them (Paper I). However, seen from a business perspective,
neither of these approaches is particularly rewarding (and in many situations
impossible). Choking the elicitation and invention of new requirements may
increase the risk of missing potential business opportunities (Kristensson et

16 1. I

al., 2002), and adding more people to do the job has been shown to be too
costly and, at times, counter-productive (Paper I; Brooks 1975/1995.

In essence, these companies face an information overload problem and
there is a strong need for more supportive information management tools,
aimed at the management of requirements written in natural language. The
approach suggested in this thesis is to apply linguistic engineering techniques.

3 Linguistic engineering

Language processing techniques emerged during the Second World War when
computers were utilized to break message codes (Jurafsky & Marting, 2000).
Since then, a number of overlapping fields has emerged: computational lin-
guistics, natural language processing (NLP), text and information retrieval,
speech recognition, artificial intelligence, natural language understanding, and
computational psycholinguistics. The common goal for all these fields is to
enable computer systems to perform tasks involving language processing.

The goal has partially been fulfilled. There are several examples of where
computers are successfully used to process information, whether it is written
or spoken. Typically, the systems either do shallowing processing across a
broad range of data (e.g. search engines of various kinds) or they do detailed
processing across a narrow range of data (e.g. specialized automated informa-
tion services over the phone).

Still, computer analysis of speech and text remains complicated and there
is a long way to go before a computer system can mimic human processing
in such a way that it is indistinguishable from that of a human. The Loebner
Price, set up in 1991, is to be awarded to the first author of a computer
program to pass an unrestricted Turing test (Turing, 1950). The principle of
the test is that if a computer’s responses are indistinguishable from those of
a human, the computer could be said to be thinking. The prize has not yet
been awarded.

In 1992 the term Linguistic Engineering was described in the Technical
Background Document for the Linguistic Research and Engineering (LRE)
Programme:

“Linguistic engineering (LE) is an engineering endeavour, which is
to combine scientific and technological knowledge in a number of
relevant domains (descriptive and computational linguistics, lexicol-
ogy and terminology, formal languages, computer science, software
engineering techniques, etc.). LE can be seen as a rather pragmatic

L  17

approach to computerised language processing, given the current in-
adequacies of theoretical Computational Linguistics.”

(from Garigliano, 1995)

The LE approach is elaborated by Garigliano (1995), who points out a
range of criteria for applied systems dealing with natural language, such as
usability, robustness, flexibility, and efficiency. The criteria expose the possible
variation points for the usefulness of an NLP-based system. In essence, it is
a matter of systematic cost-benefit analysis. The long-term objective is to
produce automatic systems that are of valuable use in specific environments.

Irrespective of the approach taken to develop systems that process natu-
ral language, there are a set of traditional linguistic concepts that need to be
defined in order to understand the different levels of analysis required by an
automatic system:

Morphology The components of words. It involves the understanding of
inflections, derivations, and the formation of compound words.

Syntax The structural relationships between words. It involves the under-
standing of how different words (i.e. nouns, adjectives, verbs, etc.) are
combined into clauses, which, in turn, are combined into sentences.

Semantics The meaning of words, phrases, sentences, and texts. It is of-
ten contrasted to syntax, as it is possible to break the rules of language
by producing a grammatically correct sentence, which is semantically
anomalous (e.g. “Colorless green ideas sleep furiously” (example from
Chomsky, 2002)). However, the form of a statement in natural lan-
guage cannot be analyzed separately without reference to its meaning.
Jackson & Moulinier (2002) illustrates this point by comparing the
two sentences “She boarded the airplane with two suitcases” and “She
boarded the airplane with two engines”. The suitcases belong to the
woman, while the engines belong to the airplane. These kinds of ambi-
guities typically cause problems to computer programs.

Pragmatics How language is used to accomplish a goal. This involves the
understanding of how the context influences the interpretation. One
example, often used to illustrate how men and women communicate,
can also function as an example of the distinction between the meaning
of the sentence and the meaning of the speaker. A man and a woman
are traveling across the country. The man is driving and the woman is

18 1. I

watching the scenery. After hours driving, the woman notices a coffee
house by the road and utters “Oh, what a nice coffee house”. The
man politely responses “Yes, it certainly is” and keeps on driving. But
perhaps the woman did not only assert the fact that the coffee house
was nice, but also communicated a request for taking a break by the
coffee house.

The above aspects of language present challenges for any computerized
processing of natural language text (as far as requirements are concerned, prag-
matics and semantics even presents challenges to human beings). In general,
there are two approaches available to handle the challenges. One approach
has its roots in linguistic analysis and typically consists of rules for manipu-
lating the input text, e.g. grammar rules. The approach is therefore often
characterized as symbolic (Jackson & Moulinier, 2002). The other approach,
gaining increased interest in the 1990s, has its roots in statistical analysis. It
involves a quantitative approach to automated language processing, including
such fields as probabilistic modeling, information theory, and linear algebra
(Manning & Schütze, 2002). It is often characterized as empirical (i.e. based
on experience and experimentation) as language data is derived from large text
corpora, such as news feeds and web pages.

Most characteristically, the two approaches handle phenomena such as
ambiguity differently. The symbolic approach resolves ambiguity by adding
another rule (which somehow must be formalized). This approach relies on
human experts that are able to identify and describe the language constructs.
The empirical approach uses mathematical models and statistical methods to
associate probabilities to and decide among different alternative analyzes.

For most processing systems, the approaches are combined in order to
reach the best result. So is also the case for the research and tool presented in
this thesis. Symbolic approaches are utilized for morphological analysis, while
statistical approaches are used for dealing with semantics of requirements. In
section 5 the approach taken and the techniques used in this thesis are further
elaborated.

4 Research in applying linguistic engineering to RE

As pointed out in the well-referenced paper by Ryan, there have been many
unrealistic expectations on natural language processing techniques given the
desire for a system that could support the currently expensive activities within
RE (Ryan, 1997). These expectations are typically based on misconceptions

R      RE 19

about what the communication problem in industrial RE really is and to what
extent the requirements on a system are available in textual form (see for exam-
ple Sutton (2000) for a discussion on linguistic problems with requirements
elicitation).

The criticism taken into account, Ryan concludes that RE is a social pro-
cess and that linguistic techniques can succeed only in a supporting role to this
process – not by trying to replace it. Today, there are likely few researchers in
RE that would argue against this statement.

To relate this work to the current body of knowledge, presented here is a
survey of research aimed at supporting RE activities using linguistic engineer-
ing techniques, grouped by three major RE process activities addressed:

Domain and requirements understanding, which is a fundamental success
factor in all systems and software development.

Requirements verification and validation, which are carried out to ensure
that a specification is internally consistent and to certify that the re-
quirements are a correct representation of the users’ intentions (Boehm,
1984).

Requirements management, dealing with storage, change management and
traceability issues. This is within the scope of this thesis.

In many cases the industrial applicability and scalability is yet to be de-
termined through larger case studies with real data. Also, although most ap-
proaches acknowledge ambiguity and inconsistencies, it is seldom reported
how any other pollution in the data is treated (e.g. misspellings and non-
information carrying characters). A combination of different techniques would
likely be the most rewarding and the research surveyed provides a basis for this
acquisition.

4.1 Domain and requirements understanding

Comprehension of the application domain is a fundamental success factor
in all systems and software development. Comprehension of the domain is
also an essential pre-requisite for understanding the requirements. Naturally,
domain understanding and requirements understanding complement each
other. Through requirements elicitation domain understanding improves,
which in turn matures the understanding of all the requirements. Therefore,

20 1. I

domain and requirements understanding are key activities in the general re-
quirements analysis process. One outcome of these activities is the improved
ability to understand the users’ needs and requirements to pursue.

A central task in domain and requirements understanding is to identify
and understand domain concepts, also called domain abstractions. Domain
abstractions are general concepts that are formed to represent common fea-
tures of specific instances in the domain. Although detailed information is
left out, abstractions make communication more efficient within the domain.
Developers of a software system that shall give support within a domain must
however take into account not only the general concept, but also the spe-
cific instances, in order to fully understand the abstractions. Therefore, it is
of great value to identify and investigate the domain abstractions further as
they may support domain and requirements understanding (Goldin & Berry,
1997).

Domain abstractions are typically represented in natural language through
sets of terms (often nouns and noun phrases). Researchers have therefore in-
vestigated linguistic engineering techniques to extract these terms, represent-
ing the abstractions, from the discourse generated from interview transcripts
and customer wishes expressed in natural language. Following is a survey of
the major research efforts addressing abstractions.

Goldin & Berry (1997) present an original approach and a prototype
tool for suggesting requirement abstractions to the human elicitor. Their
method compares sentences using a sliding window approach on a character-
by-character basis and extracts matching fragments that are above a certain
threshold in length. The approach can properly handle arbitrary lengths, gaps
and permutations and avoids some specific weaknesses in confidence and pre-
cision when using only parsers or counting isolated words.

Rayson et al. (2000) report experiences from one of the rare projects where
probabilistic NLP techniques have been used. The authors present two exper-
iments using tools they have developed (part-of-speech and semantic taggers
integrated into an end-user tool). The experiments suggest that the tools are
effective in helping to identify and analyze domain abstractions. This is fur-
ther supported by a later study by Sawyer & Cosh (2004) where ontology
charts of key entities are produced using collocation analysis.

A different approach to requirements understanding is taken by Gervasi
(2000) who uses lexical features of the requirements to cluster them accord-
ing to specific criteria, thus obtaining several versions of a requirements doc-
ument. The sectional structure of these documents and the ordering of re-

R      RE 21

quirements inside each section, are optimized to facilitate understanding for
specific purposes.

4.2 Requirements verification and validation

While requirements verification is carried out to ensure that a specification is
internally consistent, validation is performed to certify that the requirements
are a correct representation of the users’ intentions (Boehm, 1984). Naturally,
validation and verification of requirements are key activities in requirements
analysis. The ability to succeed in these activities also builds upon the domain
understanding discussed earlier and it is generally acknowledged that spending
more time in these stages and finding errors early is more rewarding than
proceeding too soon to coding (Boehm, 1976; Daly, 1977; Davis et al., 1997).
Therefore, considerable research effort has been put applying natural language
processing to requirements verification and validation. The typical approaches
taken are:

• to create models from the textual representation, or

• to develop indicators of violation of specific rules.

The two approaches generally involve some kind of parsing, where the in-
put text, very often manually accommodated, is transformed into a represen-
tation which enables modeling and identification of semantic and syntactical
incorrectness.

Requirements verification and validation are not carried out separately.
Checking a set of requirements for consistency may reveal internal incon-
sistencies that may as well be external. These inconsistencies must also be
resolved with a stakeholder. Therefore, these two activities are here addressed
together.

Gervasi & Nuseibeh (2002) treat the validation as a decision problem
on whether a given software model, synthesized by parsing the requirements
text, satisfies certain properties. They present an experiment with the use of
lightweight formal methods. Through an eight-step process, models are built
and the violated properties are reported. The steps in the set-up phase are
manual but expected to be reusable (defining requirements style, structure and
language; selecting properties; defining models; building domain glossary).
The steps in the production phase are mainly automatic (preprocessing the
requirements text; parsing; modeling; validation). The experiment shows that
even subtle errors, not discovered by human inspection, may be identified.

22 1. I

Cybulski & Reed (1998, 1999) describe an elicitation method and a sup-
porting management tool that help in analyzing and refining requirements by
using a parser, semantic networks, a domain-mapping thesaurus, and faceted
classification schemes to allow requirements formalization. The natural lan-
guage components are used to force the requirements engineer to rephrase
requirements in order to unify the terminology. Their method puts an em-
phasis on reuse of requirements specifications to further aid the refinement.

Another way of generally improving the quality of written requirements
is suggested by The Goddard Space Flight Center’s Software Assurance Tech-
nology Center (SATC) (Wilson et al., 1996). They have derived seven quality
indicators used for measuring the quality of requirements specifications. A list
of generally accepted quality attributes, found in the literature, was related to
objective and quantitative measures, in order to derive primitive indicators of
the specification quality. The list of indicators was also improved by investi-
gating the term usage in 46 requirements specifications from different NASA
projects. They have developed a tool that reports the quality of requirements
specifications and which is also used by NASA to improve their requirements
specifications. They conclude that automatic processing can give insight into
the specification quality and improve the effectiveness of expressing require-
ments specifications in natural language.

Fabbrini et al. (1998) also propose a quality model for natural language
requirements. They focus on the linguistic properties of requirements docu-
ments and match factors from a linguistic quality framework (deduced from
a quality framework for conceptual modeling) to NLP techniques. The result
is a quality model that proposes linguistic criteria that may be used for defin-
ing quality profiles and selecting appropriate tools for writing, verifying and
validating requirements. Fabbrini et al. (2001) have also implemented a tool,
based on the quality model, to show the quality model’s applicability for qual-
ity assuring industrial requirements. Fantechi et al. (2000) has applied both
the tool by Fabbrini et al. and SATC to evaluate the quality of 100 use cases.
They conclude that although the technique may support quality evaluation,
it is not sufficient to completely address correctness and consistency.

Yet another way to adapt the language to formal validation is to explicitly
restrict the language used in requirements; an approach that has been pro-
posed by different researchers. Fuchs & Schwertel (2003) have over the years
advocated their subset of English that unambiguously can be translated into
first-order logic and checked for inconsistencies. The advantage is that it can
be used by domain specialists that want the benefits from formal languages,

R      RE 23

but who lack the required training.

Cyre & Thakar (1997) define syntax and grammar of restricted English
so that requirements may be parsed and semantically analyzed to generate
conceptual graphs. The validation of the conceptual models is specifically
aimed at resolving ambiguities.

Somé, Dssouli, & Vaucher (1996) goes one step further and restrict the
language and semantics to a scenario style, albeit more understandable by the
user than formal specification. Complete requirements specifications are then
automatically generated from these specification.

Osborne & MacNish (1996) suggest using extensions to a parser with a
wide-coverage grammar in order to identify and present syntactic and seman-
tic ambiguities to the requirements analyst. The extensions include a parse
selection mechanism, an error diagnostic facility and resource bounds, which
together effectively present the five most plausible parses of a requirements
sentence. The feedback from the parser is aimed to be used by a require-
ments analyst to successively refine requirements so that sentences conform to
a controlled, restricted language.

Towards formalization, Fliedl et al. (2003) suggest the use of a conceptual
pre-design model to bridge the gap between the natural language representa-
tions and enable formal validation. The pre-design model is not as technical
as common conceptual modeling languages, while still supporting the gen-
eral principles behind several different conceptual models (e.g. use cases, state
charts, etc.) and the mapping to more formal model. This enables validation
with both designers and stakeholders in a language closest to their preferred
one.

Burg (1996) have developed a comprehensive and sophisticated approach
and a supporting environment for specification, verification, and validation
of functional requirements. Through an integration of natural language and
scenario analysis, two conceptual models are derived, one static and one dy-
namic. Verification is then supported graphically, lexically, and logically, while
validation is supported through natural language paraphrasing (transforming
models into language readable by the user or customer) and simulation of
the dynamic behavior. In several different ways they show how the approach
enhances specification properties and aspects.

Rolland & Proix (1992) describe a system prototype that aims to provide
support to problem-statement acquisition, elicitation, modeling and valida-
tion. Acquisition of problem statements is performed using a specialization
of the Fillmore’s case notion (Fillmore, 1968). Conceptual schemas are then

24 1. I

generated through a number of mapping rules from the cases to nodes and
arcs. Feedback in (French) natural language is finally generated through a
three-step process (extraction, transformation and linearization), each depen-
dent on a set of rules.

Macias & Pulman (1993) also pursue the extraction of conceptual models
from natural language requirements. The system they describe uses a well-
defined subset of English to forbid the expression of potentially ambiguous
sentences, and can translate natural language sentences written in this reduced
language into a formal representation, and vice versa, by using a general-
purpose, domain-independent NLP engine. In addition to paraphrasing, the
system supports natural language queries to the formal model, with answers
also expressed in natural language. In related work (Macias & Pulman, 1995),
the same authors present a syntax-driven text editing interface that helps pre-
vent the creation of syntactically incorrect requirements (with respect to gen-
eral language constructs).

Nanduri & Rugaber (1996) use OMT (object modeling technique) guide-
lines and a link grammar parser for transforming high level specifications pars-
ing into object charts. Although their tool produces object diagrams that may
help identify omissions, the approach suffers from several common problems
when trying to transform natural language requirements into object models:
parser limitations, ambiguity, incompleteness, insufficient domain knowledge
and not enough transformation rules.

A similar approach is taken by Mich & Garigliano (2002) who have devel-
oped a tool to support object-oriented analysis. The natural language require-
ments are processed using an integrated, but separately developed, large-scale
natural language processing system. Modeling is then performed based on
the output and the knowledge stored in the natural language processing sys-
tem. Its performance is demonstrated using the ATM problem statement in
Rumbaugh et al. (1991).

Park, Kim, Ko, & Seo (2000) present an implementation of a require-
ments-analysis supporting system, which may help to identify potential er-
rors in requirements. Conflicts and inconsistencies are identified by measur-
ing similarity between documents and between sentences. Also, ambiguity is
identified by matching the result from part-of-speech tagging with a manually
constructed word set that indicate ambiguities (in line with the ideas behind
the linguistic quality model by Fabbrini et al. (1998), see above). Their ap-
proach to combine syntactic parsing with a sliding window method gives more
accurate similarity measures than using them separately.

R      RE 25

In a recent paper, Flores (2004) proposes to use NLP techniques to ex-
tract relevant sentences from large requirements corpora. The approach uses
shallow parsing and contextual exploration networks, based on the presence
of certain textual markers in the text, to assign semantic tags to parts of sen-
tences without making recourse to large and unwieldy knowledge bases. Four
viewpoints are considered: concept relationships, aspecto-temporal organiza-
tion (e.g. events and ongoing processes), control (e.g. by machine or user),
and causality. The proposed approach seeks to identify inconsistencies in the
source documents by reasoning on models built on top of these four view-
points.

The identification of inconsistencies is also the main goal of Gervasi &
Zowghi (2005), who have used natural language parsing and default reason-
ing techniques to identify several inconsistency-related problems in require-
ments. In particular, conflicts between different stakeholders (both explicit
and implicit) are addressed. The authors also describe a prototype tool imple-
menting the proposed technique, and compare its performance to that of 15
human experts.

4.3 Requirements Management

Surprisingly, there are, beside the approaches presented in this thesis, not yet
any specific attempts that directly try to tackle large-scale requirements man-
agement challenges by using natural language requirements processing. In
particular, the following specific hands-on requirements management activi-
ties are open for scrutinized research:

• Match incoming (potentially new) requirements to previously elicited,
planned, and already implemented requirements.

• Maintain a separation and find the relationships between customer re-
quests and requirements invented within the organization.

• Identify dependencies and other interrelationships between requirements.

• Support the extraction of requirements from the repository that fit strate-
gic areas, i.e. areas that are of specific importance to the company (e.g.
invoicing capabilities, decision-making features).

The investigations presented in this thesis show that these activities are
major obstructions in the efficient management of elicited, invented and im-
plemented requirements. Any technique that may support the above require-

26 1. I

Table 1.3: Listing of some similarity measures

Similarity measure Description

Semantic Similarity in meaning
Syntactic Similarity in grammatical structure
Lexical Similarity in words used
Structural Similarity in sectional structure
Extensional Similarity in size
Argumentative Similarity in rationale
Goal Similarity in objective
Source Similarity in the proponent
Function Similarity in function addressed
Object Similarity in system parts affected
Temporal Similarity in time of origin

ments maintenance and management activities, even if partially, can be ex-
pected to be warmly accepted in industry.

The approach taken in the research presented in this thesis is to calculate
similarity between requirements in order to support the activities above.

5 Requirements similarity

The research in this thesis suggests that a number of problems in the man-
agement of large volumes of requirements can be solved or at least alleviated
by using a measure of how similar two requirements are. Naturally, many
different notions of similarity can be used. In most problems, what is needed
is a notion of semantic similarity: a measure of whether two requirements
convey the same meaning, and to what extent this meaning is similar. How-
ever, other notions of similarity can also be used. A few of these are listed
in Table 1.3 and more measures can easily be obtained by considering other
metadata about the requirements (e.g., priority assigned, system version tar-
geted, approval responsibility, implemented status, etc.).

Whatever measure is chosen, in order to be applicable to the manage-
ment of large repositories, it must possess a fundamental property: it has to
be computable in a relatively inexpensive way. Any measure requiring signif-
icant human intervention will be too costly to be used on large requirement
repositories; we are thus forced to focus on similarity measures that can be
computed in a completely automatic way.

Unfortunately, given the current state of the art in natural language pro-

R  27

cessing and in knowledge representation, it is not feasible to extract meaning
in a reliable way from totally unrestricted natural language text as that found
in most requirements. This work therefore focuses on lexical similarity as a
way of approximating semantic similarity.

On a lexical level, requirements are considered as a sequence of words.
The exact definition of what a word is varies with the language and the appli-
cation. More refined approaches distinguish the various lexical (and at times,
morphological) constituents of requirements with more precision. E.g., punc-
tuation (as in “,”), contraction markers (as the apostrophe in “can’t”), paren-
thetical structures (as “(”) etc. can be considered as words on their own. The
process of separating the lexical constituents of a requirement is referred to as
tokenization, and each word (in this extensive definition) is called a token.

In the work presented, a token is regarded as a sequence of letters and/or
digits. Any other characters are regarded as delimiters and thus discarded.
Tokens can be further processed in various ways. Most typically, tokens are
reduced to their base form, removing morphological inflections (e.g., reduc-
ing plural nouns to their singular form, or removing person, mood or aspect
information from verbs). This process is called morphological analysis and is
performed with the help of linguistic rules and lexicons. One variant of mor-
phological analysis is called stemming, which associates variants of the same
term with a base form. Many applications use a heuristic stemmer, which
uses ‘rules of thumb’ instead of linguistic rules (by removing affixes, such as
un- and dis-, or suffixes, such as -ing, and -able). In Paper II, the well-known
heuristic Porter (1980) stemmer is used, but in Papers III, IV, and V, a newer
one is used that is reported to perform better (Minnen et al., 2001).

Another common operation is stop word removal. It consists in dropping,
from the sequence of tokens, all those words that have a purely grammatical
role and are no significant indicators for content. The grammatical informa-
tion they convey may be stored in some other form (e.g., in parsing trees)
before removing the stop words, if so desired. Again, the details of the pro-
cess depend on the language at hand, and on the kind of analysis that is to
be performed on the requirements. In most cases, stop words coincide with
so-called closed class words, e.g. articles and prepositions. Also in this case, a
special-purpose dictionary can list exceptions. In the presented cases we have
used a stop word list comprising 425 words derived from the Brown corpus
(Francis & Kucera, 1982).

Further preprocessing steps are possible (e.g. part-of-speech tagging), but
for calculating lexical similarity the steps described above are sufficient. For-

28 1. I

mally, a requirement r, taken from a requirement set •, may be considered as
a finite sequence r = 〈vi1 , vi2 , . . . , vin〉 of tokens drawn from a given alpha-
bet V = {v1, v2, . . . , vn}, which includes all the tokens that appear in our
requirements database.

Using the pre-processing steps described above, V would contain stemmed
tokens that do not appear in the stop word list. If order is not considered im-
portant, an alternative representation is possible: a requirement r can be con-
sidered as a vector ar = [wr(v1), wr(v2), . . . , wr(vn)], where wr(vi) denotes
the weight, or relative importance, of the token vi in requirement r.

Different weighting schemes are possible. As requirements expressed in
feature style (Lauesen, 2002) are more focused than literary text, it is assumed
that the tokens remaining after the preprocessing step are all equally valuable.
In Paper II, the simplest weighting scheme is applied, assuming that weight
coincides with frequency. However, as it is considered that the importance of
a token is not linearly proportional to the number of times it occurs, in Paper
III, IV, and V, the well-known weighting formula 1+log2(termfrequency) is
also used (Macias & Pulman, 1993). Paper III explicitly compares the results
obtained by using the two schemes.

Once requirements have been encoded as vectors, it becomes possible to
apply standard similarity measures. In Paper II the performance the Dice,
Jaccard, and Cosine measures (Manning & Schütze, 2002) are compared. The
most significant difference between the measures is how they treat different
lengths of the compared requirements.

In Paper III, IV, and V, the Cosine measure was selected as it was consid-
ered to generally perform better than the other two. The measure got its name
from calculating the cosine of the angle between the vectors that represent the
requirements in a vector-space model. Figure 1.2 depicts this representation
in the case where there are only three tokens in the token space. Two of the
tokens are used in r1 (blue, button) and two are used in r2 (red, button).
However, the token ‘blue’ is occurring twice as many times as ‘red’ and the
vector representing r1 is therefore pointing further away from the ‘button’
axis.

Formally, given two requirements, p and r, the similarity between p and r

is given by the formula in Equation 1.1 (an example of applying the measure
can be found in Paper IV).

σ(p, r) =
wp(vi) · wr(vi)√∑

i wp(vi)2 ·
∑

i wr(vi)2
(1.1)

R  29

button

blue

red

r1

r2

Figure 1.2: Vector-space example

The definition assumes that the vector space employed has a Euclidean
distance, uniform across all dimensions. This is of course a gross oversimpli-
fication; in practice, the presence or absence of certain terms may be much
more important and revealing of true semantic similarity than that of other
terms. However, since the main interest is in techniques that work irrespec-
tive of the exact domain and language used, and for the sake of generality, this
simplification may be accepted, keeping in mind that more refined techniques
can be employed in specific domains.

The cosine measure in Equation 1.1 returns a value between 0 and 1 to
indicate how similar two requirements are. This value may reflect more or
less correctly the actual semantic similarity. In order to evaluate how well the
measures perform, the automatically calculated similarity measures must be
compared to the true similarity.

Human experts prefer to determine the similarity between requirements
on a nominal scale (e.g. identical, similar, not related) in favor of a ratio scale.
Therefore, the ratio values must be mapped to the nominal values. One way
to do this is to define thresholds. For example, similarity values equal to or
greater than 0.8 may correspond to identical requirements, similarity values
between 0.2 and 0.8 may correspond to similar requirements and values equal
to or less than 0.2 may correspond to dissimilar requirements. It is then
possible to use the widely adopted measures of recall and precision to evaluate
the performance of the similarity measures.

30 1. I

Recall is the fraction of requirements that are correctly classified by the sys-
tem. E.g., if a system correctly classifies 100 of 1,000 known relation-
ships, the recall will be 10%.

Precision is the fraction of the classified requirements that the system got
right. E.g., is a system classifies 500 relationships, of which 100 are
correct, then the precision is 20%.

Although these measures give a proper indication on how well an auto-
matic system performs, their interpretation is not a trivial task. Usage and
interpretation are dependent on the application and the final judgement is
subjective (e.g., how good is a system that reaches 85% recall?). Typically,
recall and precision co-vary and higher recall may be reached at the expense
of precision. Measures that combine recall and precision into one measure
have been suggested, but merely transfers the problem into a question of how
much more important recall is over precision (Van Rijsbergen, 1979).

Due to the need to interpret the measures in the context of their use, the
definitions, usages, and explanations of the measures used in this thesis are
found in the papers.

6 Research methodology

The researcher in software engineering typically seeks better (e.g. more effi-
cient, faster, less cumbersome, etc.) ways to develop and evaluate software of
acceptable quality. Motivated by real world problems, solutions are sought
that are also applicable to the real world.

The research presented in this thesis has mainly been conducted using an
engineering approach, where situations have been observed and better solu-
tions have been proposed and evaluated. One fundamental goal has guided
the research presented in this thesis and is based on the background presented
in the previous section and on the findings in Paper I. This goal may be artic-
ulated as follows:

To find automated support to the manual work in the management of
natural language requirements in large-scale software development.

The goal and the research focus has been used to formulate relevant re-
search questions, of which the ones addressed in this thesis are found in Sec-
tion 7. With the research questions as the guide, research projects have been
designed using both fixed and flexible design strategies.

R  31

In a strict fixed strategy, which is also referred to as the quantitative ap-
proach, the design is finished before data collection begins and the data col-
lected is usually in the form of numbers. In contrast, the strict flexible design,
also referred to as the qualitative approach, evolves during data collection and
usually involves collection of non-numerical data (Robson, 2002).

The fixed and flexible design strategies may be further classified. It is vir-
tually impossible to cover for all possible forms of enquiry, but the following
research strategies are widely recognized (Robson, 2002):

Fixed design research strategies

Experimental strategy A small number of variables are measured and oth-
ers are controlled. The researcher actively and deliberately introduces
some form of change in the situation, circumstances or experience of
participants with the view to producing a resultant change in their be-
havior. In Section 6.1, experimentation as a research method is further
elaborated.

Non-experimental strategy A small number of variables are measured while
others are controlled. The research does not try to change the situation,
circumstances or the participants’ experience. This strategy involves the
use of observations and surveys as data collection methods.

Flexible design research strategies

Case study A single ‘case’ or a small number of related ‘cases’ are studied to
develop detailed, intensive knowledge. The study is made in the context
of the case. In Section 6.1, the case study as a research method is further
elaborated.

Ethnographic study How a group, organization or community live, experi-
ence and make sense of their lives and their world is captured, inter-
preted and explained.

Grounded theory A theory is generated from data collected during the study.

Research in software engineering is young and the subject is cross-disci-
plinary. Therefore several research approaches and methods have been adopted
from other fields. Attempts have been made to characterize research in soft-
ware engineering but the picture is still not as clear as in many other, more
mature research fields (Shaw, 2002). Thus, software engineering research

32 1. I

methodology consensus is still to be reached. A part of the problem lies in
defining the boundaries of the field, which differ from typical engineering
research that builds on clearly defined scientific principles.

The particular purpose of the research presented in this thesis and the
way it is conducted suggest that it may also be classified both as evaluation
research and action research (Robson, 2002). In evaluation research the effect
and effectiveness of something is assessed. Both fixed and flexible design may
be used, with either qualitative or quantitative methods. In action research the
goal is to influence or change some aspect. Both classifications apply to the
research in this thesis, which is also revealed by the underlying goal expressed
earlier.

6.1 Research methods

Depending on the specific research methods chosen, research may fit more or
less accurately to a specific methodology or strategy. There are a vast number
of research methods available and the ones to choose is dependent on the type
of information that is sought (Robson, 2002). Following is a review of the
methods used for the research presented in this thesis.

Case study

The case study research method is used “when the phenomenon under study is
not readily distinguishable from its context” (Yin, 1993). This implies that the
the case always occurs in a specified social and physical setting. The case itself
can be virtually anything; a person, a business, an organization, an innovation,
a tool, a service, etc. Thanks to the flexibility of the case study method, it has
been used for several years across a variety of disciplines.

Of course, the complexity of real-life events naturally presents challenges
to the researcher as there are more variables than there are data points. There
is also the difficulty of generalizing the results, as the richness in each case
calls for multiple sources of evidence. There are some critics who suggest that
findings are easily biased due to the intense exposure to the study of the case.
Some even dismiss the case study method as useful only as an exploratory tool.
These issues must naturally be taken into consideration when designing and
planning a case study. As with other research methods, reliability and validity
must be accounted for.

Important to understand, however, is that the case study approach is a
fundamentally separate research strategy with its own design (Robson, 2002).

R  33

There may be exploratory case studies, explanatory case studies, and even
descriptive case studies. Moreover, the method does not prescribe the use of
any particular data collection method (Yin, 1994). Interviews, observation,
and data archives may all be used to provide quantitative and qualitative data
to support empirical investigations into complex real-life events.

To assure validity and reliability of the case study, Yin suggests three prin-
ciples of data collection (Yin, 1994):

Principle 1: Use multiple sources of evidence The case study becomes more
convincing and accurate if several sources of information points to the
same conclusions. Triangulation may be performed on data sources,
among different evaluators, of perspectives on the same data, and of
methods.

Principle 2: Create a case study database The collected data should be or-
ganized, collected, and presented in a way that allow inspection of the
source of evidence that led to the conclusions. This may be done by (a)
provide the data or evidentiary base, and (b) present the research in a
report.

Principle 3: Maintain a chain of evidence An external observer must be able
to trace the steps, in either direction, from initial research questions to
the case study conclusions.

The papers in this thesis present different case studies that together form
the argument of adopting linguistic engineering techniques to support re-
quirements management tasks. Principle 1 has been followed by both using
different data collection methods and different data sets. As the real industrial
requirements are proprietary information of each company, the evidentiary
base cannot be provided publicly as suggested by principle 2a. However, prin-
ciple 2b and principle 3 have been followed by presenting, in each paper, the
line of work as clearly as possible to enable researchers to conduct appropriate
replications with their own industrial requirements. This thesis introduction
further contributes to the chain of evidence.

A further classification of the methods and strategies used may be found
in Section 8. A discussion of validity threats in general is found in Section 6.2,
and the specific threats to the validity of the presented research are presented
in Section 8.1.

34 1. I

Process simulation

Simulation may be applied to a vast number of areas to imitate the operation
of a real-world process or system over time (Banks et al., 1996). It may be
executed either by hand or by computer to generate artificial historical data,
which is observed to investigate the plausible behavior of the real system. The
behavior is studied by developing a simulation model, which describes the
system through mathematical, logical and symbolic relationships between ob-
jects in the system that are of interest. A useful model always simplifies and
idealizes, and the boundaries between the system and the model are rather
arbitrary defined. However, the usefulness is dependent of the possibility to
practically determine all its relevant behavior: analytically, numerically, or by
running the model with certain inputs and observe the outputs (Bratley et al.,
1987).

The purposes of simulation are many (Naylor et al., 1966, pp. 8–9; Banks
et al., 1996, p. 4):

1. Enable the study of, and experimentation with, the internal interaction
of or within a complex system.

2. Simulate informational, organizational and environmental changes and
observe the effects of alterations.

3. Provide knowledge from designing a simulation model that may be of
great value towards suggestion of improvements to the system.

4. Obtain insight into the questions of which variables are most important
and how variables interact.

5. Pedagogically reinforce analytical solution methodologies.

6. Experiment with new designs or policies prior to implementation, so as
to prepare for what may happen.

7. Verify analytical solutions.

The appealing property of simulation, to mimic what does or may happen
in a real system, makes it an attractive approach with several benefits (Pegden
et al., 1995, p. 9):

1. New policies, operating procedures, decision rules, organizational struc-
tures, and the like, can be explored without disrupting ongoing opera-
tions.

R  35

2. New hardware designs, physical layouts, software programs, transporta-
tion systems, etc., can be tested before committing resources to their
acquisition and/or implementation.

3. Hypotheses about how or why certain phenomena occur can be tested.

4. Time can be controlled; it can be compressed, expanded, etc., allowing
to speed up or slow down a phenomenon for study.

5. Insight can be gained about which variables are most important for
performance and how these interact.

6. Bottlenecks in material, information and product flow can be identified.

7. A simulation study can prove invaluable to understanding how the sys-
tem actually operates as opposed to how everyone thinks it operates.

8. New situations, about which there is limited knowledge and experience,
can be manipulated in order to prepare for theoretical future events.
Simulation’s great strength lies in its ability to enable the exploration of
“what if ” questions.

The research presented in Paper I, involving modeling and simulation
of a requirements process, mainly aimed at studying the internal interaction
within the requirements process (purpose 1) and to simulate the effects of in-
formational and organizational changes to the process (purpose 2). A primary
goal was also a better understanding of the system in order to suggest im-
provements (purpose 3). Finally, by showing how a simulation model of the
requirements process may look like, the organization under study was enabled
to experiment prior to implementation (purpose 6). The identified advan-
tages for choosing simulation were the possibility to explore the information
flow and new process policies (benefit 1), to reveal bottlenecks (benefit 6), to
understand how the process behaved (benefit 7) and to answer what would
happen if certain changes were made in the process (benefit 8). More infor-
mation may be found in Paper I.

However, simulation also has a few disadvantages (Pegden et al., 1995,
p. 9). Firstly, model building requires special training and experience. Two
models that are constructed by two competent individuals may have similari-
ties but is highly unlikely to be the same. Secondly, simulation results may be
difficult to interpret, as it may be hard to determine whether the output de-
pends on randomness or system interrelationships. Thirdly, simulation mod-
eling and analysis can be time consuming and expensive. If enough resources

36 1. I

are not assigned, the model or analysis may be insufficient. Fourthly, a disad-
vantage identified by Banks et al. (1996, p. 5), simulation is sometimes used
when an analytical solution is possible, or even preferable. Solvable queu-
ing models may be used in some circumstances. See for example Regnell et
al. (2003) for a suggestion of an analytical model for requirements selection
quality.

Thanks to vendors of simulation software, there are model packages and
thorough analysis available to address the disadvantages. Moreover, simula-
tion may continually be performed even faster, thanks to advances in hard-
ware.

Experimentation

In the most general sense, an experiment is a test of an idea to see what hap-
pens Montgomery (2001); Robson (2002). This type of investigation can
consequently be performed in virtually any field. Experimentation allows a
systematic way of investigating cause-effect relationships and requires careful
planning.

The planning phase of an experiment is vital for the success of an exper-
iment. Success does not necessarily mean that an intended effect has been
proven, but that proper conclusions may be drawn based on the collected
data. The extent of the planning phase is one characteristic of the experimen-
tation method that makes it stand out compared to other research methods.
The planning involves (Juristo & Moreno, 2001; Montgomery, 2001; Rob-
son, 2002; Wohlin et al., 2000):

Selecting the context A real setting, outside the laboratory, is the most desir-
able as it enables easier generalization to the real world and is likely to
make measurements more valid. However, real world experimentation
in software engineering involves high risks and may cause unacceptable
delays in industry. The alternative is to experiment on a smaller off-line
project, which is cheaper to run and easier to control.

Define the goal of the experiment Describe what the experiment aims to
investigate and its motivation. Explicitly stated goals and motives helps
in keeping the focus throughout the experimentation.

Formulate the hypothesis Hypothesis testing is the basis for statistical anal-
ysis of experiments. The hypothesis is stated formally using the null
hypothesis, which states that any differences between two treatments are

R  37

coincidental, and the alternative hypothesis, which states what is to be
established, i.e. it is selected in favor of a rejected null hypothesis.

Select the variables Two types of variables are chosen and defined, the in-
dependent and the dependent variables. The independent variables are
those that can be controlled and are changed in the experiment. The
dependent variables are those that are measured. In the selection of
variables, one must also select the measuring scale, the range, and the
levels at which test will be made.

Select the subjects The selection of subjects must be representative for the
population under study. Selection of the population is also called sam-
pling, since only a sample of the possible population is used in the ex-
periment. Different sampling techniques are available that impact the
generalization error and the power of the statistical tests.

Choose an experimental design Conclusions from an experiment are drawn
based on statistical tests. In turn, the statistical tests that may be ap-
plied depend on the experimental design. There are a number of de-
signs available, ranging from simple design with only one factor to be
analyzed using two subject groups, to more complex experiment with
several factors and several subject groups. There are even design that use
only one subject group, but the recommendation is then to improve the
design (using more than on group) or switch to the case study method
(see Section 6.1).

Instrumentation To allow proper replication and to provide means for moni-
toring the experiment without affecting control, the objects, guidelines,
and measurement instrument should be clearly defined. This involves
decisions on the artifacts used in the experiment (e.g. code, specifica-
tions, etc.), the instructions and other material given to the subjects,
and the data collection methods and scales (e.g. post-test in the form of
a questionnaire).

Evaluate validity The validity of research results is fundamental to all re-
search. To ensure as high validity as possible, i.e. to ensure a successful
experiment, validity threats should be considered already in the plan-
ning phase. Identification of validity threats at an early stage, enable
the researcher to take measures before involving the experiment sub-
jects, which are the most costly resource in the experiment. Validity
threats are elaborated in Section 6.2.

38 1. I

A question that is still under debate is whether it is feasible to use student
as subjects in software engineering experiments to draw conclusions about
professional software developers. There are studies that argue that under cer-
tain conditions this is possible (Höst et al., 2000; Runeson, 2003; Kuzniarz et
al., 2003). In paper V an experiment with students is presented and the dif-
ference between two groups of students is suggested to be transferrable to in-
dustry based on indications from a related industrial situation and evaluation.
The experiment is conducted based on the suggestion by Juristo & Moreno
(2001) that experimentation in software engineering, as in other fields of sci-
ence and engineering, shall be conducted through a three-stage process:

Laboratory experiments An innovative idea should first be tested ny the in-
novator in a laboratory setting where market pressures and financial
risks are avoided. The experiment should be made replicable by other
researchers, by providing the instruments used.

Real projects A limited case study can be conducted with a real team of early
adopters. This enables a better study of the limits of the innovation.

Genuine real-world projects When the idea has passed the two previous lev-
els satisfactorily, a full-fledged experiment may be conducted and a large
set of data may be collected during a longer period of time. This final
level provides the means to draw the final conclusions about the inno-
vation.

According to Juristo & Moreno (2001), the software community does not
take the benefits, in terms of reduced risks and increased useful investments,
of empirically testing suppositions seriously (at any level). In addition to the
arguments against experimentation and their rebuttals, presented by Tichy
(1998) (see Table 1.4), Juristo & Moreno (2001) present further difficulties
for experimentation in software engineering:

1. Software developers are not trained in the importance and meaning of
the scientific method.

2. Software developers are unable to easily understand how to analyze the
data of an experiment or how they were analyzed by others because they
are lacking the (statistical) training.

3. That there are no experimental design and analysis books for SE makes
things harder to understand. Examples from the field are preferred.

R  39

Table 1.4: Fallacies and rebuttals about computer science experimentation
(Tichy, 1998; Juristo & Moreno, 2001)

Fallacy Rebuttal

Traditional scientific
method isn’t applicable

In order to understand the nature of information processes,
computer scientists must observe phenomena, formulate expla-
nations and theories, and test them.

The current level of
experimentation is
good enough

Relative to other sciences, the data shows that computer scien-
tists validate a smaller percentage of their claims.

Experiments cost too
much

There are meaningful experiments that fit the budget of small
laboratories. There are also expensive experiments that are
worth much more than their cost. And there is a wide spec-
trum in between.

Demonstrations will
suffice

Demos can provide proof-of-concepts in the engineering sense,
or provide incentives to study a question further. Too often,
however, these demos merely illustrate a potential.

There is too much
noise in the way

An effective simplification for repeated experiments is bench-
marking. Fortunately, benchmarking can be used for many
questions in computer science.

Progress will slow Increasing the ratio of papers with meaningful validation has a
good chance of actually accelerating progress.

Technology changes
too fast

If a question becomes irrelevant quickly, it is perhaps too nar-
row and not worth spending a lot of effort on it.

You’ll never get it pub-
lished

Smaller steps are still worth publishing because they improve
our understanding and raise new questions is a thinking that
some are not familiar with.

4. Empirical studies conducted to check the ideas of others (i.e. replica-
tions) are not very publishable.

5. There is an immense number of variables that influence software devel-
opment.

6. It is difficult to get global results in software engineering, such as, for
example, determining the circumstances under which one technique
should be selected instead of another or, alternatively, proving that al-
ternative A is always better.

7. Software engineering is a discipline that is dependent of practitioners.
So, the result od several people applying one and the same software ar-

40 1. I

tifact (technique, process, tool, etc.) will almost certainly yield different
results.

8. Companies are continuously developing new, increasingly complex, and,
ultimately more expensive software systems. This should be a condi-
tion for applying the different approaches in a reliable manner. Para-
doxically, however, the market is often used as a culture medium for
performing these experiments, with the usual risks.

Despite the difficulties there are no strong arguments against experimen-
tation. Experimentation provide a means to make claims supported by real
data rather than common beliefs and assumptions.

6.2 Threats to validity

Although well-known strategies, methodologies, and methods have been used
to conduct the research and arrive at the conclusions presented in this thesis,
the results should be interpreted with respect to the potential threats to va-
lidity. Different classification schemes have been presented to systematically
address different types of validity threats.

One classification scheme, suggested by Cook & Campbell (1979) as an
extension to the work by Campbell & Stanley (1963), groups the validity of
research results into four different types, each addressing a specific method-
ological question (Trochim, 2000). The types are explained below in the con-
text of a causal study, where a potential relationship between a cause and effect
is sought.

Conclusion validity Is there a relationship between the cause and the effect?
It may be concluded that there is a relationship, that there is a positive
relationship, that there is no relationship, etc. In each of these cases, the
conclusion validity may be assessed.

Internal validity Assuming that there is a relationship, is the relationship a
causal one? A correlation between the cause and the effect in a study
does not necessarily mean that the construct is causing the effect. Stated
differently, other factors than the independent variables may cause the
effects.

Construct validity Assuming that there is a causal relationship, can it be
claimed that the treatment reflects the construct of the treatment and
that the measure well reflects the idea of the construct of the measure?

R  41

ExternalConstructInternalConclusion

Figure 1.3: Illustration of the relationship between the different types of validity

I.e., was the intended treatment really implemented and was the in-
tended measure really what was measured?

External validity (referred to as generalizability by Robson (2002)) Assuming
that there is a causal relationship in the study between the constructs of
the cause and the effect, can the effect be generalized to other places,
times, or people? Claims may be made that the research findings have
implications for other similar settings.

As the methodological questions above point out, the validity types build
upon each other and each type assumes that the previous validity type is en-
sured. This relationship is illustrated in Figure 1.3.

Robson (2002) also suggest to consider reliability, objectivity, and credibil-
ity as separate threats to validity. Reliability and credibility are closely related
to conclusion validity and have to do with the reliability of the measure. Pri-
mary causes to reliability threats are participant error and observer error. Partic-
ipant error may occur if the participants seek to please the researcher or when
fluctuations in the participants performance are not anticipated. Observer
error may occur if the researcher has been tired or lacking in concentration
when measuring or taking notes, or unconsciously biases the results in line
with his or her own beliefs.

Objectivity has to do with the risk that the involved researcher may distort
the response from using a certain methodology due to prejudices, values, and
specific interests. Robson (2002) gives the example of the possibility of view-
ing an experiment either as the answer or as an extreme version of a problem.

Indeed, attempts should be made to reduce the threats to validity. There
may, for example, be insufficient statistical power to detect a relationship, a
sample size may be to small, a measure may be unreliable, variability in the
data may be caused by random heterogeneity, etc. By showing that possible

42 1. I

alternative explanations are not credible, the most plausible conclusion may
correctly and reliably be reached (Trochim, 2000).

In section 8 the specific threats to the validity of the research presented
in this thesis are discussed, with respect to the four-group scheme presented
above. Furthermore, Paper I through Paper IV has gone through extensive
peer-review processes (three or more researchers have reviewed each paper
prior to publication) in which the reliability and credibility of the research
has been assessed according to research community standards.

7 Research questions

Four research questions were formulated in 2002 based on the goal presented
in Section 6. For clarity, the goal is here restated:

To find automated support to the manual work in the management of
natural language requirements in large-scale software development.

The original research questions are stated below. The next section dis-
cusses how the research in this thesis has managed to answer these questions.

RQ1 What are the possible applications of automated relationship analysis tech-
niques to support the requirements analyst?

RQ2 Which techniques may improve the accuracy of automated relationship
analysis of requirements?

RQ3 How may the result from automated relationship analysis techniques best be
supported by and visualized in CASE tools?

RQ4 To what extent is natural language used to specify requirements in current
market-driven software development companies?

8 Contribution

This thesis addresses the issues of saving time and effort in the management
of large amounts of requirements in market-driven software development. A
summary of each individual paper can be found in the paper abstracts, which
are located at the beginning of each included paper, respectively. This section
summarizes the main contribution and relates it to to the research questions,
RQ1–RQ4, in Section 7 and to Paper I–Paper V.

C 43

C1 Demonstrated how simulation may be used to predict where congestion oc-
cur in the requirements engineering process

Paper I presents a case where discrete-event simulation has been used
to investigate the conditions that result in an overloaded requirements
engineering process, with respect to the continuous and complex man-
agement of requirements. It is shown that in the investigated process,
overload may be avoided either by increasing the number of people in
the implementation phase from 30 to 165 or by reducing the number
of elicited requirements to less than a fifth. Since only a fraction of
all the elicited requirements are supposed to be implemented, the fo-
cus should be on reducing the number of requirements in the process.
Duplicate identification was identified as one rewarding activity for re-
jecting many requirements. The results from the paper is therefore also
the origin for the subsequent research and results.

C2 Demonstrated the applicability of robust linguistic engineering techniques
for supporting different large-scale requirements management activities, in
which the common denominator is the matching of semantically similar re-
quirements

Paper II, III, and V present three different cases, involving three dif-
ferent requirements engineering processes and three different applica-
tions to requirements management. The results and experience re-
ported from these studies show that three different requirements man-
agement tasks - duplicate identification, requirements linkage, and re-
quirements consolidation - may be alleviated through the use of lin-
guistic engineering techniques. In addition the these tasks, other tasks
have been identified as possible application areas, which are presented
in Paper II. As experience was gained from the first study in Paper II
and other research was made available, a new morphological analyzer
and a more appropriate weighting scheme was selected when moving to
the cases in Paper III and Paper IV. In addition, several ideas for future
improvement have been identified during the evaluations. These are
presented in Section 9.

44 1. I

C3 Developed a support tool, which utilizes the proposed linguistic engineering
techniques, and demonstrated that its usage may increase performance in
the task of linking related requirements.

A tool, presented in Paper IV, has been developed based on the experi-
ence gained from the research presented in Paper II and Paper III. The
tool has not undergone extensive usability tests so the author does not
claim that the tool’s design is the best chosen. However, two evalua-
tions presented in Paper V, one with students and one with experts in
an industrial setting, reports on a positive attitude towards the tool and
indications that it effectively support requirements consolidation.

Table 1.5 presents the relationship between the included papers, and the
research questions, contribution, strategies, and methods used. Research ques-
tion 4 is not explicitly answered by the research included in this thesis. How-
ever, the presented studies give evidence that natural language is extensively
used in three large software development companies. Moreover, indications
that natural language is used in industry is supported by the results from an
interview study to which the author of this thesis has contributed with both
interview design, realization, and analysis (Karlsson et al., 2002). The study
involved 5 market-driven companies of which all used natural language to
document requirements. The author’s experience from other companies also
indicate the natural language is prevalent. That natural language is still widely
used is also supported by another study by Mich et al. (2004), which showed
that, out of 103 companies, 79% of the companies use common natural lan-
guage and another 16% use structured natural language (templates, form,
etc.) for specifying requirements.

8.1 Validity threats

Following is an account of the validity threats to the research presented in
this thesis. The context and further details are found in each paper. Validity
threats in general are discussed in Section 6.2.

In the simulation study in Paper I, the major threat to validity concerns
the construct, i.e. the model and the degree to which it faithfully represents its
system counterpart (Zeigler et al., 2000). Validation was performed through
an iterative process of running the model and analyze the output behavior.
This process was terminated when the model was considered to capture the

C 45

Table 1.5: A mapping between the papers included in this thesis and the research
questions, contribution, strategies, and methods used.

Paper Question Contribution Strategy & method Data collection

I RQ1 C1 Fixed & flexible,
Case study

Simulation, Inter-
view

II RQ2, (RQ4) C2 Fixed & flexible,
Case study

Content analysis,
Questionnaire

III RQ2, (RQ4) C2 Flexible,
Case study

Content analysis

IV RQ2, RQ3, (RQ4) C2, C3 Flexible,
Case study

Content analysis

V RQ2, RQ3, (RQ4) C3 Fixed, Experimen-
tal

Content analysis,
Questionnaire

system behavior to the extent demanded by our objectives. Furthermore, rep-
resentatives from the company under study validated the simulation output
to be accurate, thus further assuring construct validity. There may be threats
to internal validity of the conclusions on how to avoid bottlenecks, but al-
though the results may be somewhat surprising, they are considered plausible.
Improvements to the model were then identified and thus also other potential
threats to validity.

In the studies in Papers II through Paper V, in which different computer
programs (in Perl, C, C++, and Java) have been implemented for tokeniza-
tion, morphological analysis, stop word removal and similarity calculations
(see Section 5 for a description of these concepts), there may be threats to in-
ternal and construct validity. Each step must be correctly performed in order
to reach a mathematically correct similarity measure. To address this threat
and to minimize faults in the implementation, the programs have been tested
using randomly selected requirements. The results from the programs have
been compared to results from manually performing the preprocessing and
calculation steps (see Section 5). Several faults have been removed thanks to
this process, but, naturally, several faults could remain. For example, the im-
plementation of the tokenization and morphological analysis might remove
words that should not have been removed (undetected in the evaluation using
randomly selected requirements), which could affect the results.

There are two reasons to why these threats are not too problematic. Firstly,
the statistical nature of the approach makes it resilient to minor flaws in the

46 1. I

preprocessing steps, comparable to naturally fluctuating quality of the raw
input text, i.e the requirements in its original form. Naturally, the specific
similarity measures should be calculated correctly according to the formulas,
but this has been assured as described above. Validity in terms of implemen-
tation of the preprocessing steps is further assured by the several different
implementations that have been used, with respect to software design, pro-
gramming language, tokenization scheme and morphological analysis. Since
all results from the different implementations point in the very same direc-
tion, it is considered plausible that any potential errors in the implementation
will have statistically negligible impact on the results.

Secondly, the approach does not, thanks to the specific application envi-
ronment, require any measures of performance, accuracy or precision to be
near-perfect. It is never claimed that the approach shall be used unsupervised
or without human intervention. The approach is suggested to be used as a
supportive technique leaving the final judgements to the experts in the field.
Specifically, the experiment in Paper V indicates that, with or without errors
in the implementation, the approach may give valuable support.

Threats to conclusion validity are potentially present in the studies in Pa-
per II through Paper V. In these studies, the outcome of the automatically
calculated similarity measures and the links assigned by experiment subject
have been compared to available facts provided by experts. I.e., the duplicate
requirements already found by exerts and the links between requirements al-
ready assigned by experts have been used as the presumably correct results.
These presumably correct results could be incomplete and erroneous. In the
study of duplicate requirements identification the outcome of one run was
therefore evaluated separately by an expert from the company, who found
that there were more relationships between the requirements than initially
specified. This indicates that the keys used are more likely to be incomplete
than erroneous. This is also plausible due to the lack of time in industry for
the analysis of requirements. Nevertheless, human errors are likely to be in-
troduced with or without the automated support. The experiment in Paper V
actually indicates that fewer errors are made using automated support.

Another threat to conclusion validity is related to the intricacy of the re-
quirements relationships. As expected, the presented approach does not per-
form with 100% accuracy or precision. The conclusion that the suggested
techniques is a generally reasonable approximation for indicating semantic
similarity, based on the available relationships established by experts, could be
incorrect. Certainly, there are cases where the approach fails, as specifically

C 47

reported in Paper III (204 unidentified requirement links). The reasons for
this is a matter for further research into the semantics of requirements. How-
ever, the approach is never suggested to replace human judgement, but merely
supporting it. The claim is that the approach may save time in requirements
management activities and that any saved time could be put on finding more
intricate relationships.

A related threat to conclusion validity is that the keys used may be repre-
sentations of only simple relationships between requirements, which are easily
found by experts using manual methods. This may suggest that not much
time could be saved after all. This is addressed in Paper III where a reasonable
calculation shows the time that could be saved based on the available links
established by experts and the presented findings. This is furthermore sup-
ported by the experiment and experts’ judgement presented in Paper V. Of
course, the particular experiment is not made on a very large requirement set,
and the obvious question is how it scales up. However, the combined results
from the different studies imply that the method does scale up.

The experiment in Paper V is subject for various threats to validity, as ex-
periments generally are. Conclusion validity threats related to statistical tests
have been addressed by checking the distribution of the results and by using
the correct statistical test based on that. Conclusion validity threats related
to subjects are limited as the subject group is rather homogenous. Internal
validity threats, due to history, maturity, mortality, etc., are limited due to the
short experimentation time. Social threats were also considered limited as the
student had nothing to gain in the particular outcome. To reduce construct
validity threats, more than one researcher was involved in the experimenta-
tion. Another set of requirements would be needed to see whether the par-
ticular requirements set actually had an impact on the results. Measures that
the subjects were aware of may also affect the results in an uncontrolled man-
ner. The largest threat to external validity is that students have been used as
subjects. However, the students are in their third year of software engineering
studies and close to start working in industry. Moreover, the participants are
familiar with the application domain, which is industry-like, as they partici-
pate in a course where they produce a requirements specification for essentially
the same system as is the target for the requirements specifications used in the
experiment.

The case study strategy, which is used throughout the presented research,
entails specific external validity threats. The generalizability of the results may
be the most questionable and further studies could be made to support the

48 1. I

approach. However, three different sets of industrial requirements and two
sets from educational software projects have been used. The same underlying
technique have been used in different settings and the results point in the
same direction, giving reasonable evidence that the results are generalizable to
other domains and settings in the software industry.

9 Further work

Research in applying linguistic engineering techniques to requirements engi-
neering and management has been conducted over a period of approximately
10 years. According to a study of software technologies it takes in between 15
and 20 years for a technology to evolve from concept formulation to the prop-
agation throughout the community of users (Redwine Jr & Riddle, 1985).
Considering the young age of requirements engineering and the disparate at-
tempts made so far, full technology transfer of applying linguistic engineer-
ing techniques to requirements engineering management is likely some years
away.

Linguistic engineering techniques are widely used in information inten-
sive support systems; however most CASE tools excluded. Tools and tech-
niques are available and may be successfully adapted and further exploited.
With the increase in the amount of information written in natural language
that large software development companies need to manage, these techniques
are worthwhile taking more advantage of. In a state-of-the-practice talk at
the International Requirements Engineering Conference in 2004, Dr. Jeremy
Dick from requirements management tool vendor Telelogic, also noted that
natural language processing techniques is one field to consider with respect to
requirements traceability (Dick, 2004).

The approach of calculating similarity between requirements on a lexical
level, performs reasonably well considering its simplicity. Most importantly,
it provides added support to the management of large repositories of natural
language requirements. The support is not aimed at replacing the current way
of working, but to complement it in order to save time.

The simplicity of the technique is a deliberate choice. As such, it is robust
and requires no or little maintenance or attention, which is important for
acceptance in industry. For research purposes, the presented evaluations acts
as a baseline to which further research may be compared.

Based on the research presented in this thesis, the following aspects have
been identified to deserve further investigation and evaluation:

F  49

• Term weighting schemes specifically relevant for the style of require-
ments. Perhaps the term occurrence itself is more important than how
often it occurs. For example, assume that requirement A comprises
10 words, requirement B comprises 10 words, and that requirement C
comprises 120 words. Assume that requirement A and B are semanti-
cally more similar than any other pair of requirements. Now, suppose
that requirementys A, B, and C share the same set of terms. The simi-
larity measure between A and C would then be higher than between A
and B, which is not what is expected. Thus, it may be appropriate to
also consider the structure of the requirements.

• Similarity measuring techniques that give increased recall and preci-
sion. Other measures may be investigated and different measures and
techniques could be combined to increase overall accuracy (e.g. part-
of-speech tagging, sliding window, and Latent Semantic Analysis (Lan-
dauer & Dumais, 1997)).

• Incorporation of semantics to catch more distant similarities. E.g.,
treating compound concepts as tokens, using a lexicon to deal with syn-
onyms, hypernyms, and hyponyms (e.g. WordNet (Fellbaum, 1998),
domain-specific lexicons, etc.).

• Expansion of abbreviations and other mnemonics to their full textual
representation. For example, the company presented in Paper III uses
two names for each software component, one identifier and one natural
language functional name. The identifiers may appear in the require-
ments and a replacement of the identifiers with their functional name
could improve accuracy.

• Feedback to support alternative decisions on similarity. E.g., data min-
ing of the requirements repository where already linked requirements
may provide information on which tokens that may indicate higher
affinity between requirements. Another idea is to use Bayesian learning
(Neal, 1996) in the process where a human assess the outcome from
suggested similarities (i.e., a form of relevance feedback).

• Impact of the selection of attributes to include in the similarity calcu-
lation. Experienced requirements manager realize that it is difficult to
find the perfect structure, but there may be requirements attributes that
provide better results. The impact depends on the correctness of the
contents in these attributes as it is not self-evident that all attributes are

50 REFERENCES

consistently used (e.g., is a particular requirement a usability require-
ment or a performance requirement?).

• Ways of visualizing the output from the similarity calculations to sup-
port the requirements manager in the navigation among related require-
ments (e.g., TileBars (Hearst, 1995)).

In order to assure external validity, i.e., generalizability, suggested im-
provement should be evaluated on real industrial requirements. Preferably,
evaluations are also performed through experimentation, both in a laboratory
environment and in real industrial projects. The latter will better reveal the
cost-benefit of any suggested improvement. Any domain-specific improve-
ments may add a cost to the practitioner. These costs should be motivated
and related to the positive effects on the requirements management process.

References

Banks, J., Carson, J. S., & Nelson, B. (1996). Discrete-event system simulation
(2nd ed.). Upper Saddle River, NJ: Prentice Hall.

Beck, K. (1999). Embracing change with extreme programming. Computer,
32(10), 70–77.

Boehm, B. W. (1976). Software engineering. IEEE Transactions on Computers,
25(12), 1226–1241.

Boehm, B. W. (1984). Verifying and validating software requirements and
design specifications. IEEE Software, 1(1), 75–88.

Bratley, P., Fox, B. L., & Schrage, L. E. (1987). A guide to simulation (2nd
ed.). New York, NY: Springer-Verlag.

Brooks, F. P., Jr. (1975/1995). The mythical man-month: Essays on software
engineering (Anniversary ed.). Boston, MA: Addison-Wesley.

Burg, J. F. M. (1996). Linguistic instruments in requirements engineering.
Doctoral dissertation, Vrije Universiteit, The Netherlands. IOS Press: Am-
sterdam, The Netherlands.

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental
designs for research. Boston, MA: Houghton Mifflin Company.

REFERENCES 51

Carlshamre, P. (2002). A usability perspective on requirements engineering - from
methodology to product development. Doctoral dissertation, Linköping Stud-
ies in Science and Technology, Linköping University, Sweden. Dissertation
No. 726.

Carlshamre, P., & Regnell, B. (2000). Requirements lifecycle management
and release planning in market-driven requirements engineering processes.
In A. M. Tjoa, R. R. Wagner, & A. Al-Zobaidie (Eds.), Proceedings of the
11th international workshop on database and expert systems applications process
(pp. 961–965). Los Alamitos, CA: IEEE CS.

Chomsky, N. (2002). Syntactic structures (2nd ed.). Berlin: Walter de Gruyter.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and
analysis issues for field settings. Boston, MA: Houghton Mifflin Company.

Cybulski, J. L., & Reed, K. (1998, Dec). Computer-assisted analysis and
refinement of informal software requirements documents. In Proceedings of
the fifth asia-pacific software engineering conference. Taipei, Taiwan.

Cybulski, J. L., & Reed, K. (1999, Sep). Automating requirements refinement
with cross-domain requirements classification. In Proceeding of the fourth
australian conference on requirements engineering (ACRE’99) (pp. 131–145).
Macquarie University, Sydney.

Cyre, W. R., & Thakar, A. (1997). Generating validation feedback for au-
tomatic interpretation of informal requirements. Formal Methods in System
Design, 10(1), 73–92.

Daly, E. B. (1977). Management of software development. IEEE Transactions
on Software Engineering, 3(3), 229–242.

Davis, A. M. (1993). Software requirements - objects, functions, & states (Re-
vised ed.). Upper Saddle River, NJ: Prentice Hall.

Davis, A. M., Jordan, K., & Nakajima, T. (1997). Elements underlying the
specification of requirements. Annals of Software Engineering, 3, 63–100.

Dick, J. (2004). State-of-the-practice talk: Requirements traceability: Whither,
why and wherefore. International Requirements Engineering Conference
(RE2004), Kyoto, Japan.

52 REFERENCES

Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., & Ruggieri, S. (1998, May).
Achieving quality in natural language requirements. In Proceedings of the
11th international software quality week (QW’98). San Fransisco, CA: Soft-
ware Research Institute.

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001, Nov). The linguistic
approach to the natural language requirements quality: Benefit of the use of
an automatic tool. In Proceedings of the 26th annual nasa goddard software
engineering workshop (pp. 97–105). Greenbelt, Maryland: IEEE CS.

Fantechi, A., Gnesi, S., Lami, G., & Maccari, A. (2000). Application of
linguistic techniques for use case analysis. Requirements Engineering, 8(3),
161–170.

Fellbaum, C. (Ed.). (1998). Wordnet: An electronic lexical database. Cam-
bridge, MA: MIT Press.

Fillmore, C. J. (1968). The case for case. In E. W. Bach & R. T. Harms (Eds.),
Universals in linguistics theory (pp. 1–90). New York, NY: Holt, Rinehart,
and Winston, Inc.

Fliedl, G., Kop, C., & Mayr, H. C. (2003, June). From scenarios to KCPM
dynamic schemas: Aspects of automatic mapping. In Proceedings of the 8th
international conference on applications of natural language to information
systems (NLDB 2003) (pp. 91–105). Burg (Spreewald), Germany.

Flores, J. J. G. (2004, June). Linguistic processing of natural language re-
quirements: The contextual exploration approach. In B. Regnell, E. Kam-
sties, & V. Gervasi (Eds.), Proceedings of the 10th anniversary international
workshop on requirements engineering: Foundation for software quality. Riga,
Latvia.

Francis, W. N., & Kucera, H. (1982). Frequency analysis of english usage:
lexicon and grammar. Boston, MA: Houghton Mifflin.

Fuchs, N. E., & Schwertel, U. (2003). Reasoning in attempto controlled
english. In Proceedings of the international workshop on principles and practice
of semantic web reasoning, ppswr (pp. 174–188). Mumbai, India: Springer
Verlag.

Garigliano, R. (1995, Mar). JNLE Editorial. Natural Language Engineering,
1(1), 1–7.

REFERENCES 53

Gervasi, V. (2000). Environment support for requirements writing and analy-
sis. Doctoral dissertation, Dipartimento di Informatica, University of Pisa,
Italy. Dissertation No. 82.

Gervasi, V., & Nuseibeh, B. (2002). Lightweight validation of natural lan-
guage requirements: a case study. Software Practice and Experience, 32,
113–133.

Gervasi, V., & Zowghi, D. (2005). Reasoning about inconsistencies in nat-
ural language requirements. ACM Transactions on Software Engineering and
Methodology.

Goguen, J. A. (1996). Formality and informality in requirements engineering.
In S. Fickas & A. Finkelstein (Eds.), Proceedings of the fourth international
conference on requirements engineering (pp. 102–108). Los Alamitos, CA:
IEEE CS.

Goldin, L., & Berry, D. M. (1997). AbstFinder, a prototype natural lan-
guage text abstraction finder for use in requirements elicitation. Automated
Software Engineering, 4(4), 375–412.

Hearst, M. (1995). Tilebars: Visualization of term distribution information
in full text information access. In I. R. Katz, R. Mack, L. Marks, M. B.
Rosson, & J. Nielsen (Eds.), Proceedings of the acm sigchi conference on hu-
man factors in computing systems (pp. 59–66). New York, NY: ACM.

Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success
factor in software projects. IEEE Software, 18(4), 58–66.

Höst, M., Regnell, B., & Wohlin, C. (2000, Nov). Using students as subjects
– a comparative study of students and professionals in lead-time impact
assessment. Empirical Software Engineering, 5(3), 201–214.

Jackson, M. (1995). Requirements and specifications: A lexicon of software
practice, principles and prejudices. Boston, MA: Addison-Wesley.

Jackson, P., & Moulinier, I. (2002). Natural language processing for on-
line applications: Text retreival, extraction and categorization. Amsterdam,
The Netherlands: John Benjamins.

Jones, C. (1996). Patterns of software systems failure and success. Boston, MA:
International Thomson Computer Press.

54 REFERENCES

Jurafsky, D., & Marting, J. H. (2000). Speech and language processing. Upper
Saddle River, NJ: Prentice Hall.

Juristo, N., & Moreno, A. M. (2001). Basics of software engineering experi-
mentation. Boston, MA: Kluwer Academic Publishers.

Kamsties, E., Hörmann, K., & Schlich, M. (1998). Requirements engi-
neering in small and medium enterprises. Requirements Engineering, 3(2),
84–90.

Karlsson, L., Dahlstedt, A. G., Natt och Dag, J., Regnell, B., & Persson,
A. (2002). Challenges in market-driven requirements engineering - an
industrial interview study. In C. Saliensi, B. Regnell, & K. Pohl (Eds.),
Proceedings of the eigth international workshop on requirements engineering:
Foundation for software quality (pp. 37–49). Essen, Germany: Essener In-
formatik Beiträge.

Keil, M., & Carmel, E. (1995, May). Customer-developer links in software
development. Communications of the ACM, 38(5), 33–44.

Kotonya, G., & Sommerville, I. (1997). Requirements engineering: processes
and techniques. New York: John Wiley & Sons.

Kristensson, P., Magnusson, P. R., & Matthing, J. (2002). Users as a hid-
den resource for creativity - findings from an experimental study on user
involvement. Creativity and Innovation Management, 11(1), 55–61.

Kuzniarz, L., Staron, M., & Wohlin, C. (2003). Students as study subjects in
software engineering experimentation. In Proceedings of the 3rd conference
on software engineering research and practic in sweden (pp. 19–24). Lund,
Sweden.

Landauer, T. K., & Dumais, S. T. (1997). A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction and representation
of knowledge. Psychological Review, 104(2), 211–240.

Lauesen, S. (2002). Software requirements: Styles and techniques. London,
UK: Addison-Wasley.

Lubars, M., Potts, C., & Richter, C. (1993). A review of the state of the
practice in requirements modeling. In Proceedings of IEEE international
symposium on requirements engineering (pp. 2–14). Los Alamitos, CA: IEEE
CS.

REFERENCES 55

Macias, B., & Pulman, S. G. (1993). Natural language processing for require-
ments specifications. In Safety critical systems (pp. 57–89). Chapman and
Hall.

Macias, B., & Pulman, S. G. (1995). A method for controlling the production
of specifications in natural language. The Computer Journal, 38(4), 310–
318.

Manning, C. D., & Schütze, H. (2002). Foundations of statistical natural
language processing. Cambridge, MA: MIT Press.

Martin, R. C. (2002). Agile software development, principles, patterns, and
practices. Upper Saddle River, NJ: Prentice Hall.

Mich, L., Franch, M., & Novi Inverardi, P. L. (2004). Market research for
requirements analysis using linguistic tools. Requirements Engineering, 9(1),
40–56.

Mich, L., & Garigliano, R. (2002). Nl-oops: A requirements analysis tool
based on natural language processing. In C. A. Brebbia, N. F. Ebecken,
P. Melli, & A. Zanasi (Eds.), Proceedings of the 3rd international conference
on data mining (pp. 321–330). Wessex: WIT Press.

Minnen, G., Carroll, J., & Pearce, D. (2001, Sep). Applied morphological
processing of english. Natural Language Engineering, 7 (3), 207–223.

Montgomery, D. C. (2001). Design and analysis of experiments. USA: John
Wiley & Sons.

Nanduri, S., & Rugaber, S. (1996). Requirements validation via auto-
mated natural langauge parsing. Journal of Management Information Sys-
tems, 12(3), 9–19.

Naylor, T. I. H., Balintfy, J. L., Burdick, D. S., & Chu, K. (1966). Computer
simulation techniques. New York, NY: John Wiley.

Neal, R. M. (1996). Bayesian learning for neural networks. In Lecture notes
in statistics (Vol. 118). New York, NY: Springer-Verlag.

Novorita, R. J., & Grube, G. (1996, July). Benefits of structured requirements
methods for market-based enterprises. In Proceedings of the sixth annual
international symposium on systems engineering (INCOSE’96). Boston, MA.

56 REFERENCES

Osborne, M., & MacNish, C. K. (1996). Processing natural language soft-
ware requirements specifications. In Proceedings of the 2nd international
conference on requirements engineering (ICRE’96) (pp. 229–236). Colorado
Springs, CO.

Park, S., Kim, H., Ko, Y., & Seo, J. (2000). Implementation of an effi-
cient requirements-analysis supporting system using similaity measure tech-
niques. Information and Software Technology, 42(6), 429–438.

Parker, S. D., Eason, K. D., & Dobson, J. E. (1993). The change and evolu-
tion of requirements as a challenge to the practice of software engineering.
In Proceedings of IEEE international symposium on requirements engineering
(pp. 266–272). Los Alamitos, CA: IEEE CS.

Pegden, C. D., Sadowski, R. P., & Shannon, R. E. (1995). Introduction to
simulation using siman (2nd ed.). New York, NY: McGraw-Hill.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–
137. ((reprinted in Readings in Information Retrieval, Morgan Kaufmann,
1997))

Potts, C. (1995). Invented requirements and imagined customers: Require-
ments engineering for off-the-shelf software. In Proceedings of the second
IEEE international symposium on requirements engineering (pp. 128–130).
Los Alamitos, CA: IEEE CS.

Rayson, P., Emmet, L., Garsida, R., & Sawyer, P. (2000, Jun). The REVERE
project: Experiments with the application of probabilistic NLP to systems
engineering. In Proceedings of the fifth international conference on applications
of natural language to information systems (NLDB 2000). Versailles, France.

Redwine Jr, S. T., & Riddle, W. E. (1985). Software technology maturation.
In Proceedings of the eighth international conference on software engineering
(pp. 189–200). Los Alamitos, CA: IEEE CS.

Regnell, B., Beremark, P., & Eklundh, O. (1998). A market-driven require-
ments engineering process – results from an industrial process improvement
programme. Journal of Requirements Engineering, 3(2), 121–129.

Regnell, B., Karlsson, L., & Höst, M. (2003). An analytical model for re-
quirements selection quality evaluation in product software development.
In D. C Martin (Ed.), Proceeding of the 11th IEEE international requirements
engineering conference (pp. 254–263). Los Alamitos, CA: IEEE CS.

REFERENCES 57

Robertson, S., & Robertson, J. (1999). Mastering the requirements process.
Harlow, UK: Addison-Wesley.

Robson, C. (2002). Real world research (2nd ed.). Oxford, UK: Blackwell.

Rolland, C., & Proix, C. (1992, May). A natural language approach for
requirements engineering. In Proceedings of the fourth international confer-
ence on advanced information systems engineering (CAISE’92) (pp. 257–277).
Manchester, UK.

Royce, W. W. (1970). Managing the development of large software systems:
concepts and techniques. In Proceedings of IEEE WESTCON (pp. 1–9).
Los Alamitos, CA: IEEE CS.

Rumbaugh, J. E., Blaha, M. R., Premerlani, W. J., Eddy, F., & Lorensen,
W. E. (1991). Object-oriented modeling and design. Upper Saddle River,
NJ: Prentice-Hall.

Runeson, P. (2003). Using students as experiment subjects - an analysis on
graduate and freshmen student data. In Proceedings of the 7th international
conference on empirical assessment & evaluation in software engineering.

Ryan, K. (1997). Commentary on abstfinder: A prototype natural language
text abtraction finder for use in requirements elicitation. Automated Soft-
ware Engineering, 4(1), 415.

Sawyer, P. (2000). Packaged software: Challenges for RE. In Proceedings of
sixth international workshop on requirements engineering: Foundation for soft-
ware quality (pp. 137–142). Essen, Germany: Essener Informatik Beiträge.

Sawyer, P., & Cosh, K. (2004, June). Supporting MEASUR-driven anal-
ysis using NLP tools. In B. Regnell, E. Kamsties, & V. Gervasi (Eds.),
Proceedings of the 10th anniversary international workshop on requirements
engineering: Foundation for software quality. Riga, Latvia.

Sawyer, P., Sommerville, I., & Kotonya, G. (1999, Jun). Improving market-
driven RE processes. In Proceedings of international conference on product
focused software process improvement (PROFES’99) (pp. 222–236). Oulu,
Finland.

Siddiqi, J., & Shekaran, M. C. (1996). Requirements engineering: The
emerging wisdom. IEEE Software, 13(2), 15–19.

58 REFERENCES

Somé, S. S., Dssouli, R., & Vaucher, J. G. (1996). Toward an automation of
requirements engineering using scenarios. Journal of Computing and Infor-
mation, 2(1), 1110–1132.

Sommerville, I. (2001). Software engineering (6th ed.). Harlow, UK: Pearson
Education.

Sommerville, I., & Sawyer, P. (1997). Requirements engineering - a good
practice guide. Chichester, UK: John Wiley & Sons.

Sutton, D. C. (2000). Linguistic problems with requirements and knowledge
elicitation. Requirements Engineering, 5, 114–124.

Tichy, W. F. (1998). Should computer scientists experiment more? 16 reasons
to avoid experimentation. IEEE Computer, 31(5), 32–40.

Trochim, W. M. (2000). The research methods knowledge base (2nd ed.).
Cincinnati: Atomic Dog Publishing.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59,
433–460.

Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). Dept. of
Computer Science, University of Glasgow.

Wieringa, R., & Ebert, C. (2004). Guest editors’ introduction: RE’03:
Practical requirements engineering solutions. IEEE Software, 21(2), 16–
18.

Wilson, W. M., Rose, L. H., & Hyatt, L. E. (1996). Automated quality
analysis of natural language requirement specifications. In Proceedings of
the 14th annual pacific northwest software quality conference (pp. 140–151).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wess-
lén, A. (2000). Experimentation in software engineering - an introduction.
Norwell, MA: Kluwer.

Yeh, A. (1992). Requirements engineering support technique (REQUEST) -
a market driven requirements management process. In Proceedings of the sec-
ond symposium on assessment of quality software development tools (pp. 211–
223). Los Alamitos, CA: IEEE CS.

Yin, R. K. (1993). Applications of case study research (Vol. 34). Thousand
Oaks, CA: SAGE publications.

REFERENCES 59

Yin, R. K. (1994). Case study research: Design and methods (2nd ed., Vol. 5).
Thousand Oaks, CA: Sage Publications.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of modeling and
simulation - integrating discrete event and continuous complex dynamic systems
(2nd ed.). San Diego, CA: Academic Press.

I

PAPER I

Exploring Bottlenecks in Market-Driven
Requirements Management Processes
with Discrete Event Simulation

Martin Höst, Björn Regnell, Johan Natt och Dag, Josef Nedstam, Christian Nyberg

Journal of Systems and Software, 59, 323–332, 2001

Abstract

This paper presents a study where a market-driven requirements management
process is simulated. In market-driven software development, generic software
packages are released to a market with many customers. New requirements
are continuously issued, and the objective of the requirements management
process is to elicit, manage, and prioritize the requirements. In the presented
study, a specific requirements management process is modeled using discrete
event simulation, and the parameters of the model are estimated based on in-
terviews with people from the specific organization where the process is used.
Based on the results from simulations, conditions that result in an overload
situation are identified. Simulations are also used to find process change pro-
posals that can result in a non-overloaded process. The risk of overload can be
avoided if the capacity of the requirements management process is increased,
or if the number of incoming requirements is decreased, for example, through
early rejection of low-priority requirements.

62 I. E B  M-D R M

1 Introduction

Requirements Engineering (RE) in a market-driven context, where succeed-
ing versions of a software package are released to a market, is getting increased
attention (Lubars et al., 1993; Potts, 1995; Yeh, 1992). When developing
software for a market, rather than for a single customer, the pressure on short
time-to-market is evident. An effective engineering of software requirements
is an important success factor for meeting market demands. RE involves ac-
tivities such as analyzing and prioritizing requirements, and maintaining a
database of requirements that may be implemented in the future. This part
of the software process requires resources, and the allocation of resources to
activities related to requirements selection and release planning is crucial to
the continuous delivery of competitive software releases. Traditional RE has
mainly been focused on the bespoke situation where a specific system is de-
veloped based on a contract with a specific customer. The market-driven sit-
uation, however, has special challenges regarding scheduling constraints and
stakeholding (Sawyer, 2000), and there is an industrial need for process im-
provement in this area (Sawyer et al., 1999).

One way of analyzing process improvement proposals is to carry out pi-
lot studies or controlled experiments within the specific organization (Wohlin
et al., 2000). However, this requires much resources and an alternative ap-
proach is to carry out simulations of the organization instead (Kellner et al.,
1999; Pfahl and Lebsanft, 2000). This is an engineering approach that is
chosen in many other areas, and it can, of course, be applied in evaluation
of software development processes too. After the new processes have been
analyzed through simulation they can be analyzed in experiments and case
studies. In this way simulations can be a natural part of technology trans-
fer and evaluation. Simulations may reduce the risk of implementing process
changes that are not resulting in improvements. Since many people in the
organization often are involved in experiments and pilot-studies, it may be a
large problem if the wrong changes are introduced and evaluated. This can
very well damage the continued process improvement work in the organiza-
tion for a long time. Thus, there is a clear opportunity for simulation as a first
step in the evaluation of new software process technology.

The objective of the presented study is to investigate if simulation can
help in exploring bottlenecks and overload situations in RE processes. The
object of simulation is a specific process called REPEAT (Regnell et al., 1998),
which is used by a leading CASE-tool developer for real-time systems devel-
opment (Telelogic AB). The REPEAT process is a result of an improvement

T REPEAT  63

programme that started in 1995, as Telelogic considered efficient RE a key
success factor. After the introduction of REPEAT, a significant improvement
in delivery precision and product quality was gained. However, after a num-
ber of releases with REPEAT, it was realized that market pressure resulted in a
number of further challenges regarding through-put and congestion (Regnell
et al., 1998). This led to a research project with the objective of further un-
derstanding and improving market-driven RE. The presented work is a part
of this effort.

All figures and data in this paper refer to the period 1998-1999. Since
then, Telelogic has grown considerably, and Telelogic has continuously in-
troduced improvements in order to meet the challenges of the market. The
principal results presented in this paper are thus relevant for understanding
market-driven requirements management in general, rather than character-
izing the current and future situation at Telelogic. In the following, all ref-
erences to the “current” or “actual” situation relates to the time-frame from
1998-1999. The simulation study presented in this paper, applies discrete
event simulation (Banks et al., 1996) using a queuing network model (King,
1990). A major objective of the simulation study is to explore the conditions
under which the process becomes overloaded. It is also investigated which
resources are needed in order to handle a certain frequency of new require-
ments. Simulations are carried out in order to explore the conditions that
result in an overloaded process, and to find changes to the process that may
remove bottlenecks. The paper is structured as follows. In Section 2, the RE-
PEAT process is presented, and Section 3 presents the simulation model. The
results of the performed simulations are presented in Section 4. In Section 5,
conclusions and suggestions for further research in the field are presented.

2 The REPEAT process

REPEAT manages requirements continuously by controlling a product pipeline
in which three releases are developed in parallel. The product pipeline delivers
two new product releases per year. REPEAT covers typical RE activities, such
as elicitation, documentation, and validation, and the process has a strong
focus on requirements selection and release planning. A schematic picture of
the process is shown in Figure 1.

REPEAT is instantiated for each release, and each process instance has a
fixed duration of 14 months. Each REPEAT instance consists of five differ-
ent phases separated by milestones at pre-defined dates. The Elicitation phase

64 I. E B  M-D R M

Milestones

RQ Start

RQ Deadline

Spec Baseline

Code Stop

Release

Kick-out

Ju
l 3

1

S
ep

 3
0

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

D
ec

 3
0

Ja
n

31

M
ar

 3
1

Ju
n

30
Ju

l 3
1

S
ep

 3
0

1 2 3 4 5

6Release n-1

1 2 3 4 5

6Release n-1

1 2 3 4 5

6Release n-1

1

2

3

4

6

5

Phases

Elicitation

Selection

Change management
in parallel with
Construction

Conclusion

Figure 1: The milestones and phases of the REPEAT process, aligned with a
fixed release schedule.

deals with the collection and initial classification of requirements. The Se-
lection phase includes detailed specification of each requirement and release
planning. The Change Management phase is active in parallel with construc-
tion (design, implementation, and testing of requirements for the coming
release) and manages changes in requirements priorities due to events such as
emergence of high-priority requirements and delays. The Conclusion phase
includes post-mortem documentation. Each of these phases are further de-
scribed below.

2.1 Elicitation

The elicitation phase includes two activities: collection and classification.
Collection of requirements is made by an issuer that fills out a web-form
and submits the requirement for storage in an in-house-built database. Re-
quirements are described using natural language and given a summary name
by the issuer. An explanation of why the requirement is needed is also given.
The issuer gives the requirement an initial priority P, which suggests in which
release it may be implemented. P is a subjective measure reflecting the view
of the issuer, and is measured on an ordinal scale with three levels, as shown
in Table 1.

2.2 Selection

The goals of this phase are:

1. to select which requirements to implement in the current release

T REPEAT  65

2. to specify the selected requirements in more detail

3. to validate the requirements

The output of this phase is a requirements document which includes a selected-
list with a detailed specification and effort estimation in hours of all selected
requirements, and a not-selected-list including the requirements that are post-
poned to the next release. The selected requirements are divided into a must-
list and a wish-list. The must-list comprises requirements that are estimated
to take 70% of the available effort, while the wish-list comprises requirements
that are estimated to take 60% of the available effort. This implies that if the
effort estimations are correct, half of the wish-list will be implemented, and
the rest will be reconsidered for implementation in the next release. However,
all the requirements on the wish-list are specified, so if the estimations are not
correct there will still be a number of specified requirements to implement in
the release.

2.3 Change management during construction

This phase of the REPEAT process is carried out in parallel with the design,
implementation, and testing of the requirements, and handles changes in the
priorities of the requirements. There are two sub- phases of this phase, one
before code-stop (3-4 in Figure 1) and one after code-stop (4-5 in Figure 1).
After code-stop no implementation is carried out. Instead the focus is on test-
ing. If new priority-1-requirements are issued, these may be allowed to affect
ongoing construction, and in the change management phase the requirements
on the must- and wish-list may be rearranged so that new and more impor-
tant requirements can be incorporated. The 70%-60% rule for the must- and
wish-lists must, however, still hold, implying that some less important require-
ments should be postponed in order to incorporate the new, more important,
requirements.

2.4 Conclusion

In this phase metrics are collected and a final report is written that summarizes
the lessons learnt from this REPEAT enactment. During 1998 and 1999, the
number of unimplemented requirements in the requirements database has in-
creased, and the REPEAT process has at times been in a state of congestion.
Process simulation gives the opportunity of investigating the behavior of the
process under different circumstances. Results from simulations may provide

66 I. E B  M-D R M

quantitative measures, which can act as decision support when allocating re-
sources to different activities in REPEAT.

3 The simulation model

Based on the REPEAT process model (Regnell et al., 1998), an initial simu-
lation model was created, including some major simplifications. The model
was then iteratively refined and specialized until it provided an adequate de-
gree of abstraction. As a last step an interview with personnel at Telelogic gave
the actual values for the model parameters, along with a confirmation that the
model was sufficiently accurate.

3.1 Structure of the model

The REPEAT process simulator is a queuing network model and is imple-
mented using discrete event simulation (Banks et al., 1996). The simulated
model is depicted in Figure 2. Requirements enter the simulator from the
environment. A requirement must pass the three phases elicitation, selec-
tion and construction in order to be included in a release. (The conclusion
phase found in Figure 1 was not included in the simulation model as it is
independent from the rest of the phases and does not affect congestion and
throughput).

In the elicitation phase, incoming requirements are entered into the sys-
tem and given an initial priority. In the selection phase, the requirements that
are to be included in the release are selected, and in the last phase the require-
ments are constructed. The phases are modeled as processes with a queue of
incoming requirements, and a pool of servers which represent the employees.
Each phase is thus modeled as a FIFO queue with m servers. Requirements
enter the system according to a Poisson-process, and the elicitation phase is
therefore an M/G/m queue, while the two other phases are G/G/m queues.

In the elicitation phase, every requirement receives a priority. All require-
ments having normal priority, i.e. priority 2, are transferred to the selection
phase within the current release. Priority 3 requirements are postponed to the
selection phase of the next release. Priority 1 requirements are moved to the
selection phase of the previous release.

In the simulation model all releases have their own resources. That is,
when a release is instantiated in the model, a number of servers in each phase
are created. The servers in the selection phase are idle during elicitation, wait-
ing for the selection phase to start. The servers in the construction phase are

T   67

ConstructSelectElicitPrev ious
Release

ConstructSelectElic it
Current
Release

ConstructSelectElic itNext
Release

Not
 selec ted

 Not
completed

Prio 3

Pr io
 1

R
el

ea
se

In
co

m
in

g
re

qu
ire

m
en

ts

Figure 2: Simulation model.

idle during elicitation and selection, while waiting for the construction phase
of the previous release to finish. The personnel that are represented in the
simulation model by the servers, are in reality the same persons represented
by the servers in the previous release. This is a simple way of modeling that
the same persons divide their time between different activities.

During selection, the time each requirement will spend in construction
is estimated. A must-list and a wish-list is constructed according to the de-
scription of the REPEAT process given above. Requirements that enter either
of these lists are transferred to the construction phase of the current release.
Requirements that are not selected for either of these lists are sent to the se-
lection phase of the next release, where they may or may not be selected for
construction.

When the servers start working they check if it is possible to perform
the job next-in-line within the deadline of the release. When the deadline
for the release approaches, some requirements may be left uncompleted and
sent to the selection phase of the next release. This occurs because there is
a parameter-controlled error in the estimation of the required work, and be-
cause the wish-list includes more requirements than is possible to construct
during one release in order to get a better utilization of the available resources.

All this means that a requirement may pass the selection phase several
times during its lifetime. A requirement requires serving time in every phase
it passes, which imply a certain amount of overhead when re-routing a re-
quirement to another release.

68 I. E B  M-D R M

3.2 Parameter estimation

The simulator accepts a set of input parameters which specify the simulated
situation. These input parameters include the number of requirements enter-
ing the process each day, the number of available servers (employees) for each
phase, and the average time spent on a requirement in each phase (see further
Table 1).

The actual values for the parameters are based on data from interviews
with an expert from Telelogic. The requirements are modeled to have an
exponentially distributed intensity of arrival, i.e. they arrive according to a
Poisson process. The distributions of the serving times in the various phases
can be modeled in a number of ways. In (Höst and Wohlin, 1998) it is shown
that a suitable way to model serving times based on subjective estimates given
by domain experts is to use triangular distributions. Based on a triangular
distribution, the interviewed expert estimated the smallest possible value, the
most likely value, and largest possible value of the serving time for each phase.
Data from interviews also provided estimations of parameters regarding the
number of employees in each phase, the number of requirements of different
priorities, and the average estimation error that is made when estimating the
serving time in the construction phase.

The interviews also exhibited that if a requirement has been in one selec-
tion phase, and later is sent to a selection phase in another release, it requires
only about a fifth of the time spent in the original phase.

The interviews with the expert also concerned general experiences with the
REPEAT process. After five releases the requirements database contained al-
most 2,000 requirements. For each of the five releases, about 75 requirements
were implemented, which imply that the requirements database contained
about 1,625 unimplemented requirements.

3.3 Discrepancies between simulator and process

There are two significant simplifications in the model. First of all, the server
model does not completely match the actual use of employees. In reality there
is a single pool of employees containing a number developers working on a
number of modules. The single pool of developers work in all three phases
(elicitation, selection and construction) for all releases. The simulation model,
however, has one pool of servers for every phase of every release. To adjust this,
each phase has a parameter indicating when it starts, and the construction
phase has a parameter indicating when it finishes, i.e. the release deadline.

T   69

Ta
bl

e
1:

Si
m

ul
at

io
n

pa
ra

m
et

er
sa

Pa
ra

m
et

er
C

as
e

1
C

as
e

2
C

as
e

3
C

as
e

4

T
im

e
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
re

le
as

e
st

ar
t-

up
s

12
6

12
6

12
6

12
6

T
im

e
fr

om
st

ar
t

of
re

le
as

e
to

st
ar

t
of

se
le

ct
io

n
ph

as
e

12
6

12
6

12
6

12
6

T
im

e
fr

om
st

ar
t

of
re

le
as

e
to

st
ar

t
of

co
ns

tr
uc

-
ti

on
ph

as
e

16
8

16
8

16
8

16
8

Le
ng

th
of

co
ns

tr
uc

ti
on

ph
as

e
12

6
12

6
12

6
12

6
M

ea
n

ti
m

e
be

tw
ee

n
tw

o
co

ns
ec

ut
iv

e
re

qu
ir

e-
m

en
ts

0.
33

0.
33

0.
33

0.
33

N
um

be
r

of
se

rv
er

s
in

th
e

el
ic

it
at

io
n

ph
as

e
30

30
1

30
E

lic
it

at
io

n
ti

m
e

pe
r

re
qu

ir
em

en
tb

(0
.0

10
,0

.0
31

,0
.0

62
)

(0
.0

10
,0

.0
31

,0
.0

62
)

(0
.0

10
,0

.0
31

,0
.0

62
)

(0
.0

10
,0

.0
31

,0
.0

62
)

N
um

be
r

of
se

rv
er

s
in

th
e

se
le

ct
io

n
ph

as
e

30
30

16
30

Se
le

ct
io

n
ti

m
e

pe
r

re
qu

ir
em

en
tb

(1
,2

,1
0)

(1
,2

,1
0)

(1
,2

,1
0)

(1
,2

,1
0)

N
um

be
r

of
se

rv
er

s
in

th
e

co
ns

tr
uc

ti
on

ph
as

e
30

30
16

5
30

C
on

st
ru

ct
io

n
ti

m
e

pe
r

re
qu

ir
em

en
tb

(1
,4

5,
91

)
(1

,4
5,

91
)

(1
,4

5,
91

)
(1

,4
5,

91
)

Fr
ac

ti
on

of
re

qu
ir

em
en

ts
of

pr
io

ri
ty

1
0%

10
%

10
%

10
%

Fr
ac

ti
on

of
re

qu
ir

em
en

ts
of

pr
io

ri
ty

3
0%

25
%

25
%

25
%

a
T

he
un

it
of

pa
ra

m
et

er
s

re
pr

es
en

ti
ng

ti
m

e
is

w
or

ki
ng

da
ys

.
b

T
he

se
pa

ra
m

et
er

s
ar

e
de

fin
ed

ac
co

rd
in

g
to

a
tr

ia
ng

ul
ar

di
st

ri
bu

ti
on

(l
ow

es
t

po
ss

ib
le

va
lu

e,
m

os
t

lik
el

y
va

lu
e,

hi
gh

es
t

po
ss

ib
le

va
lu

e)
as

de
sc

ri
be

d
in

Se
ct

io
n

3.
2.

70 I. E B  M-D R M

The servers of each phase are idle when the phase is inactive. This solution
gives an adequate accuracy validated by the interview results.

The second simplification is the way the must- and wish-lists are con-
structed. The model just takes the first incoming requirements and puts them
into the must-list until it is full. Thereafter the wish-list is filled, and late jobs
are not selected. This means that priority 1 requirements rarely get selected,
as they are sent to the previous release, and arrive there late, when the lists are
already full. This simplification can be addressed by changing the simulation
model so that requirements are inserted into the lists in a way more similar
to the real situation, e.g. by inserting a new job into a random position in
the list, whereby the last jobs are pushed off the list. The random distribu-
tion can in turn be dependent on the priority of the requirement, or other
factors, such as how old the requirement is. These possible enhancements are,
however, not implemented in the simulation model as the simulator is not
used for investigating the quality of the outcome, but for exploring timing,
capacity and throughput.

Another simplification regards the estimated construction effort. Data
from the interviews specify the distribution of the total time spent on con-
struction for each requirement. However, large requirements can in reality
be divided into several smaller requirements, which in turn can be sched-
uled over many releases. Therefore, the triangular distribution of the serving
times in the construction phase was modified. The maximum serving time
was changed from the original 170 days to 91 days, and the most common
serving time was changed from 19 days to 45 days in order to produce the
same workload. Otherwise the largest jobs would never be implemented in
the simulation model.

Other simplifications include the fact that the simulator model never re-
jects requirements, which is done to a small extent in the actual process. How-
ever, requirements are removed so rarely in reality that we do not believe that
it affects the validity of the results very much.

In general, we believe that the identified simplifications have insignificant
impact on the principal results of the simulations.

4 Model implementation

The model was implemented as a discrete event simulation model in SDL
(ITU-T, 1999). A discrete event simulation model was chosen, because it
is a straightforward way of implementing models that represent networks of

R 71

queues. SDL was chosen because it is based on real-time processes and it sup-
ports the creation of discrete event simulators. Another advantage of choosing
SDL is that the case tool that the modeled company develops can be used to
develop systems in SDL. In fact, the model is implemented with the case tool
developed by Telelogic. This means that almost all people at the company
understand the notation of the model. The presented research represents the
first attempt to model the REPEAT process in a simulation model. In the
future it would be possible to carry out not only discrete event simulations,
but also systems dynamics simulations of the process.

After the model was implemented, a simple version was created by making
all serving times exponentially distributed. Special-case parameters were used
which enabled analytical validation of the simulator through e.g. Little’s theo-
rem (King, 1990). This proved that the simulator was implemented according
to the queuing network model. The complete simulator was then validated
by comparing throughput and congestion against data from the expert inter-
views. The simulator matched the real number of requirements implemented
per release, and therefore also the real number of requirements waiting to be
implemented after five enactments of the REPEAT process.

5 Results

The results from simulations of the REPEAT process are based on a number
of executions of the simulator with various input parameter settings in order
to verify the simulation model and draw conclusions from it. The simulation
model can be used to analyze many different characteristics of requirements
management processes, and the simulation results may act as a valuable deci-
sion support.

Four simulation cases are presented in order to illustrate the usage of the
simulator and to show the impact of process changes.

The first case is a baseline situation where no prioritization of require-
ments are made, i.e. all requirements have priority 2. This case is primarily
used to verify the model and is presented and analyzed to facilitate compar-
ison with the following cases. The second case introduces prioritization and
is based on the actual situation as determined by the data from interviews.
In the third and fourth case, changes to the simulation parameters are intro-
duced in order to investigate what amount of increase in capacity or decrease
in work load is needed to make the process stable. These values have been
found by observing the result for a number of different values. The parameter

72 I. E B  M-D R M

values that are used in the simulations are summarized in Table 2.

5.1 Case 1: No priorities

A baseline situation, to which other cases can be compared, is when every
elicited requirement is selected and subsequently constructed within the same
release, and all requirements have priority 2. In this case, no requirements are
re-routed between releases based on priority (requirements are only re-routed
when time constraints forces requirements to be forwarded to the selection
phase of the next release).

Figure 3 shows the total number of requirements in the selection phases
for a number of releases. The selection phases are shown for up to five full re-
leases, with the left-most curve corresponding to release 1 and the subsequent
curves corresponding to the following releases. Release 6 and 7 can thus be
viewed in part.

The y-axis shows, for each release, the sum of requirements in the queue
and requirements currently being processed by the servers. From the time
when selection begins, there are always requirements to handle and the servers
are never idle. For example, in release 1 there are approximately 400 require-
ments waiting in the queue ready to be analyzed. Thus, from the time when
selection begins the servers are constantly busy until all requirements have
been handled.

An important conclusion that can be made from the figure is that this
process is overloaded. In the fifth release there are approximately 1,600 re-
quirements waiting to be handled in the next selection phase and the amount
increases to the next release. There are approximately an additional 250 re-
quirements for each release.

There is no rejection of requirements in the simulation model. All re-
quirements entering the elicitation phase are kept in the system until released.
The requirements that the construction servers do not manage to implement
are forwarded to the next release. As the figure shows, the number of require-
ments in the queue is constantly increasing. Rejecting some requirements,
such as duplicates or obsolete requirements, would reduce the queue build
up. From the interviews it is found that in reality only about 5-10% of the to-
tal number of requirements are rejected. This low rejection rate is not enough
to make the process stable.

In release 2, a slight deflection at day 180 from the start of the simulation
can be noticed. This happens when requirements no longer are forwarded
from the previous release.

R 73

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N

0 100 200 300 400 500 600 700 800 t

Figure 3: Case 1: No priorities. Number of requirements in the selection phases
of releases 1-5 and parts of release 6 and 7.

In release 1, the slope of the first half of the curve corresponds to that of
the arrival intensity. In the subsequent releases the slope of the curves, after
the deflections, also corresponds to the arrival intensity. We can therefore
draw the conclusion that the elicitation phase does not get overloaded; it is
selection and construction that is in a state of congestion. This conclusion
can be verified by a separate analysis of the elicitation phase.

Figure 4 shows the results from the simulation of the construction phases
of subsequent releases. As before, the graph shows releases 1 through 5 from
left to right. The construction phase is situated later in time and consequently
we can only see a part of release 6.

This graph shows both the number of requirements in the queue overlaid
with the number of requirements currently being handled in the servers. Fo-
cusing on one release, as shown magnified in Figure 5, it can be seen that the
queue builds up rather fast. The fast build-up of the queue (105 requirements
in about 30 days) can be derived from the selection phase graph (Figure 3).
By observing how many requirements that are handled from the point when
the selection phase begins and 30 days ahead, it is clear that the decrease cor-
responds to the number of requirements arriving to the construction phase
during the same time period.

74 I. E B  M-D R M

0

20

40

60

80

100

120

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Queue

Server

Figure 4: Case 1: No priorities. Number of requirements in the construction
phases of releases 1-5.

The increase of the number of requirements in the construction queue
of release 1 abruptly stops at 105 requirements. The reason for this is that
when the total effort of the requirements transferred to the construction phase
equals the available time in the construction phase, no more requirements
arrive from the selection phase.

When construction begins there is a large drop from 105 requirements
in the queue to only 75 requirements. This is when all 30 available servers
are occupied at once. Then, the servers are constantly busy until there are
no more work to do, continuously taking care of the requirements in the
construction queue.

It may be tempting to read off the graph that 105 requirements are im-
plemented in the first release. This is unfortunately not true. As it is stated
in Section 2, only about half of the wish-list will be implemented. Since the
needed effort is not equal for every requirement in the construction phase, it
is not possible to use the graph to calculate the number of requirements that
is actually implemented. For each release, a certain percentage of the require-
ments arriving to the construction phase will actually be implemented. The
remaining requirements are sent to the selection phase of the next release.

In Figures 4 and 5 it can be seen that when a succeeding release receives
requirements to the selection phase, the construction phase of the current re-

R 75

0

10

20
30

40

50

60

70

80
90

100

110

120

Nq, Ns

100 120 140 160 180 200 220 240 260 280 300 t

Queue

Server

Figure 5: Case 1: No priorities. Number of requirements in the construction
phase of release 1.

lease has not yet finished and implementation is still undertaken. When there
are no more requirements to implement the servers representing employees
enter an idle state and are ready to get to work in the next release. This can
be seen in release 1 approximately after day 260.

5.2 Case 2: Actual situation

Using the parameters determined from expert interviews (see Section 3.2)
the actual situation can be simulated. Prioritization is now introduced, as
explained in Section 2. This will result in some requirements being transferred
to the next release and a few requirements being sent to a previous release still
under development.

Figure 6 shows the selection phases of release 1 through 5 as before. We
can see that there is not much difference from the previous case. As before,
the selection phase is overloaded. This is because of the time constraints in
the construction phase, and because there is no rejection of requirements. If
the capacity is not enough to take care of all requirements, priorities will not
completely solve the situation. Priorities will however make the organization
focus on the most important requirements.

The reason that no curve, from release 2 and onwards, start at zero re-

76 I. E B  M-D R M

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N

0 100 200 300 400 500 600 700 800 t

Figure 6: Case 2: Actual Situation. Number of requirements in the selection
phases of releases 1-5.

quirements requires an explanation. In the simulation model a subsequent
release and its queue is not started until it actually should be, as shown in
Figure 3. Thus, when the simulation of a release is started, there are some
requirements already waiting from a previous release. Here the first part of
the curve corresponding to the initial build-up of the queue is not shown.

Since no conditions for the construction phase has been changed com-
pared to case 1, Figure 77, showing the construction phase, does not differ
much. About the same number of requirements, on average, are implemented
when we add prioritization. The analysis of the construction phase made for
case 1 is appropriate for this case as well.

5.3 Case 3: Increased capacity

A first obvious change of the process in order to remove bottlenecks would be
just to reallocate resources or adding more people. This alternative is simu-
lated in order to ascertain what the impact would be and to find the amount
of resources needed (or the needed increase in productivity) to reduce the
bottlenecks.

Figure 8 shows the selection phases of 13 releases and Figure 9 shows
the construction phase of release 1 after increasing the number of servers in

R 77

0

20

40

60

80

100

120

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Queue

Server

Figure 7: Case 2: Actual Situation. Number of requirements in the construction
phases of releases 1-5.

these phases in order to make the process stable. Many releases are shown
in Figure 8 to support the assumption of stability. To make it stable, 16
employees are required in the selection phase and as many as 165 persons in
the construction phase. This means an increase in construction capacity by a
factor 165/30 = 5.5. Elicitation is not a bottleneck, as it is enough with only
one elicitation server (see Table 2).

It can be seen in Figure 9 that when the construction starts (day 168)
there is enough server capacity available to take care of every requirement in
the queue and additional ones arriving in the following 10 days. However,
the utilization of the resources in the construction phase is lower than before.

5.4 Case 4: Decreased work load

Another approach to remove the state of congestion is to reduce the number
of requirements that arrive to the elicitation phase and thereby reduce the
number of requirements that are forwarded to the selection phase.

In Figure 10, the impact of reducing the arrival intensity is shown. Here
the arrival intensity has been decreased from the value from reality of 3 re-
quirement a day to only 0.55 requirements a day. This means a decrease in
the rate of incoming requirements from 3 to 1/1.8 = 0.55, which corresponds

78 I. E B  M-D R M

0

50

100

150

200

250

300

350

400

450

N

0 200 400 600 800 1000 1200 1400 1600 1800 t

Figure 8: Case 3: Number of requirements in the selection phases of releases 1-
13.

0

20

40

60

80

100

120

140

160

180
Nq, Ns

100 125 150 175 200 225 250 275 300 t

Queue

Server

Figure 9: Case 3: Number of requirements in the construction phase of re-
lease 1.

R 79

0

20

40

60

80

100
N

0 100 200 300 400 500 600 700 800 t

Figure 10: Case 4: Number of requirements in the selection phases of releases 1-
5.

0

10

20

30

40

50

60

70

80

90

Nq, Ns

0 100 200 300 400 500 600 700 800 t

Queue

Server

Figure 11: Case 4: Number of requirements in the construction phases of re-
leases 1-5

80 I. E B  M-D R M

to 0.55/3 = 18% of the actual value. This reduces the maximum number of
requirements in the selection phase to about 80 requirements, which is a no-
table decrease.

As Figure 11 shows, only about 80 requirements are received to the con-
struction phase for each release. However, now there are resources enough to
implement every requirement. The requirements in the selection phase can
all be forwarded to the construction phase and implemented.

6 Conclusions

This paper presents a study that shows how discrete event simulation can be
used in order to explore overload conditions of an industrial software require-
ments management process for packaged software. The simulation model is
created based on a previous study of the process (Regnell et al., 1998) and the
simulation parameters are estimated based on interviews with a process expert
with in-depth knowledge of how the process performed during the studied
period of 1998-1999. The situation of overload that has been observed in
reality can also be observed when executing the simulation model.

It can be concluded from the simulations that there are at least two differ-
ent ways of changing the process in order to avoid congestion:

• The capacity of the requirements management process can be improved,
either by increasing the number of employees or by improving produc-
tivity. The simulations show that it is necessary to increase the capacity
of the construction phase by a factor 5.5 in order to completely remove
the bottlenecks.

• The workload on the requirements management process can be de-
creased. The simulations show that it is necessary to decrease the rate of
issuing new requirements to 18% of the initial value. One way of low-
ering the workload is through early prioritization (Karlsson et al., 1998)
and thereby rejecting requirements that will not be implemented at an
early stage in the process. Of course, this is an area that needs further
investigation, as it is always difficult to remove issues early in a process.
If the objective is to remove requirements in order to lower the effort
required in analysis, then an analysis effort is required in order to know
which requirements to remove. Prioritization of requirements and re-
lease planning in packaged software development is acknowledged to
be an important research area (Regnell et al., 2000).

REFERENCES 81

In conclusion, the presented simulations represent a feasible way of analyz-
ing the investigated process. However, the simulation model can be improved
in a number of ways. One improvement regards a more realistic modeling of
the must- and wish-lists (see Sections 2-3). Another area of further work is to
make a more thorough analysis of the real process by interviewing more people
representing more roles in the organization about their opinions concerning
both the parameter values of the model and the validity of the simulation
results.

It is also interesting to extend the simulation model by modeling the
servers as a single pool of resources where each resource (employee) has certain
competencies. This may lead to a more realistic simulation model, where the
same persons are involved in many tasks, and, as in reality, the lack of a certain
competency may be a bottleneck.

A promising benefit of the presented approach is the potential of achiev-
ing validated decision support that can facilitate informed decisions on im-
provements of software processes in general, and market-driven requirements
engineering processes in particular.

Acknowledgements The authors would like to thank all people involved in the development
and investigation of REPEAT, in particular Per Beremark (Group Quality Manager at Telel-
ogic) without whom this work would not have been possible. We would also like to thank
Carina Andersson and Lena Karlsson, both with the Dept. of Communication Systems, for
providing suggestions for improvements of the simulation model. The presented research is
partly funded by the National Board of Industrial and Technical Development (NUTEK).

References

Banks, J., Carson, J. S., and Nelson, B. (1996). Discrete-Event System Simula-
tion. Prentice Hall, Upper Saddle River, NJ, 2nd edition.

Höst, M. and Wohlin, C. (1998). An experimental study of individual sub-
jective effort estimations and combinations of the estimates. In Werner, B.,
editor, Proceedings of 20th International Conference on Software Engineering,
pages 332–339, Los Alamitos, CA. IEEE CS.

ITU-T (1999). Specification and Description Language (SDL). International
Telecommunications Union, Geneva, Switzerland. ITU-T Recommenda-
tion Z.100-11/99.

Karlsson, J., Wohlin, C., and Regnell, B. (1998). An evaluation of methods
for prioritizing software requirements. Information and Software Technology,
39:939–947.

82 REFERENCES

Kellner, M. I., Madachy, R. J., and Raffo, D. M. (1999). Software process
simulation modeling: Why? what? how? Journal of Systems and Software,
46:91–105.

King, P. J. B. (1990). Computer and Communication Systems Performance Mod-
elling. Prentice-Hall, London, UK.

Lubars, M., Potts, C., and Richter, C. (1993). A review of the state of the
practice in requirements modeling. In Proceedings of IEEE International
Symposium on Requirements Engineering, pages 2–14, Los Alamitos, CA.
IEEE CS.

Pfahl, D. and Lebsanft, K. (2000). Using simulation to analyse the impact
of software requirement volatility on project performance. In Project Con-
trol: The Human Factor, Proceedings of the combined 11th European Software
Control and Metrics Conference and the 3rd SCOPE conference on Software
Product Quality, pages 267–275, Maastricht, The Netherlands. Shaker.

Potts, C. (1995). Invented requirements and imagined customers: Require-
ments engineering for off-the-shelf software. In Proceedings of the Second
IEEE International Symposium on Requirements Engineering, pages 128–
130, Los Alamitos, CA. IEEE CS.

Regnell, B., Beremark, P., and Eklundh, O. (1998). A market-driven require-
ments engineering process – results from an industrial process improvement
programme. Journal of Requirements Engineering, 3(2):121–129.

Regnell, B., Höst, M., Natt och Dag, J., Beremark, P., and Hjelm, T. (2000).
Visualization of agreement and satisfaction in distributed prioritization of
market requirements. In amd Klaus Pohl, A. L. O. and Rossi, M., editors,
Proceedings of the Sixth International Workshop on Requirements Engineer-
ing: Foundation for Software Quality, Essen, Germany. Essener Informatik
Beiträge.

Sawyer, P. (2000). Packaged software: Challenges for RE. In Proceedings
of Sixth International Workshop on Requirements Engineering: Foundation
for Software Quality, pages 137–142, Essen, Germany. Essener Informatik
Beiträge.

Sawyer, P., Sommerville, I., and Kotonya, G. (1999). Improving market-
driven RE processes. In Proceedings of International Conference on Product

REFERENCES 83

Focused Software Process Improvement (PROFES’99), pages 222–236, Oulu,
Finland.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wess-
lén, A. (2000). Experimentation in Software Engineering - An Introduction.
Kluwer, Norwell, MA.

Yeh, A. (1992). Requirements engineering support technique (REQUEST) - a
market driven requirements management process. In Proceedings of the Sec-
ond Symposium on Assessment of Quality Software Development Tools, pages
211–223, Los Alamitos, CA. IEEE CS.

II

PAPER II

A Feasibility Study of Automated Support
for Similarity Analysis of Natural Language
Requirements in Market-Driven Development

Johan Natt och Dag, Björn Regnell, Pär Carlshamre, Michael Andersson, Joachim Karlsson

Requirements Engineering, 7 (1), 20–33, 2002

Abstract

In market-driven software development there is a strong need for support
to handle congestion in the requirements engineering process, which may
occur as the demand for short time-to-market is combined with a rapid arrival
of new requirements from many different sources. Automated analysis of
the continuous flow of incoming requirements provides an opportunity to
increase the efficiency of the requirements engineering process.

This paper presents empirical evaluations of the benefit of automated sim-
ilarity analysis of textual requirements, where existing Information Retrieval
techniques are used to statistically measure requirements similarity. The re-
sults show that automated analysis of similarity among textual requirements
is a promising technique that may provide effective support in identifying
relationships between requirements.

86 II. F S  A S  S A

1 Introduction

1.1 Background

The market-driven development organization faces many challenges that dif-
fer from those found in organizations developing bespoke software. Software
is developed for a large market, rather than for a specific customer, new ver-
sions are developed in a succession of releases, and there is a high pressure on
short time-to-market (Lubars et al., 1993; Sawyer et al., 1999; Deifel, 1999).
To meet market demands it is important to have an effective and efficient re-
quirements engineering process. Special demands are set as requirements ar-
rive continuously at a high rate from many different sources during the whole
development process (Regnell et al., 1998). As there is no single specific cus-
tomer to negotiate with, requirements must be invented within the developing
organization based on foreseen end-user needs (Potts, 1995). These invented
requirements may come from sources such as marketing, support, develop-
ment, testing, usability evaluations, and technology forecasting and are often
collected for storage in a database. The requirements engineering activities are
then focused on analyzing and prioritizing the requirements in the database
and on maintaining the database for the future.

In this study we have focused on a large software developing company,
Telelogic AB, that develops a CASE tool for the world-wide telecommuni-
cations market. Their development process is described in (Regnell et al.,
1998) and its main properties are: Releases are pipelined to enable a new
release every sixth month while each release takes 14 months to complete.
Elicitation is continually active and a requirement may be issued at any time
by an issuer that foresees a market need. Each requirements is stored in a
database as an entity described in natural language. Each requirement has a
life-cycle progression through specific states. The Telelogic development pro-
cess has shown having high resemblance with another market-driven devel-
opment process independently developed and used at an Ericsson company
(Carlshamre and Regnell, 2000). Requirements are continuously collected
through a web form and are stored in a database for further analysis (Reg-
nell et al., 1998). The requirements are described in natural language and are
of varying quality and nature. Some requirements are brief ideas while oth-
ers are detailed descriptions of new features with accompanying code. Many
requirements are short-worded and poorly written.

During the development of a release the requirements engineer (or ana-
lyst) must handle the diverse and large set of requirements that is available in

I 87

the database and resolve ambiguities, find relationships, eliminate duplicates,
etc. As shown in a study of the Telelogic requirements process (Höst et al.,
2001), these activities are causing a congestion that may be avoided by cut-
ting down heavily on the number of elicited requirements or making early
and strict prioritization.

The trade-off between analyzing only a subset of all the collected require-
ments and not collecting that many requirements to give time for proper anal-
ysis may be difficult to make. Extra information could be extracted if all re-
quirements are collected (for example, duplicates may indicate that certain
issues are more important than others). However, trying to handle all incom-
ing requirements may increase the risk of relationships between requirements
being overlooked or discovered too late, which may cause problems in pri-
oritization (Karlsson and Ryan, 1997) and release planning (Carlshamre and
Regnell, 2000).

Consequently, there is a wish to find requirements relations early, with-
out spending too much time on in-depth analysis. These relationships should
preferably be found even when specification quality is low and even if re-
quirements are short, poorly worded or misspelled. One possible approach,
investigated in this paper, is to assist the requirements engineer through auto-
mated analysis of the textual information in the requirements. This approach
may help the requirements engineer to handle the large set of requirements by
automatically finding and make suggestions on relationships between require-
ments.

Two different automatic text processing approaches may be used to aid
the requirements engineer in the situation described above: the statistical ap-
proach or the linguistic approach. In this paper we focus on the statistical ap-
proach, which originates from the work by H. P. Luhn (Luhn, 1957). There
are several reasons that we choose to explore this approach:

1. The ideas have not, as we far as we know, been applied to analyst the
type of requirements that is collected in the situation we describe. (see
further Section 1.2).

2. The statistical approach has been thoroughly tried and examined and
has been found fairly successful for automatic text analysis (Van Rijs-
bergen, 1979).

3. The linguistic approach is still regarded expensive to implement and not
always more effective than well-executed statistical approaches (Mitra
et al., 1997).

88 II. F S  A S  S A

4. Before proceeding with more advanced methods, the statistical approach
may help reveal the nature of the requirements in a market-driven or-
ganization.

5. A baseline produced from empirical investigation using real industry
requirements is needed to compare against further improvements.

The results of the presented work show that, for a particular set of re-
quirements, a simple similarity analyzer that uses the statistical text processing
approach identifies a large fraction of the requirements duplicate pairs found
by experts. The duplicates are important to find to avoid doing the same job
twice, assigning the same requirement to different developers, or getting two
solutions to the same problem. The portion of requirement pairs incorrectly
identified as duplicates is shown to have little negative impact on the value
of the method. Further effort may thus be fruitful to assist the requirements
engineer in handling the large set of requirements found in a market-driven
development organization.

1.2 Related work

The role of natural language processing in requirements engineering is dis-
cussed in (Ryan, 1993) where the conclusion is drawn that natural language
processing techniques must be realistic and effort has to be made to identify
where such techniques may be useful. It is argued that the validation of re-
quirements still have to be an informal, social process. Thus, an automated
system could or should not replace the human requirements engineer. Such
systems are still not feasible or cost-effective to construct.

Various attempts have been made to use automated techniques to assist
the analysis of requirements written in natural language:

1. Gervasi (2000) use lightweight formal methods (low cost, partial analy-
sis) to partially validate a syntactically correct NASA Software Require-
ments Specification (SRS) document. A glossary was manually pro-
duced from the SRS to aid the method.

2. Ambriola and Gervasi (1997) present a web-based environment where
Model-Action-Substitution-rules and a domain- and system-specific glos-
sary are used to extract abstractions and build models.

3. Rayson et al. (2000) report on a project called REVERE, where statis-
tical and probabilistic natural language processing methods are used to
assist the analysis of complex and voluminous texts.

I 89

4. Park et al. (2000) present a system that uses a sliding window model
and a parser to support the analysis of requirements using a similarity
measuring technique.

5. Rolland and Proix (1992) present an environment that generates con-
ceptual specifications from problem space descriptions written as sen-
tences in natural language.

6. Osborne and MacNish (1996) describe an approach to resolve ambigu-
ities where only a controlled language is allowed when writing require-
ments in order to facilitate for a lexicon and grammar enabled parser.

7. Cybulski and Reed (1998) describe an elicitation method and a sup-
porting management tool that help analyzing and refining requirements
by using a parser, semantic networks, a domain-mapping thesaurus, and
faceted classification schemes to allow proper formalization of require-
ments written in natural language.

8. Chen et al. (1994) present ideas where concepts in texts from electronic
meetings are automatically classified by using automatic indexing, clus-
ter analysis and hopfield net classification.

9. Landauer and Dumais (1997) present the Latent Semantic Analysis
(LSA) computational model for generation of a representation from
large corpora. The representation captures the similarity of meanings
of words and sets of words.

Although relevant and promising for several areas and approaches in re-
quirements engineering, the above attempts do not address the situation de-
scribed in the previous section. The main concerns in the context of this work
are the following:

• Requirements are considered to be found in a separate document that is
to be analyzed, quality assured and produced before implementation be-
gins. This is not the situation in the market-driven organization where
requirements arrive continuously and may, at any time, affect both pre-
vious, current and coming releases of the software.

• The initial quality of the requirements are often considered to be ad-
equate for semantic parsing. This may not be the case when require-
ments are collected from many different sources and stored in a database.

90 II. F S  A S  S A

• Real industrial requirements are not always used to validate the methods
or techniques presented. Accuracy and efficiency is not always reported.

• The semantic nature of invented requirements may not share the prop-
erties of regular corpora used in many linguistic approaches.

• Simple, robust methods can act as a baseline for better understanding
and further improvements and comparisons of techniques.

Several approaches seem promising but we believe that more effort need
to be put into this field to reach consensus on which methods, techniques,
approaches and tools that may be appropriate for different types of developing
organizations. In this paper we focus on the market-driven organization and
do not present a new model or a full-featured approach. Rather, the feasibility
of using automated similarity analysis is empirically investigated using real
industrial requirements and a benchmark is provided to which further effort
may be compared.

1.3 Paper structure

The paper is structured as follows. In Section 2 the situation of requirements
similarity analysis in market-driven development is described. Section 3 ex-
plains how automated similarity analysis of natural language requirements
may be performed. Section 4 presents a case study where actual requirements
collected from industry have been analyzed. The case study explores the qual-
ity of a simple automatic similarity analyzer. In Section 5, further applications
of automated support are presented together with a small study using the an-
alyzer from Section 3 to investigate if similar requirements also are interde-
pendent. Section 6 identifies possible further work and improvements. In the
final section the results are discussed and conclusions presented.

2 Requirements similarity analysis

Requirements carry information on which decisions are based. This informa-
tion can be either explicit or implicit. The explicit information constitutes
all the written text, drawn charts, and other artifacts that are used as the ba-
sis for communicating requirements. The implicit information are all the
assumptions, rules, standards, and the domain knowledge possessed by the
requirement issuers and the requirements analyst. When natural language re-
quirements arrive at a rapid flow from many different issuers, a quick analysis

R   91

Issuer

Quality Gateway

Completeness
Analysis

Ambiguity
Analysis

Similarity
Analysis

Requirements
Engineer

Candidate

Requirement

Request for

clarification

Approved

Requirement Requirements
Database

Figure 1: Requirements Quality Gateway with three examples of quality assur-
ing activities.

is required to guarantee requirements quality before they are used as a basis
for further decisions. Although the linguistic quality of the requirements may
be low it is often left unattended as the requirements make sense. Rather,
the information explicitly stated may not give sufficient decision support. For
this reason the requirements engineer uses implicit and explicit information
accompanied with personal skills to analyst the requirements for complete-
ness, ambiguity, similarity, etc. Completeness analysis is performed to ensure
that enough information is included in the requirements to enable further re-
finement, such as setting priority, estimating effort and deriving new require-
ments (see example requirements in Fig 4). Ambiguity analysis is performed
to identify the risks of multiple interpretations among requirements. Similar-
ity analysis is discussed below.

If supplementary information is needed to accept the requirement, the
analyst may have to consult the issuer to make sure that the issuer and the
analyst share the same interpretation. Thus, the requirements engineer acts to
assure the quality of each requirement before allowing it to be further refined
in the continuous requirements engineering process (Carlshamre and Regnell,
2000).The situation is illustrated in Figure 1 where example activities have
been identified in the quality gateway.

The activities in the quality gateway are typically performed manually as
there are few supportive tools available. The activities are tedious and time-
consuming, but necessary in order to assure software quality and to satisfy
market needs. It would therefore be highly beneficial if some of these tedious
activities could be partly automated.

This paper focuses on similarity analysis, which is performed in order to

92 II. F S  A S  S A

find requirements that may be merged, grouped, eliminated or linked. For
example, two similar requirements may be merged into one or may simply
be grouped together to make sure they are handled simultaneously during de-
velopment. A requirement may be similar to another to the extent that it is
regarded as a duplicate and thus eliminated. Furthermore, two requirements
may be similar in a certain aspect that establishes some kind of interrelation-
ship (such as dependencies between requirements and requirement decompo-
sitions). The requirements engineer may also find it desirable to split large
requirements into two or more requirements, which may become similar or
related to each other and other requirements in the database.

When the requirements engineer decides whether two requirements are
similar or not, it is with regard to the implications for further development.
Of course these decisions are made by humans, but computer analysis of ex-
plicit information expressed in natural language may supply the requirements
engineer with information regarding similarity to support these decisions.

3 Automated similarity measurement

When the requirements engineer decides whether two requirements are sim-
ilar or not, it is with regard to the implications for further development. Of
course these decisions are made by humans, but computer analysis of explicit
information expressed in natural language may supply the requirements engi-
neer with information regarding similarity to support these decisions.

Statistical approaches to automated similarity measurement are widely
used in information retrieval (IR), which is a well established discipline con-
cerned with automated storage and retrieval of documents written in natural
language (Frakes and Baeza-Yates, 1992). The presented work is based on
existing IR techniques applicable in the analysis of natural language require-
ments. Figure 3 provides an overview of the steps in similarity measurement,
where a similarity metric SA,B is calculated for a pair of textual requirements
(A,B). The calculation of a similarity measure (further described in Sec-
tion 3.1) is made subsequent to a number of preprocessing steps (elaborated in
Section 3.2). The assessment of similarity metrics is described in Section 3.3.

3.1 Similarity measures

In order to find relationships between requirements that may be merged,
grouped or eliminated, a quantification of the degree of association between
the requirements is needed. Several similarity measures are available, but no

A   93

comparative studies exist that give a definite answer to which one to choose in
this particular situation. In this paper we have therefore used three simple and
well-known similarity measures to calculate the similarity between sentences:
the Dice, Jaccard and cosine coefficients (Salton, 1989). These measures all
take the words in two sentences and calculate the similarity based on how
many words they have in common. The coefficients are defined as follows,
where A and B are requirements:

SD
A,B =

2|wordsA ∩ wordsB|
|wordsA|+ |wordsB|

(II.1)

SJ
A,B =

|wordsA ∩ wordsB|
|wordsA|+ |wordsB| − |wordsA ∩ wordsB|

(II.2)

SC
A,B =

|wordsA ∩ wordsB|√
|wordsA||wordsB|

(II.3)

All three measures have the desired property of normalization, which im-
ply that they give a value between 0 and 1 to indicate how similar a pair of
sentences are, where 0 means that the sentences have no words in common
and 1 means that the sentences are identical. The empirical investigation re-
ported in Section 4 applies these measures to textual software requirements.

3.2 Preparing the source data

Before the similarity measure can be calculated the words of each sentence
have to be extracted. This is achieved through lexical analysis, which takes an
input stream of characters and converts it into a stream of words or tokens.
This immediately raises the question of what should count as a word or to-
ken. For example, digits, hyphens, punctuation and letter case bring some
problems that have to be considered. It is not technically difficult to solve
these problems, but the chosen lexical analysis policy will affect the similarity
measure. For example, preserving letter case will distinguish the words like
‘System’ and ‘SYSTEM’ and thus produce lower similarity measures. How to
choose the policy thus depends on what type of data is to be analyzed and the
expected outcome.

Frequently occurring words like ‘a’, ‘the’, ‘of ’, etc., will inadequately boost
the similarity measures. These words, known as stop words, are therefore
filtered out before similarity calculation. Which words to eliminate again

94 II. F S  A S  S A

depends on the type of data. It is reasonable to start out with a known stop
word list that has been derived from general text.

Another issue is the morphological variants of words, i.e. the word forms.
Words that are written in different forms usually carry the same information
and should thus be considered equal. Therefore, words should be reduced to
their ground form so that an automated word matcher would report a positive
match. The technique used to reduce words to their ground form is called
stemming and produces a stem from a word. For example, both the words
‘replace’ and ‘replacement’ may result in the stem ‘replac’ and consequently
the words would be considered equal. There are several ways to stem words,
such as affix removal, successor variety, table lock-up, and n-gram (Frakes and
Baeza-Yates, 1992). In this paper we have used an affix removal stemmer, the
Porter algorithm (Porter, 1980), which consists of a set of condition/action
rules. It is a compact algorithm that has been shown to give good results in
IR (Frakes and Baeza-Yates, 1992). The similarity measure may be calculated
by counting the number of stems produced from each requirement and the
number of stems the requirements has in common. The common stems may
be found using exact match or inexact match. Exact match requires the stem
to be exactly equal, whereas inexact match calculates the similarity between
the stems. Spelling errors may call for inexact match but brings the difficulty
of choosing a good algorithm and a threshold level for match. The analyzer
used in this paper is designed to require an exact match between stems. The
low linguistic quality of the requirements will of course affect the similarity
measure. However, we have chosen not to include spelling correction, as
we are interested in the performance of using a simple technique. It is also
questionable if there is time for manual pre-processing in industrial settings.

3.3 Assessing the quality of similarity measures

In order to evaluate the technique used to suggest similar requirements, a no-
tion of quality is needed. We have chosen to use a contingency table, which
defines a number of quality aspects in similarity measurement. Assume that
S(ri, rj) is a function that takes a pair of requirements and gives a similarity
measure between 0 and 1. In addition we select a threshold value t, which
acts as a selection criterion. If S(ri, rj) > t then (ri, rj) is considered to
be a suspected duplicate pair. Assume also that there exists a set of pairs of
requirements that are identified as actual duplicate pairs. The similarity mea-
sure hence provides an approximation of this set of actual duplicate pairs, and
the quality of the estimation may be defined according to Figure 2 (Salton,

A   95

Below Above or equal to
similarity threshold similarity threshold Total

Actual A B A+B
non-duplicates True negatives False positives

Actual C D C+D
duplicates False negatives True positives

Total A+C B+D A+B+C+D

True positives rate = D
(C+D)

False positives rate = B
(A+B)

Accuracy = (A+D)
(A+B+C+D)

Figure 2: Assessment scheme with contingency table

1989).
The resulting pairs that have a similarity value above or equal to the

threshold level are regarded as duplicate pairs suggested by the analyzer. Matches
between actual duplicate pairs and those suggested by the analyzer are de-
noted true positives. The actual duplicate pairs not identified by the analyzer
are consequently denoted false negatives, i.e. they were wrongly suggested as
non-duplicate pairs. The analyzer may also suggest duplicate pairs that actu-
ally were non-duplicate pairs. These are denoted false positives. The rest are
denoted true negatives and constitute all the requirement pairs that fell below
the threshold level and were correctly suggested as non-duplicate pairs. The
accuracy of the analyzer is defined as the sum of the true negatives and the
true positives divided by the total number of possible requirement pairs and
indicates how well the actual duplicate pairs and non-duplicate pairs are iden-
tified. The total number of requirement pairs is calculated as A+B +C +D,
which is equal to (n · (n− 1))/2, where n is the number of requirements.

The contingency table will help reveal the performance of the method. In
order to evaluate the feasibility of the analyzer, a deeper investigation of the
requirement pairs is needed. Taking any two identified pairs, they may or may
not involve the same particular requirements. For example, the requirement
pairs (A,F) and (C,F) share the requirement F . If the analyzer assigns
similarity values above zero to each of these pairs and a similarity value equal
to zero to the pair (A,C) it would nevertheless be interesting to look at the

96 II. F S  A S  S A

Automated Similarity Analysis

Break into
words

Remove
stop words

Stem
words

Calculate
similarity

A

B

SA,B ∈ [0,1]

Figure 3: A functional view of automated similarity analysis between require-
ment A and B, producing a measure SA,B ranging from 0 to 1.

three involved requirements together. We denote these preferred groupings
of requirements as n-clusters, where n is the number of requirements in the
cluster. The two single pairs in the previous example will thus form a 3-cluster.
The cluster distribution can be derived by calculating the transitive closure of
a graph in which the nodes correspond to requirements and edges correspond
to pairs of requirements (ri, rj) with S(ri, rj) > t. The sizes of the clusters
and the number of clusters reveal the usefulness of the automated similarity
analysis. It may be desirable to have many requirements grouped into n-
clusters where n is the greatest number of requirements that the requirements
analyst is capable of handling simultaneously. Example cluster distributions
are presented in Figure 9 and Figure 10.

4 Empirical investigation

In order to investigate the potential benefits of automated similarity analysis,
we have applied the similarity measures described in Section 3.1 to real in-
dustrial requirements. The measures were used to see if automated analysis
can correctly determine if a certain requirement is a duplicate of an already
existing requirement.

For the investigation we have developed a computer program to perform
the tasks specified in Figure 3. The pre-processing steps are handled by a lexi-
cal analyzer, a stop word remover and a stemmer (explained in Section 3). The
stop list remover excludes words with low discrimination value, and consists
of 425 words derived from the Brown corpus (Francis and Kucera, 1982). For
the stemming of words, the Porter algorithm is applied (Porter, 1980). The
similarity calculation produces a list of requirement pairs along with a value
for each pair representing the similarity measure.

Telelogic, a large software developer, has allowed us restricted access to
a requirements database of 1,920 confidential requirements. Telelogic devel-

E  97

Table 1: Number of requirements in the database and in the different sets pre-
pared for analysis.

Status Original Afull Areduced

New 406 406 12
Assigned 428 428 31
Classified 601 601 601
Implemented 252 252 252
Rejected 103 103 103
Duplicates 130 101 90
Total 1,920 1,891 1,089
Duplicate pairs - 142 124

ops software development tools for a wide market and handles requirements
arriving at a high rate from several different stakeholders (about three require-
ments a day (Höst et al., 2001)). The requirements are submitted through
a web interface and thereafter managed by requirements engineers (Regnell
et al., 1998).

In Figure 4, two examples of requirements from the database are shown.
Many of the attributes are set at different stages in the requirements process,
reflecting the refinement of the requirement from submitted to implemented
or rejected (Regnell et al., 1998). The stage is represented by the ‘Status’ and
the possible stages are shown in the leftmost column in Table 1. The table
also shows, in the second column, the distribution of the 1,920 requirements
over the different stages.

4.1 Preparations

When a requirements engineer analyzes a requirement, the requirement is
checked on many different properties. Three related properties are (1) whether
or not it is regarded as a duplicate of another requirement already in the
database, (2) if it is possible to merge it with another requirement and (3)
if it should be split into two or more requirements before further analysis. If
a requirement has one of these properties, it is assigned the ‘Duplicate’ status
and an appropriate action is taken. When a requirement is merged, all the in-
formation is added to the requirement it is merged with. When a requirement
is split, the information is distributed over two or more new requirements.
When a requirement is a pure duplicate (property 1 above), no further action

98 II. F S  A S  S A

Figure 4: Two example requirements denoted duplicates in the database. These
two requirements were also suggested as duplicates by the similarity
calculator at the 0.75 threshold level using the cosine similarity mea-
sure.

RqId RQ96-270
Date
Summary Storing multiple diagrams on one file
Why It must be possible to store many diagrams on one file. SDT forces to have 1 diagram

per file. It’s like forcing a C programmer to have not more than one function per
file... The problem becomes nasty when you work in larger projects, since adding a
procedure changes the system file (.sdt) and you end up in a mess having to "Compare
systems".

Description Allow the user to specify if a diagram should be appended to a file, rather than forcing
him to store each diagram on a file of its own.

Dependency 4
Effort 4
Comment This requirement has also been raised within the multiuser prestudy work,but no

deeper penetration has been made. To see all implications of it we should have at
least a one-day gathering with people from the Organizer, Editor and InfoServer
area, maybe ITEX?
Här behövs en mindre utredning, en "konferensdag" med förberedelser och uppföljn-
ing. Deltagare behövs från editor- och organizergrupperna, backend behövs ej så
länge vi har kvar PR-gränssnittet till dessa.

Reference
Customer All
Tool Don’t Know
Level Slogan
Area Editors
Submitter x
Priority 3
Keywords storage, diagrams, files, multi-user
Status Classified

RqId RQ97-059
Date Wed Apr 2 11:40:20 1997
Summary A file should support storing multiple diagrams
Why ObjectGeode has it. It’s a powerful feature. It simplifies the dayly work with SDT.

Easier configuration management. Forcing one file for each procedure is silly.
Description The SDT “Data model” should support storing multiple diagram on one file.
Dependency 4
Effort 1-2
Comment Prestudy needed
Reference
Customer All
Tool SDT SDL Editor
Level Slogan
Area Ergonomy
Submitter x
Priority 3: next release (3.3)
Keywords diagrams files multiple
Status Classified

E  99

is taken with the information.

As shown in Table 1, 130 of the 1,920 requirements were either dupli-
cates, merges or splits. In the analysis, only those that are ‘true’ duplicates are
considered, since we know beforehand that merges and splits will match par-
tially and thus bias the result. When these were removed, 101 requirements
remained. The resulting set is shown in column 3 of Table 1 (set Afull).

Some of the 101 duplicates involved more than one requirement. This
means that a requirement may be denoted a duplicate of two other require-
ments. To resolve this we parsed every identified duplicate and constructed
a set of unique duplicate pairs. However, doing this creates a set of dupli-
cate pairs that may be related (which addresses the discussion about clusters
at the end of Section 3.3). Therefore, we calculated all these relations and cre-
ated new duplicate pairs to denote the relation. For example, if requirement
A initially was denoted a duplicate of requirements B and C, and require-
ment D was denoted a duplicate of requirement C, we would first create the
duplicates pairs (A,B), (A,C) and (D,C). Then we would add the pairs
(B,C), (A,D) and (B,D) to fully reflect all possible relations. This is ac-
ceptable since the duplicate relation is transitive. That is, if both A and D are
duplicates of C, then A would also be a duplicate of D.

According to the requirements database manager, not all the requirements
having status New or Assigned had been analyzed for duplicates, and it was
only certain that those having priority 1 had been analyzed. Therefore, we
considered removing all requirements with status ‘New’ or ‘Assigned’, not hav-
ing priority 1. After doing this we noticed that some duplicate pairs referred
to the removed requirements. Thus, we decided to analyst two sets: one with
all requirements and one with the ‘New’ and ‘Assigned’ requirements with
priority not equal to 1 removed. As the second set does not include all the
requirements addressed in the duplicate pairs, those pairs were removed from
the duplicates pair set. The resulting number of requirements and duplicate
pairs are shown in column 4 in Table 1 (set Areduced).

The textual information used to represent each requirement was collected
from the ‘Summary’ field, which corresponds to a short requirement title, and
the ‘Description’ field, which corresponds to a further explanation (see the
examples in Figure 4). As these fields were empty for a subset of the require-
ments, three different requirement sets were prepared from each of sets Afull

and Areduced. The first set comprised all the requirements that had a non-
empty ‘Summary’ field. The second set comprised all the requirements that
had a non-empty ‘Description’ field. The third set comprised all the require-

100 II. F S  A S  S A

Table 2: Final sets prepared for the analysis.

Bfull Breduced

Non-empty field Requirements Duplicate pairs Requirements Duplicate pairs

Summary 1,830 142 1,085 124
Description 1,570 99 915 86
Summary
or Description 1,887 142 1,088 124

ments that had a non-empty ‘Summary’ field or a non-empty ‘Description’
field (NB. Not exclusive or. Requirements having a non-empty ‘Summary’
field and a non-empty ‘Description’ field were included in the last set). In the
analysis of the sets using both fields, the two fields were treated as one. Table 2
shows the number of requirements in each of the sets after the requirements
with the empty fields had been removed.

4.2 Results

The similarity calculator was run once for each of the prepared requirements
sets to calculate the three similarity coefficients described in Section 3.1. The
quality was assessed by producing contingency tables for nine different thresh-
old levels as explained in Section 3.3. The threshold levels ranged from 0 to
1 with a 0.125 interval. All the possible combinations resulted in 162 contin-
gency tables (3 measurements · 2 sets · 3 fields · 9 thresholds = 162 tables).

In Table 3, nine contingency tables are shown for the analysis on the ‘Sum-
mary’ field of set Bfull using the cosine similarity measure. The number of
possible unique pair-wise comparisons, which is the same as the total num-
ber of possible unique requirement pairs, is denoted A + B + C + D in the
contingency table in Figure 2, and corresponds to the sum of each column in
Table 3. The first row shows the number of correctly identified duplicate pairs
and decreases as the threshold increases. Most requirement pairs are, correctly,
considered as non-duplicate as shown in the second row. Their number in-
creases with the threshold level. The third row shows how many duplicate
pairs the analyzer identified that actually were not identified as duplicate pairs
by the experts. Finally, in the fourth row are all the actual duplicate pairs that
the analyzer did not find.

The number of false positives and negatives at threshold level 1 may raise
some questions. There may be false negatives because requirements concern-
ing exactly the same issue may be worded differently. The reasons that there

E  101

Table 3: Contingency table data for the summary field in set Bfull using the
cosine similarity measurement.

0+ 0.125 0.25 0.375

True positives (D) 114 114 105 80
True negatives (A) 1,578,213 1,578,581 1,628,049 1,666,093
False positives (B) 95,180 94,849 46,555 8,111
False negatives (C) 28 28 35 61

0.5 0.625 0.75 0.875 1

True positives (D) 62 47 42 31 30
True negatives (A) 1,670,881 1,672,945 1,673,247 1,673,341 1,673,349
False positives (B) 2,864 499 146 52 44
False negatives (C) 80 93 100 111 112

may be false positives are several:

1. A requirement may be partially implemented and result in new require-
ments. The implemented requirement and the new requirements may
then have the same information in some textual attributes. Since none
of these requirements are marked as duplicates in the database the au-
tomatic analyzer may produce a false positive.

2. The compared textual attributes may be wrong and misleading, not
reflecting the actual meaning of the requirement.

3. Two requirements may be highly related and concern the same issue
and have the same information in one textual attribute. Nevertheless,
they do not have to be duplicates.

4. If all non-matching words in two requirements happen to be stop words,
and thus eliminated before the similarity calculation, the reduced re-
quirements may give a similarity measure of 1 but actually have differ-
ent wordings.

The rate of true positives, the rate of false positives and the accuracy (see
Section 3.3) were plotted to compare the measurements and to see which
would generate the best result. In Figures 5 through 8, four graphs are shown
to support the conclusions on:

102 II. F S  A S  S A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

Figure 5: Similarity analysis performance using the summary field in set Bfull.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

Figure 6: Similarity analysis performance using the summary field in set
Breduced.

E  103

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e
Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

Figure 7: Similarity analysis performance using the description field in set Bfull.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0+ 0.125 0.250 0.375 0.5 0.625 0.75 0.875 1.0

Threshold

R
at

e

Accuracy, Dice True positives rate, Dice False positives rate, Dice

Accuracy, Jaccard True positives rate, Jaccard False positives rate, Jaccard

Accuracy, Cosine True positives rate, Cosine False positives rate, Cosine

Figure 8: Similarity analysis performance using the summary and description
fields in set Breduced.

104 II. F S  A S  S A

• which measurements may be considered the best

• whether or not the requirements with status ‘New’ or ‘Assigned’ and not
priority 1 should be ignored

• which fields or combination of fields give the best results.

The graphs show that the rate of correctly identified duplicate pairs (the
true positives rate) decreases from 80% or 90% at threshold level 0+ to about
20% at threshold level 1. The lowest degree of similarity is found when there
is only one single word matching. Each measure will then give a similarity
value just above 0 and thus, using threshold level 0+, suggest exactly the same
set of duplicate pairs (every similarity measure but zero between two require-
ments results in a suggested duplicate pair). Correspondingly, the highest de-
gree of similarity is found when all words match. Each measure will then give
a similarity measure of 1 and produce exactly the same set of duplicate pairs.
Between these threshold levels the curves differ slightly, which shows that the
similarity measures perform differently. The Dice and cosine similarity co-
efficients show no significant difference, but the Jaccard coefficient performs
slightly worse. Thus, for this particular set of requirements, the Dice or cosine
coefficient is preferable.

The false positive rate is very low, decreasing from 5.69% down to 0.01%.
The accuracy of the similarity analyzer is as high as 94.3% at the lowest thresh-
old level and increases to near 100% at threshold level 1. This curve suggests
that the Jaccard coefficient is a better choice, contradicting the choice based
on the positives rate.

Looking at Figure 5 and Figure 6, which show the results from using
only the ‘Summary’ field, we can see that there is no considerable difference
between the results for set Bfull and Breduced. This implies that either (1)
there are ‘New’ and ‘Assigned’ requirements with lower priorities that have
been analyzed and found to be duplicates, of which some are identified by the
program, or (2) the requirements have not been analyzed and few matches
were found by the program. Alternative 1 seems more plausible and is also
confirmed by the contingency table - more duplicates are identified which
must be related to the ‘New’ and ‘Assigned’ requirements with lower priorities.

Figure 5 and Figure 7, showing the results from using the ‘Summary’ or
the ‘Description’ fields respectively (from set Bfull), differ on the low and
high threshold levels. At threshold level 0+, the true positives rates is as high as
above 90% using a combination of the ‘Summary’ and the ‘Description’ fields.
However, the false positives rate is substantially higher and the true negatives

E  105

0 50 100 150
0

10

20

30

40

50

60

cluster size

cl

us
te

rs

0 10 20 30
0

10

20

30

40

50

60

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

cluster size

Threshold 0.5 Threshold 0.375 Threshold 0.75 Actual

Figure 9: Requirements cluster distribution for the Breduced set using the cosine
measure on the ‘Summary’ field. The three leftmost graphs show the
number of clusters of different sizes for various thresholds compared
to the actual cluster distribution on the right.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

cluster size

cl

us
te

rs

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

cluster size
0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

cluster size

Threshold 0.375 Threshold 0.5 Threshold 0.75 Actual

Figure 10: Requirements cluster distribution for the Breduced set using the co-
sine measure on the ‘Summary’ and the ‘Description’ fields. The
three leftmost graphs show the number of clusters of different sizes
for various thresholds compared to the actual cluster distribution on
the right.

rate has also dropped significantly. The conclusion from this comparison is
that using only the ‘Summary’ field gives more accurate answers. The reason
for this is that the ‘Description’ field contains too much noise that incorrectly
boosts the similarity measures.

Finally, Figures 5, 7, and 8 support the rather evident: a combination
of the ‘Summary’ and the ‘Description’ field results in a combination of the
results from using the ‘Summary’ and the ‘Description’ fields separately.

The high number of requirement pairs identified at threshold level 0+ in
Table 3 may at first seem very discouraging. However, calculating the cluster
distribution of all the positives (true and false) as explained in Section 3.3
gives support to the following conclusions and the usefulness of the result.

106 II. F S  A S  S A

Table 4: Result of expert analysis of the false positives for the set Bfull at the
threshold 0.75 using the cosine measure on the summary field.

Relationship Count

Duplicate 28
Similar 13
Related 8
Part of 5
Not related 21

The cluster distributions for the Breduced set are shown in Figure 9 and
Figure 10. Each figure shows four graphs. The first three show the cluster
distribution using the cosine measure on the ‘Summary’ and the ‘Summary’ +
‘Description’ fields respectively. The last graph in each row shows the cluster
distribution for the actual duplicates found by the experts.

The graphs show that with increasing threshold the number of clusters of
larger size decreases. For example, in Figure9 at threshold level 0.375 there is
one very large cluster involving 123 different requirements.

What is noteworthy about this is that the presented study is made on
a very large set of requirements but that in reality the requirements arrive
continuously, a few at a time. The similarity analysis can thus be made in-
crementally on a smaller set of requirements, avoiding the need for interpret-
ing the results of similarity analysis of the entire set of requirements at one
time. The cluster distribution shows that if we analyst one randomly selected
requirement from the database (which may represent a newly submitted re-
quirement), the worst case would be that the analyzer suggests a cluster of
123 requirements to be identical (Figure 6a, leftmost graph). This is thus
the maximum number of requirements the requirement analyst must handle
simultaneously. As the number may seem too high for the lower thresholds,
it is reasonable to suggest that too large clusters may be ignored, as they are
probably irrelevant.

Considering both performance and cluster distribution, we may also con-
clude that the Dice and cosine measures are superior. The true positives rate
has already been shown to be higher, and the higher false positives rate is
compensated by the suggestion of analyzing a group of related requirements
simultaneously, instead of checking each of the several thousand possible du-
plicate pairs.

F  107

Another interesting issue is whether the automated analyzer reveals dupli-
cate pairs that the experts missed. To explore this we let an expert analyze the
75 false positives suggested when using the cosine measurement on the ‘Sum-
mary’ field for set Bfull at threshold level 0.75. Table 4 shows the surprising
result from the analysis. It turned out that 37% of the suggested duplicate
pairs were actually missed by the experts! For that threshold level, the true
positives rate would then increase from 26% (Figure 6) to almost 40%, the
already low false positives rate would decrease, and the already high accuracy
would increase. The analyst did not regard two requirements in a pair as
duplicate or similar if they were to be implemented in different parts of the
software. The table also shows the additional relationships identified, which
thus imply that only 21 of the 75 pairs identified would be completely wrong.

The manual analysis also indicated that the analyzer might have a problem
when there are too few words in the fields. One suggestion would then be to
use the ‘Description’field only when the ‘Summary’ field has too few words.

Furthermore, the threshold value can be tuned based on the requirements
engineer’s consideration of the best trade-off between few false positives and
many true positives.

In summary, it may be concluded that:

1. The similarity analysis technique gives reasonably high accuracy con-
sidering its simplicity.

2. For incremental analysis of requirements, given that related require-
ments are grouped into clusters, the Dice and cosine may be considered
the superior measures.

3. A large explanatory field tends to give a worse result, as the discrimina-
tion between requirements declines. However, if one field has too few
words it may be worth using other lengthy fields.

4. The grouping of suggested duplicate requirements into clusters reduces
the analysis burden considerably.

5 Further applications

There are numerous conceivable applications of automated similarity analysis
beyond identifying duplicates. The following briefly describes some of these
application areas, of which we have only evaluated one so far.

108 II. F S  A S  S A

5.1 Requirements interdependencies

Requirements interdependencies are important to identify and keep track of
for requirements prioritization and release planning purposes, as interdepen-
dencies may govern what partitions of a particular set of requirements are al-
lowed from a functional perspective, or eligible from a cost/value perspective.
Carlshamre and Regnell (2000) describe a number of salient interdependen-
cies found in a study of empirical data The relationship between similarity and
interdependency is evident in the case where we have two requirements R1
and R2, with the exact same ‘Summary’ field. This would be a true duplicate
pair in the previous sense, but it would also represent an OR interdependency,
which imply that either one of the requirements could be implemented. The
existence of common keywords may indicate other types of interdependen-
cies as well. For example, if there are several requirements that include the
word ‘sorting’, it may be wise to consider implementing these together to save
development resources, which would represent an interdependency regarding
cost of implementation.

To investigate whether the similarity measurement technique could be
used to support the identification of interdependencies in a set of require-
ments, we applied the same analysis technique as described in Section 3.1 to
five different sets of 20 high-priority requirements, previously studied manu-
ally by experts (for further information on the results of the manual study, see
Carlshamre et al. (2001)). Among the total of 100 requirements, there were
in total 155 pair-wise interdependencies manually identified by experts from
each of the five organizations.

Results Each set of 20 requirement slogans were relieved of stop words and
reduced to stems, before being separately fed to the similarity calculator using
the cosine coefficient. The automatic analyzer reported 70 similar pairs on a
0+ threshold (9, 18, 21, 10 and 12 pairs in each set respectively), of which
25 were true positives. Table 5 shows the frequencies of actual dependencies
in relation to the similarity measure using the assessment scheme presented in
Figure 2.

A chi-square test (Siegel and Castellan, 1988) gives a p-value less than
0.0001, which shows that the similarity measure varies significantly with ac-
tual dependencies.

Thus, by checking for lexical similarity, this particular case demonstrates
that it is a promising technique to support the interdependency identifica-
tion process by automatic analysis. Although the accuracy may not suffice

F  109

Table 5: Contingency table for dependencies and similarities.

Similarity=0 Similarity>0 Total

Actual non-dependencies 750 45 795
Actual dependencies 130 25 155

Total 880 70 950

for this technique to be used on its own, automatic lexical analysis may be
used in conjunction with other techniques to reduce the effort of identifying
interdependencies.

5.2 Requirements gathering

When a stakeholder is proposing a new requirement, it may be valuable to
know if a similar requirement has already been implemented and, if so, in
what release. If a similar requirement has not been implemented, it may be
desirable to know if a similar requirement has been proposed.

5.3 Strategic fit

A company may define key areas that are of specific importance for the re-
quirements work (e.g., usability, decision-making features or invoicing capa-
bilities). When such requirements are proposed, they can be identified by
a similarity analysis approach and thus more easily be given the appropriate
management attention.

5.4 Defect tracking

Companies with mature software products that have gone through series of
releases often have many defects to track and analyst. As new defects are
reported, a similarity analysis approach can aid testers to identify if similar
defects have been reported earlier.

5.5 Support issues

Some companies allow their customers to get feedback on support issues
through their web sites. Similarity analysis approaches can help the customer
to enter questions in natural language and more easily analyst the questions
and find suitable answers.

110 II. F S  A S  S A

6 Further improvements

There are a number of potential improvements that can be made to the pre-
sented requirements similarity measurement method, including the following
suggestions to be evaluated in further research:

• Process issues such as when similarity analysis should be used, who
should perform the analysis and how the analysis is cost-efficient to
perform.

• How different ways of representing requirements affect the results. Which
representation is best suited for high precision in automatic similarity
analysis?

• Different attributes’ impact on similarities. Use of other attributes may
increase precision.

• Improve method accuracy. Examples include: the use of a domain-
specific stop list, a thesaurus with general synonym words, spelling cor-
rection prior to the automated similarity analysis and by not discrimi-
nating between words with a short editing distance.

• Smart algorithms: some words may be over-represented in the set of
false positives. Removing these words may improve the precision. This
is an example of where it may be possible to make the algorithm self-
adjustable based on human corrections.

• Evaluate linguistic methods that may provide more precise analysis of
natural language requirements on a semantic level. This may include
the use of ontologies or word nets.

• Ways of visualizing the results from automated similarity analysis and
supporting the requirements engineer in the navigation among related
requirements.

In order to make these improvements and to make the methods more
general it is of course desirable to apply the methods to other requirement sets
from industry. Also, it is of great interest to compare different approaches and
combinations of approaches. The implementation cost and computational
effort needed for statistical methods, linguistic methods and other computa-
tional models (such as the LSA approach in Landauer and Dumais (1997))
are of great interest for applications aimed at market-driven organizations.

C 111

7 Conclusions

Automated similarity analysis is a promising technique for supporting require-
ments engineers to identify requirements duplicates and interdependencies.
This conclusion is drawn on the basis of empirical studies on industrial re-
quirements. Automated analysis is, in the particular cases of the presented
investigations, able to identify as many as 80% of the actual duplicates and
still only incorrectly classify about 6% of all the possible requirement pairs.

When using automated similarity analysis for interdependency identifica-
tion, a significant correlation was found between similarity and interdepen-
dency. The results show a correct classification of 16% of the actual interde-
pendencies.

We do not believe that the presented technique can replace human judge-
ment, but our results suggest that automated similarity analysis on a syntactic
level using information retrieval techniques may be effective in pinpointing
true duplicates and interdependencies. Further studies are needed in order
to increase the understanding of the benefits and limits of automated analy-
sis of natural language requirements (Ryan, 1993). It is especially important
to conduct further research in real situations, where new requirements are
continuously arriving from multiple sources, and where requirements are an-
alyzed incrementally by a requirements engineer with domain expertise. In
these investigations it is also of importance to consider the relationship be-
tween effort needed to put a method to work in a market-driven company
and the efficiency of the method. Conducting real-world studies is a neces-
sary means for valid assessments of the benefits and costs of decision support
systems in a market-driven requirements engineering context.

Acknowledgements This work is partly funded by the National Board of Industrial and Tech-
nical Development (NUTEK), Sweden, within the REMARKS project (Requirements Engi-
neering for Market-Driven Software Development) grant 1K1P-97-09690. A previous version
of this paper was published at the Seventh International Workshop on Requirements Engineer-
ing: Foundations for Software Quality (REFSQ’2001). We would like to direct warm thanks
to Per Runeson, Martin Höst and Thomas Olsson, all at the Department of Communication
Systems, Lund, for their valuable input and enthusiastic suggestions.

References

Ambriola, V. and Gervasi, V. (1997). Processing natural language require-
ments. In Lowry, M. and Ledru, Y., editors, Proceedings of ASE-97: The
12th IEEE Conference on Automated Software Engineering, pages 36–45, Los
Alamitos, CA. IEEE CS.

112 REFERENCES

Carlshamre, P. and Regnell, B. (2000). Requirements lifecycle management
and release planning in market-driven requirements engineering processes.
In Tjoa, A. M., Wagner, R. R., and Al-Zobaidie, A., editors, Proceedings of
the 11th International Workshop on Database and Expert Systems Applications
Process, pages 961–965, Los Alamitos, CA. IEEE CS.

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., and Natt och Dag, J.
(2001). An industrial survey of requirements interdependencies in software
product release planning. In Titsworth, F. M., editor, Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering, pages 84–91,
Los Alamitos, CA. IEEE CS.

Chen, H., Hsu, P., Orwig, R., Hoopes, L., and Nunamaker, J. F. (1994).
Automatic concept classification of text from electronic meetings. Commu-
nications of the ACM, 37(10):56–73.

Cybulski, J. L. and Reed, K. (1998). Computer-assisted analysis and refine-
ment of informal software requirements documents. In Proceedings of the
Fifth Asia-Pacific software engineering conference, Taipei, Taiwan.

Deifel, B. (1999). A process model for requirements engineering of ccots. In
DEXA Workshop on the Requirements Engineering Process: Innovative Tech-
niques, Models, Tools to Support the RE Process, pages 316–320, Los Alami-
tos, CA. IEEE CS.

Frakes, W. B. and Baeza-Yates, R. (1992). Information Retrieval: Data Struc-
tures and Algorithms. Prentice Hall, Englewood Cliffs, NJ.

Francis, W. N. and Kucera, H. (1982). Frequency analysis of English usage:
lexicon and grammar. Houghton Mifflin, Boston, MA.

Gervasi, V. (2000). Environment Support for Requirements Writing and Analy-
sis. PhD thesis, Dipartimento di Informatica, University of Pisa, Italy.

Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and Nyberg, C. (2001).
Exploring bottlenecks in market-driven requirements managament pro-
cesses with discrete event simulation. The Journal of Systems and Software,
59:323–332.

Karlsson, J. and Ryan, K. (1997). A cost-value approach to requirements
prioritization. IEEE Software, 14(5):67–74.

REFERENCES 113

Landauer, T. K. and Dumais, S. T. (1997). A solution to plato’s problem: The
latent semantic analysis theory of acquisition, induction and representation
of knowledge. Psychological Review, 104(2):211–240.

Lubars, M., Potts, C., and Richter, C. (1993). A review of the state of the
practice in requirements modeling. In Proceedings of IEEE International
Symposium on Requirements Engineering, pages 2–14, Los Alamitos, CA.
IEEE CS.

Luhn, H. P. (1957). A statistical approach to mechanized encoding and
searching of literary information. IBM Journal of Research and Development,
1(4):309–317.

Mitra, M., Buckley, C., Singhal, A., and Cardie, C. (1997). An analysis of
statistical and syntactic phrases. In Proceedings of the 5th International Con-
ference “Recherche d’Information Assistee par Ordinateur”, pages 200–214,
Montreal, CA.

Osborne, M. and MacNish, C. K. (1996). Processing natural language soft-
ware requirements specifications. In Proceedings of the 2nd international
Conference on Requirements Engineering (ICRE’96), pages 229–236, Col-
orado Springs, CO.

Park, S., Kim, H., Ko, Y., and Seo, J. (2000). Implementation of an effi-
cient requirements-analysis supporting system using similaity measure tech-
niques. Information and Software Technology, 42(6):429–438.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–
137. (reprinted in Readings in Information Retrieval, Morgan Kaufmann,
1997).

Potts, C. (1995). Invented requirements and imagined customers: Require-
ments engineering for off-the-shelf software. In Proceedings of the Second
IEEE International Symposium on Requirements Engineering, pages 128–
130, Los Alamitos, CA. IEEE CS.

Rayson, P., Emmet, L., Garsida, R., and Sawyer, P. (2000). The REVERE
project: Experiments with the application of probabilistic NLP to systems
engineering. In Proceedings of the Fifth International Conference on Applica-
tions of Natural Language to Information Systems (NLDB 2000), Versailles,
France.

114 REFERENCES

Regnell, B., Beremark, P., and Eklundh, O. (1998). A market-driven require-
ments engineering process – results from an industrial process improvement
programme. Journal of Requirements Engineering, 3(2):121–129.

Rolland, C. and Proix, C. (1992). A natural language approach for require-
ments engineering. In Proceedings of the Fourth International Conference
on Advanced Information Systems Engineering (CAISE’92), pages 257–277,
Manchester, UK.

Ryan, K. (1993). The role of natural language in requirements engineering.
In Proceedings of the First IEEE International Symposium on Requirements
Engineering (RE’93), pages 80–82, San Diego, CA.

Salton, G. (1989). Automatic Text Processing. Addison-Wesley, Reading, MA.

Sawyer, P., Sommerville, I., and Kotonya, G. (1999). Improving market-
driven RE processes. In Proceedings of International Conference on Product
Focused Software Process Improvement (PROFES’99), pages 222–236, Oulu,
Finland.

Siegel, S. and Castellan, Jr, N. J. (1988). Nonparametric Statistics for the Be-
havioral Sciences. McGraw-Hill, Singapore, 2nd international edition.

Van Rijsbergen, C. J. (1979). Information Retrieval. Dept. of Computer
Science, University of Glasgow, 2nd edition.

III

PAPER III

Speeding up Requirements Management
in a Product Software Company:
Linking Customer Wishes to Product Requirements
through Linguistic Engineering

Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, Björn Regnell

Proceedings of the 12th International Requirements Engineering Conference, RE2004,
283–294, Kyoto, Japan, September 2004. IEEE CS.

Abstract

The development of large, complex software products aimed for a broad mar-
ket involves a continuous, massive inflow of customers’ wishes (collected from
the market) and product requirements (generated inside the developing orga-
nization). The interrelationships between these two sources of requirements
should be identified and maintained to enable well-founded development de-
cisions. Unfortunately, the manual linkage that is routinely performed today
is cumbersome, time-consuming, and error-prone.

This paper presents a pragmatic approach based on linguistic engineering
to support the linkage between customer wishes and product requirements.
An evaluation with real requirements from industry is presented, showing that
such automatic support could make linkage faster. Based on these data, we
estimate that considerable time savings are possible. The results, together with
the identified enhancement, are promising for improving software quality and
saving time in industrial requirements engineering.

116 III. S  RM  L E

1 Introduction

The success of market-driven companies developing software products essen-
tially depends on three parameters: (1) when new releases reach the mar-
ket, i.e. how well the market window is targeted, (2) what content they
have, and (3) the associated cost for development (Novorita and Grube, 1996;
Sawyer et al., 1999). Profit and market share in combination with user sat-
isfaction are the driving forces of requirements analysis, prioritization, and
selection or rejection for implementation (Keil and Carmel, 1995). To find
market opportunities and to keep customers satisfied, new requirements must
be elicited continuously, and old requirements must be re-evaluated with re-
spect to evolving market needs. This continuous elicitation puts a high pres-
sure on the organization as requirements arrive from different sources and
emerge in different projects (Höst et al., 2000). Requirements management
in a product software company bridges the market interaction (existing cus-
tomers, prospects, analysts) with the product development planning (content,
resource planning, timing). We therefore have to distinguish between two
major groups of requirements: customer wishes and product requirements.
Customer wishes are expressions of the perceived market need. These are nat-
urally subject to frequent change; as the product changes, so does the market
need. Customer wishes make up a vital and valuable source of information
for decision-making. They also enable better communication with each cus-
tomer by using the customer’s own perspective. Product requirements are
the requirements that the developing company believes are worth to pursue,
stated from the developing company’s perspective. These are also used as a ba-
sis for product release planning, as well as for feasibility studies and, if selected
for implementation, to start actual software development. Customer wishes
and product requirements often emerge independently of one another and
for several reasons it is essential to keep them separated. For example, several
customers may express their wishes slightly different and without referring to
the software or business architecture. However, a product requirement ad-
dressing all the differently stated wishes may include additional information
that is required for decision-making and development but that should not be
communicated back to the customers. Naturally, there are multiple associa-
tions between these two groups of requirements, which must be found and
maintained. The links between customer wishes and product requirements
constitute a conclusive piece of information for requirements prioritization
and release planning. As always, resources are limited and only a subset of the
product requirements may be implemented in the next release of the product.

R    117

The linkage process is cumbersome. Each time a new customer wish arrives,
it is a difficult and time-consuming task to find those that may be related to
the wide variety of product requirements. In current practice, this task is of-
ten accomplished using simple search facilities, with consequences on effort
and missing links. A well thought-out hierarchical requirements organization
may help (e.g., based on the software architecture), but as the product gets
more complex, requirements will not always fit nicely into such a structure.
Moreover, evolution of the architecture, the product, and the company focus
deteriorates the maintenance of the requirements hierarchies.

In this paper we investigate the possibility of giving automatic support to
the manual work of requirements linking. This is carried out using a prag-
matic linguistic engineering approach (Garigliano, 1995). Our long-term ob-
jective is to engineer an integrated, supporting, and semi-automatic system
that deals with natural language requirements and which satisfies the con-
straints in the particular industrial setting described. The most vital con-
straints are the cost-benefit of such a system and the varying textual quality of
the requirements, to which a system must be less sensitive. We have selected
a set of robust techniques, well known within statistical natural language pro-
cessing (Manning and Schütze, 2002), that we use to calculate similarities
between requirements based on word occurrences. These similarities may be
used to present, for a selected customer wish, a top list of product require-
ments that are candidates for linkage. We present an evaluation using real
requirements and manually identified links, received from industry. It turns
out that the selected techniques may properly support linkage in an industrial
setting for up to 50% of the links. Improvements are suggested together with
interesting alternatives and supplementary approaches. The paper is struc-
tured as follows. In Section 2 the case study environment is presented. Sec-
tion 3 describes, in more detail, the requirements set used in our study. In
Section 4 we further describe the envisioned new supported situation and, in
particular, the selected techniques. This is followed in Section 5 by a presenta-
tion of our evaluation. A discussion of related work can be found in Section 6
which is followed by a survey of interesting further work in Section 7. Sec-
tion 8 concludes the paper.

2 Requirements management case study

Baan, now part of SSA Global, develops large complex applications aimed
for enterprise resource planning (ERP), customer relationship management

118 III. S  RM  L E

(CRM), supply chain management (SCM), product lifecycle management
(PLM), and business intelligence (BI). The applications are designed and de-
veloped as a framework with separate functional components for different
business functions and business process elements. By the end of year 2000,
the framework consisted of 250 modules and 10,000 components, comprising
around 4.5 MLOC. Between 1998 and 2002, the third author designed and
introduced a new requirements management process due to the high com-
plexity of their development situation:

• the comprehensive and vital domain knowledge,

• the large volume of requirements,

• their distributed development organization,

• and the complex dependencies of requirements.

New requirements management concepts were introduced in order to make
decision making more transparent and to enable more controlled require-
ments change management. To support the new requirements management
process, Baan also developed their own requirements management tool called
the Baan Requirements Database (BRD). Developed in MS Access, the BRD
has successfully been used in a distributed setting (although, due to perfor-
mance reasons, the system has recently been ported into the BaanERP devel-
opment platform.). Obviously, the BRD is also used to collect requirements
on the BRD itself. The requirements management process is depicted in Fig-
ure 1.

Requirements management is part of the overall release development pro-
cess, which also consists of development management to develop the new re-
leases, and delivery management to control the software component delivery
to customers. The newly introduced concepts are as follows:

Market Requirements A customer wish related to current or future markets,
defined using the perspective and context of the user. An example is
found in Table 2.

Business Requirements A generic customer wish to be covered by Baan solu-
tions described in Baan’s perspective and context. An example is found
in Table 3.

Release Initiation A formal document that triggers a release project in Baan
containing high-level strategic topics for business requirement selection.

R    119

Figure 1: The Baan Requirements Management Process.

Version Definition A document with the listing of business requirements of
the new release with the needed personnel resources.

Conceptual Solution A document with a sketch of the business solution for
one (preferred) or more business requirements

As shown in Figure 1, the requirements management activities are exe-
cuted in two modes. Continuously, new Market Requirements (MR) and
Business Requirements (BR) are being inserted into the BRD as soon as pos-
sible after their receipt or creation, respectively. Only after the company man-
agement decides to start a new release project, a Release Initiation document
triggers the writing of the corresponding Version Definition (VD) and Con-
ceptual Solutions (CS). Preferably, one CS covers one BR for the sake of
simplified (de-)selection of BRs into the new release. The VD and the CS
documents are then input for the development processes, which include the
writing of design documents (Definition Study, Functional Design, Technical
Design) and the coding of the software components.

MRs and BRs that cover the same underlying functional requirement are
linked to each other. The relationship between MRs and BRs is essentially of
many-to-many cardinality. MRs are copied into the BRD as-is, i.e. without
altering the original text as specified by the customer. Maintaining a good
relationship with customers is facilitated by providing timely feedback to the

120 III. S  RM  L E

customer on their input for new product functionality. The customer receives
an informative message after input review and after completion of the release.
Therefore, in case several customers suggest the same functional extensions,
then these are each recorded in separate MRs. These MRs are later linked to
the same BR.

BRs should reflect a coherent well-defined extension of the product and
are created by Product Managers responsible for (a part of) the product. A
BR description includes the effort in man-days required for development.
Experience with implementing Requirements Management in some product
software companies learns us that transparent decision making during release
planning requires the BRs to be of a similar workload size (i.e. for Baan be-
tween 20 to 80 mandays). Too many small requirements make the list of BRs
in the VD too long and cumbersome to manage. Too large requirements do
not provide adequate insight in the content of the next release, and hinder ef-
fective communication. As customers do not specify their MRs according to
these guidelines, it may well be that an MR is very large and therefore linked
to many different BRs. Non-coherent MRs dealing with dispersed functional
areas are also linked to different BRs.

Linking MRs to BRs and the other way round is of a daily routine for
the product managers. Each time a new MR is inserted into the BRD, it
is first checked by searching whether there is one or more BRs that already
include the specified functionality. This process is very time consuming, as
the tool only allows text search in the requirement description. Similarly,
when a new BR is created, the corresponding MRs need to be found in the
BRD, since the objective is to satisfy as many customers as possible. Finding

Table 1: Number of elicited and linked requirements.

Business Requirements Market Requirements
Year Elicited Linked Elicited Linked

1996 0 0 183 113
1997 5 4 683 262
1998 275 169 1,579 388
1999 709 261 2,028 502
2000 669 167 1,270 397
2001 1,000 153 864 224
2002 1,121 340 1,695 514

Total 3,779 1,094 8,302 2,400

C    121

all MRs that are covered by the BR at hand is virtually impossible, because
of the large number of MRs and due to the time-consuming understanding
of MR content. Advanced automated assistance to the MR-BR linking can
improve the quality of the requirements management process and save costly
man-hours of the product managers.

3 Case study requirements data

In this section we provide descriptive statistics on the requirements set used in
our study. The total number of business and market requirements elicited at
Baan between 1996 and 2002 is found in Table 1. These requirements con-
stitute the basis for the calculations presented in the coming sections. Table 1
also presents the number of requirements that manually have been linked to
one another. This information is used to evaluate the outcome of the au-
tomatic calculations. Also, the table shows that links between BRs and MRs
may cross year boundaries. Figure 2 shows the distribution of how many MRs
that are linked to each BR, and vice versa. A one-to-one relationship is obvi-
ously the most common. Furthermore, it shows that it is more common to
link several MRs to one BR, as opposed to the other way around.

0 5 10 15 20 25 30 35 40
1

10

100

1,000

10,000

BRs per MR
0 5 10 15 20 25 30 35 40

1

10

100

1,000

10,000

MRs per BR

Figure 2: Number of linked requirements.

122 III. S  RM  L E

Table 2: Example market requirement.

Field Example [Proprietary information]

Id MR10739
Example [Request raiser’s company]
Request Person [Request raiser]
Date 1996-05-29
Label Pricing and Containerization
Description Specifically what I am interested in is containerization and pricing.

For a prospect I am working with (pretty much a distributor
of electonic components) I need pricng by type of package by
cusotmer type (wholesale or retail). I think pricing by container
solves this problem, but I understand to use this feature the
item must be a process item and I don’t know if this is good
or bad. If I must use process what do I gain or lose, like do I
have to run a seperate MRP etc. Do I have to have one process
company and one non-process company. They have mainly an
assembly operation with no process involved. If process would
be to cumbersome how difficut a mod would it be to disconnect
containerzation from process.

Keywords Pricing, order planning
Priority Medium
Type Functionality
Status Closed/Completed
User name [Requirement submitter]
Comments 020699: functionality is available in BaanERP in the Pricing mod-

ule
Agreement None

Examples of an MR and a linked BR are found in Table 2 and Table 3
respectively (some proprietary information has been left out). Although these
two examples can not reveal the full picture, they are representative for the
content and form of the two types of requirements. In the label and descrip-
tion fields we find the principal information that constitutes the requirement.
The contents in these fields are written in natural language using the corpo-
rate language for documentation within Baan (US English). In the current
situation, the association between the requirements would be found by, for
example, searching for the term container in either of the corresponding sets
of requirements. The dates of the requirements suggest that it is most likely
that the MRs have been searched for possible linkage. Among the MRs we

C    123

Table 3: Example business requirement.

Field Example [Proprietary information]

Id BR10025
Date 1998-01-27
Label Statistics and containers
Description 1. Container (end item) in statistics

Purchase and sales statistics used to be maintained only at main
item level. But now it has also become possible to build statistics
at container level. There are two aspects: printing statistics in the
number of containers for a main item selecting and/or printing
statistics at container level
2. Displays in statistics
Displays are compositions of end items (for example, an attractive
display of different types of cake). The statistics will be updated
at both the levels of display item and container (which is part of
the display). Prevention of duplicate counting, and correct pricing
must be arranged in a procedural manner.

Keywords Process industries
Type Usability
Status Assigned
User name [Requirement submitter]
Comments Warehousing only

would get 37 hits if searching the label field and 318 hits if searching the de-
scription field. Five MRs were currently linked by experts (all five MRs were
submitted earlier than the BR). Four links would be found through the label
field, but the fifth link would only be found if selecting a new search term (e.g.
statistics, 40 and 99 hits correspondingly). Based on this and similar cases, we
expect the proposed technique to make this search and link procedure more
efficient.

The requirements’ textual quality varies, e.g. spelling errors (underlined),
so in order to determine the requirements lexical and syntactic quality (Fab-
brini et al., 1998), we calculated term frequency statistics for different term
categories. The term categories we were mainly interested in were correct
words, misspellings, and abbreviations. Due to the very large number of
terms used (see top row in Table 4), in order to reduce the manual effort
needed for the quality assessment, we restricted ourselves to the subset con-
sisting of only terms starting with ’a’. To further speed up the process, we first

124 III. S  RM  L E

Ta
bl

e
4:

T
he

re
qu

ir
em

en
ts

’l
ex

ic
al

an
d

sy
nt

ac
ti

ca
lq

ua
lit

y
(t

er
m

be
gi

nn
in

g
on

le
tt

er
’a

’).

M
ar

ke
t

R
eq

ui
re

m
en

ts
B

us
in

es
s

R
eq

ui
re

m
en

ts
D

is
ti

nc
t

Fr
eq

ue
nc

y
D

is
ti

nc
t

Fr
eq

ue
nc

y
To

ta
ln

um
be

r
of

te
rm

s:
27

,2
39

65
9,

32
5

10
,4

31
33

4,
05

9

LetterA

To
ta

ll
et

te
r

’a
’t

er
m

s:
1,

24
7

(1
00

%
)

68
,0

90
(1

00
%

)
79

3
(1

00
%

)
36

,0
81

(1
00

%
)

In
W

or
dN

et
2.

0:
66

2
(5

3%
)

53
,1

25
(7

8%
)

53
8

(6
8%

)
28

,5
58

(7
9%

)
A

ct
ua

lw
or

ds
no

t
in

W
N

:
23

(1
.8

%
)

12
,6

75
(1

9%
)

19
(2

.4
%

)
6,

67
9

(1
9%

)

’Non-words’

A
bb

re
vi

at
io

ns
:

88
(7

.1
%

)
1,

00
9

(1
.5

%
)

36
(4

.5
%

)
58

4
(1

.6
%

)
Sp

el
lin

g
E

rr
or

s:
20

2
(1

6%
)

28
4

(0
.4

2%
)

10
4

(1
3%

)
12

4
(0

.3
4%

)
N

on
-E

ng
lis

h:
14

2
(1

1%
)

54
3

(0
.8

0%
)

14
(1

.8
%

)
14

(0
.0

39
%

)
R

ef
er

en
ce

s:
67

(5
.4

%
)

27
2

(0
.4

0%
)

62
(7

.8
%

)
78

(0
.2

2%
)

Pe
rs

on
s:

36
(2

.9
%

)
12

8
(0

.1
9%

)
4

(0
.5

%
)

12
(0

.0
33

%
)

M
er

ge
d:

22
(1

.8
%

)
47

(0
.0

69
%

)
15

(1
.9

%
)

29
(0

.0
80

%
)

C
od

e:
5

(0
.4

0%
)

7
(0

.0
10

%
)

1
(0

.1
3%

)
3

(0
.0

08
3%

)

C    125

used WordNet 2.0 to automatically determine proper English terms. Word-
Net, developed at Princeton University, is a free lexical reference system in
which English nouns, verbs, adjectives and adverbs have been organized into
synonyms sets (Fellbaum, 1998). A manual check of the terms that were iden-
tified through WordNet was made to see if there were any terms that should
be reclassified. We then manually classified the terms that were not found in
the WordNet database. The results are shown in Table 4.

The left-most column shows the term categories that we identified. From
top to bottom they are:

In WordNet 2.0 The terms that had an appropriate meaning in WordNet,
i.e. an actual word, and excluding reclassified terms. For example, the
term au was found in WordNet as (1) the chemical notation for gold, or
(2) the abbreviation for astronomical unit. However, the term was not
used in neither of these senses, but as a part of a web domain or as the
French preposition. As English was the stipulated language we decided
to reclassify the term as a reference.

Actual words not in WN The terms that were not in WordNet, but man-
ually identified as actual words. The numbers are not surprising, as
WordNet only comprises four parts of speech and all senses are not rep-
resented in WordNet 2.0.

Abbreviations Non-standard abbreviations (e.g., accts for accounts) and other
domain-specific abbreviations (e.g., ACP).

Spelling errors Misspelled words.

Non-English Words in another language than the stipulated. In most cases,
in particular for the MRs, this is acceptable, as many non-English cus-
tomers prefer to put an explanation in their own language within paren-
theses.

References Identifiers, names of companies, and product names (e.g. AOL,
AG0000083).

Persons Names of people.

Merged Run-together words (e.g. articlegroup).

Code Pure programming code (e.g. AddShow).

126 III. S  RM  L E

Table 5: Most frequent terms.

BR rank MR rank Term Frequency MRfreq.
BRfreq.

1 1 item 2,117 2.30
2 2 line 1,609 1.83
3 6 process 1,484 1.50
4 15 datum 1,350 1.41
5 9 plan 1,281 1.66
6 136 erp 1,243 0.37
7 4 time 1,242 1.93
8 5 sale 1,137 2.09
9 7 change 1,078 2.03

10 40 warehouse 1,057 1.08
11 14 date 1,003 1.95
12 12 invoice 994 2.01
13 21 base 962 1.59
14 26 requirement 962 1.44
15 3 customer 956 2.72

As shown in the table, the terms in the ’non-word’ categories are, fortu-
nately, not used particularly frequently. We will utilize this fact in the next
section.

Table 5 shows the 15 most frequent terms used in the BRs and the corre-
sponding rank in an ordered term frequency list for the MRs. The table shows
that many of the terms are used with comparable frequency in the BRs and
MRs. This is also indicated by the Spearman rank order correlation coefficient
rs (Siegel and Castellan, 1988) (also see (Kilgarriff, 2001) for a discussion on
statistics for corpora comparison). Calculated on the intersection of the two
frequency lists, we get rs ≈ 0, 78, significant at the p < .00003 level. The
intersection constitute 4,660 terms in total. 1,899 terms only occurred in the
BR frequency list and 8,234 terms only occurred in the MR frequency list.
These unique terms had very low frequency in their corresponding frequency
list and, more importantly, essentially comprise non-English words and mis-
spellings. Thus the correlation coefficient do give a good indication of the
shared term usage. This gives support for the technical approach chosen, to
calculate similarity based on word occurrences, which is described in the next
section.

T  127

1

10

100

1,000

10,000

Business Requirements
1

10

100

1,000

10,000

R
eq

ui
re

m
en

t l
en

gt
h

Market Requirements

Figure 3: Requirements’ length.

The final statistical data that we present reveal the requirements’ lengths.
Figure 3 depicts the distribution of the requirements’ lengths for the BRs and
MRs. The BRs are typically somewhat more verbose. In each set there are
some requirements that comprise more than 500 words, but the most com-
mon requirement length is around 100 words. The reason for the enormous
length of some requirements is that they contain complete mail conversations
that discuss the requirement scope.

4 Technical approach

The envisioned automated support to the manual work of requirements link-
age should be well integrated into the BRD (Section 2), giving relevant sug-
gestions on corresponding requirements when requested. Figure 4 illustrates
where this automated support would be adopted into the requirements man-
agement process (Figure 1). It is important to understand that nothing is
linked automatically. Based on the similarity calculations, suggestions are given
to a human who may or may not assign the suggested links. Our expectation
is that relevant suggestions will be provided faster this way than if a human
would have to select several different search terms and, for each of these, search
through the database.

128 III. S  RM  L E

The challenge is to suggest requirements that are potential candidates for
linkage without the aid of any conceptual models, predesign or requirements
models, as none are available at the time of submittal of a new requirement.
Modeling the 12,000 requirements, even incrementally, prior to selecting only
a small subset for implementation is simply not regarded as cost-beneficial.
Approaches using natural language processing techniques in order to model,
validate, and help understand requirements are available but are not directly
applicable here (see Section 6 for a further discussion). These approaches
may present interesting opportunities, but regarding the very large amount of
requirements we start off by choosing a more pragmatic angle.

We first define the notion of a link in more technical terms. In Section 2,
we defined a link between a customer wish and a product requirement as an
indication that they refer to the same software functionality - or, in other
words, that they express the same intent. So, two requirements should be
linked if they have the same meaning, although expressed in a different style
and language. Unfortunately, it is still an unsolved task to functionally rep-
resent meaning in a way that can successfully be used by automatic systems
(Manning and Schütze, 2002). Thus, we cannot make use of such a system
without human intervention. We therefore choose to recast the challenge
into suggesting semantic similarity based on term occurrences. We assume
that MRs and BRs refer to the same functionality if they use the same terms,
i.e. the same terminology. In an RE context this may be a reasonable assump-

Market
Requirements

Business
Requirements

ongoing, continuous

Suggestions

Flattening

Tokenization

Stemming

Stop word removal

Similarity
calculation

Flattening

Tokenization

Stemming

Stop word removal

Market
Requirements

Business
Requirements

Market
Requirements

Business
Requirements

Market
Requirements

Business
Requirements

ongoing, continuous

Suggestions

Flattening

Tokenization

Stemming

Stop word removal

Similarity
calculation

Flattening

Tokenization

Stemming

Stop word removal

Figure 4: New setting with automated support.

T  129

Table 6: Intermediate results from preprocessing part of the example require-
ment MR10739.

Stage 1: Flattened
Stage 2: Tokenized Stage 3: Stemmed Stage 4: Stop words

removed

Pricing and
Containerization
Specifically what
I am interested in
is containerization
and pricing. For
a prospect I am
working with
(pretty much
a distributor
of electonic
components) I
need pricng by
type of package by
cusotmer type
(wholesale or
retail).

pricing and
containerization
specifically what
i am interested in
is containerization
and pricing for
a prospect i am
working with pretty
much a distributor
of electonic
components i
need pricng by
type of package
by cusotmer type
wholesale or retail

price and
containerization
specifically what
i be interest in be
containerization and
price for a prospect i
be work with pretty
much a distributor
of electonic
component i
need pricng by
type of package
by cusotmer type
wholesale or retail

price
containerization
specifically
containerization
price prospect
pretty distributor
electonic component
pricng type package
cusotmer type
wholesale retail

tion, as in this case the language used tends to be more precise than in literary
text, and moreover both customer wishes and product requirements refer to
the same domain (that is characterized by the same basic language). This is
supported by the term usage (of which an extract is presented in Table 5).
Whether this assumption is valid is a matter of empirical validation, which
this paper addresses. It should be noted however that this is the same assump-
tion made in many text retrieval systems that have been in widespread use in
other fields (e.g., medical literature, legal references, etc.).

4.1 Preprocessing

Before submitting the requirements to an automated process for establishing
proper links, a number of preprocessing steps are performed. In detail, the
process is as follows:

1. Requirements are first flattened, by merging the label and description
fields, and discarding other administrative information (e.g., dates of
submission). Thus, the complex data items maintained in the BRD
are reduced to plain strings. This choice is based on the results in an

130 III. S  RM  L E

earlier similar study (Natt och Dag et al., 2002), where the recall rate
was found to be higher when using both a summary and a description
field.

2. Each requirement is then tokenized, by using a custom-made tokenizer
based on Flex/Lex rules (Lesk and Schmidt, 1975). In this step, terms
are identified, and the original requirement (a string of characters) is
transformed into a sequence of tokens. Particular care is taken to iden-
tify tokens that represent references to standards and other documenta-
tion (e.g., "ISO-8859-1"), as these occur frequently and are particularly
meaningful for linking purposes. Other numeric references are left out
altogether, as it turns out that they introduce too much unneeded noise
in the data.

3. Stemming is then applied to each token to remove affixes and other
lexical components not needed for comparison purposes. We use the
morpha morphological analyzer described in (Minnen et al., 2001) for
stemming. For example, after this step both "managed" and "manag-
ing" are transformed into "manage", thus simplifying further process-
ing.

4. Common terms that have a purely syntactic role (stop words) are then
removed, as they do not provide useful information for establishing
correct links. Articles, prepositions, and a few other closed-class words
are discarded in this step.

As an example, Table 6 shows how a part of the MR in Table 2 is trans-
formed into a sequence of terms by the preprocessing stages.

4.2 Linking and clustering

Each requirement, transformed accordingly, is then represented using a vector
of terms with the respective number of occurrences (the so-called vector space
model (Manning and Schütze, 2002)). Table 7 presents an extract of the
vector space matrix for the requirements set used in this paper. The matrix
shows how many times a term appears in each requirement (notice that such a
matrix is usually very sparse, and can be stored and queried efficiently). From
the matrix it may also be derived how many terms the requirements have in
common, i.e. the overlap. This can be used as an intuitive starting point for
the similarity measure.

T  131

Table 7: Vector-space matrix extract.

Term MR10739 BR10025 BR10031

container 1 6 4
containerization 2 1
item 2 5 11
level 4 3
main 2 1
package 1 1
price 3 1
print 2
process 7 1
purchase 1 1
sale 1 1
sequence 1
statistics 8
type 2 1

In the vector space model, each term can be seen as a dimension in an
n-dimensional space. The number of occurrences of each term in a require-
ment is taken as the position of the requirement along the axis represent-
ing the term. Thus, a whole requirement can be represented as a point in
the n-dimensional space. Very similar requirements will result in very closely
clustered points in this space. Although a simple Euclidean distance measure
could be used to identify similar requirements, better results can be obtained
by using a measure that considers frequency of terms, rather than count of
occurrences (Manning and Schütze, 2002). This is particularly true in our
context, since often BRs are much more detailed and longer than the succinct
customer wishes. The cosine correlation measure is often chosen in text re-
trieval applications for this purpose, as it does not depend on the relative size
of the input (Manning and Schütze, 2002). In our case, we use the following
measure:

σ(f, g) =
∑

t wf (t) · wg(t)√∑
t wf (t)2 ·

∑
t wg(t)

2
(III.1)

where f and g are two requirements, t ranges over terms, and w(t) denotes
the weight of term t. The term weight is typically a function of the term fre-
quency, since while the number of times a word occurs is relevant, its relevance

132 III. S  RM  L E

decreases as the number gets larger (Manning and Schütze, 2002). One com-
mon approach is therefore to use a term weight of 1+log2(term frequency),
which we use in this paper.

Once the similarity measure is defined, suggesting potential links for an
incoming requirement is a matter of sorting pre-existing requirements accord-
ing to their similarity to the new one, and offering the most-similar require-
ments to the user as candidates for establishing links. Of course, there is no
guarantee that two requirements that are similar according to the σ(·) mea-
sure are indeed related: we assess how effective this technique is in industrial
context in the next section.

At this point it is also worth noting at least two challenges, raised by
the matrix extract, that the current preprocessing steps fail to handle. The
stemming rules do not reduce the verb containerization and the noun container
to the same stem. From a semantic point of view this is perfectly correct, but
as the two terms concern the same domain concept their association should
be utilized to increase the similarity measure. The current realization of the
vector-space model will not make that possible.

The other potential problem has to do with synonyms (e.g. the term
purchase would perhaps preferably be related to the term buy). Although syn-
onyms may be relevant to address it is not certain that it will improve the
measure considerably. I connection to synonyms it could be more promis-
ing to also take hypernyms and hyponyms into consideration (Jackson and
Moulinier, 2002). Nevertheless, this is a matter for further research (see Sec-
tion 7).

5 Evaluation

5.1 Evaluation technique

In order to evaluate how well the approach performs when it comes to identify
correct links, we use the manually identified links as the "presumably correct"
answer. Our goal is to find out how many of these links the automatic sys-
tem can retrieve. Retrieval results of this kind are traditionally evaluated by
recall, precision, fallout, accuracy and error (Manning and Schütze, 2002).
How these measures are to be calculated and interpreted is dependent on the
application. Accuracy and error are often not very interesting as the number
of correctly left out items (true negatives) usually is huge, which will give a
high accuracy.

For the industrial setting described in Section 2 it is of interest to be pre-

E 133

Table 8: Top list example

MR10013
Pos Req. Similarity

1 BR10012 0.45
2 BR10156 0.43
3 BR10006 0.42
4 BR10536 0.38
5 BR10987 0.36
6 BR10273 0.36
7 BR10740 0.34
8 BR10419 0.33
9 BR10622 0.24

10 BR10082 0.21
11 BR10283 0.18
· · · · · · · · ·

sented, for a particular requirement of one type, with a list of candidate re-
quirements of the other type. A top list is thus constructed by sorting the
requirements by similarity. The size of the top list will thereby represent our
similarity threshold.

A top list size of 1 is not necessary, nor wanted. A top list size of 7 ± 2
could be a good compromise (Miller, 1956). It enables us to quickly spot
one or more correctly related requirements, while taking into account that we
are not able to reach 100% recall or precision (proper experimentation with
presenting the resulting top list to the Product Managers is still required).
In Table 8 the situation is illustrated, where an example extract of a top list
for one MR is shown. In the table we have shaded those requirements grey
that would fall outside the top list and which are typically not part of the
shown result. The BRs in the top list that are correctly related to the MR are
highlighted.

In this situation it is not critical that a correct suggestion is presented
at position 1 but, of course, the higher the position the better. We could
then use the ranked recall measure (Jackson and Moulinier, 2002), but as we
would like to relate the recall to a threshold (i.e. the top list size) we choose
to compute recall for different top list sizes. Recall is the proportion of the
target items that a system gets right (e.g. a system retrieving 100 of the 1,000
known relevant items has a recall of 10%) and we use the following adapted

134 III. S  RM  L E

procedure:

1. Calculate the complete similarity matrix. The similarities are computed
as described in Section 4.

2. For each requirement of one type, sort the requirements of the other
type on similarity (as shown in the example in Table 8).

3. Calculate the overall recall for a top list of size n as:

Recall(n) =

∑
i=1...#req targeted(n)

#actual links
(III.2)

where

targeted(n) = for requirement i,

number of correctly identified

links within a top-n list.

(III.3)

We may then plot a recall curve as a function of the top list size.
However, step 3 is further adjusted to take the many-to-many relation-

ships into account. Suppose we have the situation shown in Table 8. In the
presented top list of 7 requirements, we find that 2 of them are correct. In
an interactive situation, these may be marked for linkage and could then be
removed from the top list. When they are removed, the requirements pre-
viously at position 8 and 9 may be revealed. In this example we are lucky,
and the final third requirement is shown, which is easily spotted. As long as
correct suggestions are shown in the top list we can reveal more suggestions
without exceeding the selected top list size. Consequently, the recall rate may
be slightly greater. This calculation procedure is more appropriate consider-
ing the specific industrial setting in which we expect to dynamically set the
requirements relationships based on the presented top list.

5.2 Evaluation results

The results from our calculations are found in Figure 5. The figure shows the
recall curve for the top lists of suggested BRs for each MR. The solid line rep-
resents the recall curve for calculating similarity using 1+log2(termfrequency),
and the dashed line for calculating it using just the term frequency. As ex-
pected, mitigation improves recall (typically 10%).

As can be seen we never reach 100% recall. This is because there are some
links that could not be identified at all, i.e. some linked requirements have

E 135

1 10 100 1,000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−List Size

R
ec

al
l

term weight = term frequency

term weight = 1 + log
2
(term frequency)

Figure 5: Recall for linking an MR to BRs.

no terms in common. There were 204 links that could not be identified,
which result in a maximum recall of (3, 259 − 204)/3, 259 ≈ 94% (but that
would require a top list of 3,000 requirements, which is quite unreasonable).
Looking at the requirements comprised by the 204 links that could not be
retrieved we found that:

• The links comprised 101 BRs and 158 MRs, thus including many-to-
many links.

• The majority of the requirements were sparingly described, consisting
of just a single line of text. In some cases there was no description at
all. This is not necessarily wrong in the Baan RM process perspective
(an empty BR is allowed to be created and directly linked to an MR).
These special cases do however affect the results negatively.

• Some requirements were completely written in languages other than
English. This should not be allowed without an additional English
description.

136 III. S  RM  L E

• Many of the BRs and MRs seemed to describe completely different
things. For a better understanding of these abstractions further analysis
is required, which is beyond the scope of this paper. It is also of interest
to understand how these links were assigned in the first place.

Figure 5 shows that, for a reasonable top list size of 10, we reach a recall of
51%. This is good considering the pragmatic approach taken and the impact
on the saving of time that could be made in industry.

In an industrial setting, linkage is performed in both directions, i.e. MRs
are searched to find which are related to a particular BR, and vice versa. We
therefore calculated recall for the case where we are presented with a top list
of suggested MRs for each BR. We can expect a difference, as the relative
position of MR M within the top list for BR B, is not equal to the relative
position of BR B within the top list for MR M (i.e., their individual positions
are based on different similarity sets). We found that for a top list size of 10
we reach a recall of 41%. As we have no data on which direction was used
originally to manually identify the links, we can only state that we reach a
recall between 41% and 51% (for a top list size of 10). Notice however that
we could also imagine a multi-page list of results, akin to the user interface of
web search engines. In this case, we can expect the user to access up to two
or three more pages of results if no convincing link is found in the first page,
or if it is suspected that more requirements can be linked. In this case, in the
most favorable setting with up to four pages we reach a recall close to 65%.

To give an indication of the time that could be saved, we make a rough
estimate based on the statistics presented and another measure reflecting how
many requirements that could be completely linked just by browsing a top-
10 list. We found that for 690 of the BRs, the recall rate would be 100%
using a top list size of 10, i.e. every related MR for each of the BRs would
be found within a top-10 list. The 690 BRs are linked to 1,279 MRs, giving
an average of 1.85 MRs per BR, but in order not to exaggerate the gain we
assume that, in the manual case, one search term is enough to find all the
links for one requirement. Supported by the search hit example in Section 3
we further assume that a search would return approximately 30 hits. Thus, in
the manual case the worst case scenario would be to browse 30 requirements.
With a top list size of 10, the worst case scenario with automated support
would be to browse 10 requirements. Up to 66% effort could consequently
be saved. If we assume that it takes about a quarter of a minute (15 seconds)
to accept or reject a requirement as a link, we find that the gain is (690 · 30 ·
0.25)− (690 · 10 · 0.25) minutes = 3, 450 minutes = 57.5 hours. The critical

E 137

reader may protest that in a real setting it is not possible to know the stop
criteria, i.e. how to know if a presented top-10 list comprise all the possible
links for an arbitrary requirement. While that is true, it is also true in the
current situation. The stop criteria will unfortunately always be unknown.
The above calculation only gives a comparative evaluation of the effort that
may be saved.

Finally, we also found it interesting to answer another question: how ef-
fectively can we find at least one correct link, i.e. for each one-to-many rela-
tionship how well is it possible to spot at least one of them? Just looking at
the best-positioned suggested requirement, we reach a recall rate of 58% for a
top list size of 10, which seems promising. This gives a reason to incorporate
clustering techniques, i.e. to cluster the requirements of one type and use that
additional information when producing the top list.

5.3 Validity

There are four main validity threats that may adversely affect our results:

1. Correctness of the similarity calculations.

2. Completeness of actual links.

3. Degree of link intricacy.

4. Copy-and-paste of requirement content.

To address the first threat we have manually validated all the programs we
developed. This was done for a randomly selected subset, for which we man-
ually performed all the required steps and compared that to the automatically
calculated results. Some minor bugs were found and corrected and for any
changes to the code we regression tested all the programs.

The second threat has currently not been avoided. Working manually,
Baan’s product managers may have missed some relevant link, which our sys-
tem has identified. Such a link would be considered incorrect in our evalu-
ation. However, this threat is not problematic, since if the missing links are
accounted for we will get higher recall. How much higher is beyond the scope
of this paper (see the next section for a discussion on further work).

The third threat involves the difficulty of drawing the correct conclusion
based on the kind of links that are among the correctly suggested ones. It
may well be the case that the remaining links are much more difficult to find
using the proposed techniques or not. Stated differently, the presented results

138 III. S  RM  L E

may not be as promising as we may think. However, we do not claim to
reach 100% accuracy and we do not aim at completely replacing the current
practice. This threat should nevertheless be investigated further.

The final threat has to do with the fact that some BRs may have been
created using the exact same text (or slightly modified) as in a specific MR to
which it is then linked. Of course the system should spot these, but the recall
curve may show a better result than is reasonable in an industrial setting. It
is beyond the scope of this paper to manually analyze all 3,259 requirements
links. A quick analysis was made to see if there were any requirements pairs
that were assigned a similarity of 1. We conclude that although these were
few (45), it is of interest to look specifically at those that have been assigned
high similarity measures. It is a matter of further work to address this threat
systematically.

6 Related work

A recent study shows that several software development companies, in par-
ticular the customer-oriented, use common natural language for specifying
requirements in the early phases (Mich et al., 2004). Due to the nature of the
requirements management process in many companies, we believe that natu-
ral language will be used for several years ahead. This motivates the research
efforts made within the field.

The underlying activity for supporting the linkage between BRs and MRs
may be classified as requirements similarity analysis. The approach taken in
this paper is based on the assumption that similar requirements have terms in
common. This may certainly be an insufficient assumption for achieving very
high recall rates and complementary approaches may offer improvements.

Similarity between textual requirements has not been studied extensively,
but linguistic engineering techniques to aid other requirements engineering
activities have been proposed that may present opportunities for improve-
ments. In addition to our own previous work (Natt och Dag et al., 2002),
there are a few that are related specifically to requirements similarity analysis.

For example, Goldin and Berry have developed a tool to extract abstrac-
tions from requirements sets (Goldin and Berry, 1997). The tool finds com-
monalities between requirements by using a sliding window technique that
compares sentences character-by-character. They avoid some of the weak-
nesses in confidence and precision from using parsers or counting isolated
words. The result from the tool by Goldin and Berry is a number of ab-

R  139

stractions, selected based on the requirements’ common content. Relating to
our work, instead of extracting the abstractions, a similarity measure could be
calculated based on this overlap.

A sliding window approach is also used by Park et al., this time on a
word-by-word basis in order to index sentences (Park et al., 2000). They
also use a parser to produce an alternative index. Similarity is then calculated
for both sets and aggregated into a final, more accurate similarity measure.
However, the requirements set used for the evaluation is small and larger sets
may present more noise than is revealed in their evaluation. Nevertheless,
their study shows how different techniques may be combined to improve the
recall rate and this seems to be the most rewarding approach.

Other research efforts within requirements validation may also be incor-
porated to improve the similarity measures. This includes the work by Fab-
brini et al. (a requirements quality model (Fabbrini et al., 2001)), Cybul-
ski and Reed (unifying the requirements terminology (Cybulski and Reed,
1999)), Rolland and Proix (conceptual modelling (Rolland and Proix, 1992)),
Fliedl, Kop and Mayr (conceptual predesign (Fliedl et al., 2003)), Osborne
and MacNish (restricted language (Osborne and MacNish, 1996)), and Denger
et al. (writing more precise requirements (Denger et al., 2001)). However, re-
strictions emerge from the specific setting described in Section 2. For example,
it is not possible to force customers to write their requirements in a controlled
language (proposed in (Cybulski and Reed, 1999; Osborne and MacNish,
1996; Denger et al., 2001)). As stated in the introduction and in Section 2,
this is not even desirable. Furthermore, the problem addressed in this pa-
per is not the difficulty of validating or understanding the requirements, but
rather the challenge to handle the large amount of requirements in the de-
cision phase prior to any software design efforts. Thus, it is too early to do
any modelling (as presented in (Rolland and Proix, 1992; Fliedl et al., 2003)).
Even if it was found to be valuable to model all the 12,000 requirements, it
would most likely require too much interactive manual labor.

In the end, it is a matter of the cost-benefit of the techniques to be used,
not only what is virtually possible. The effort of getting support systems up
and running and integrated into the requirements engineering process as well
as making them perform good enough must be balanced against the benefit
they provide.

140 III. S  RM  L E

7 Further work

The results presented in this paper are promising for further work and im-
provements. There are several issues that may have a positive impact on the
recall curve:

• Incorporate and aggregate similarity measures using other available tech-
niques (e.g. sliding window, part of speech tagging, etc.). For example,
there are also arguments against the cosine measure (as it assumes Eu-
clidian distance), which makes it interesting to investigate probabilistic
measures.

• Reuse the information from already linked requirements. In a real
setting, most requirements in the database would be already linked.
Firstly, they could be used to get more accurate similarity measures, as
more textual information would be available in the calculation. Sec-
ondly, they could in some cases be left out from the presented top lists.
Thirdly, they could be used as a learning set: for each pair of terms
(t, t′) we could compute a bonus based on how many times the pair
appears in pre-linked requirements (e.g., t in a MR, t′ in a BR linked
to the MR). When comparing to a new requirement, we could consider
equal terms to match with a full score (e.g., 1.0), and different terms to
match with their "bonus" (smaller) score. This way, a future occurrence
of t would suggest that we should consider requirements containing t′

as well.

• Expert validation. It is possible that not all links have been found in the
manual work. Thus, it is possible that requirements at a high position
in the resulting top lists actually should be linked. Experimentation
with and interviewing of product managers about the missing links and
the reasons (if any) for their rejection could lead to significant improve-
ments.

• Incorporate semantics to catch more distant similarities. For example,
tokenization and stemming could be replaced with a part of speech
tagger (e.g. the Brill tagger (Brill, 1992)), compound concepts could be
treated as terms, and WordNet or another lexicon could be used to deal
with synonyms, hypernyms, and hyponyms.

To enable better matches it is also of interest to incorporate checking
mechanism in the requirements submission stage, e.g. check of spelling (as

C 141

implemented in Caliber RM) and language use. Such mechanisms would
improve the results from the similarity calculations without complicating the
technical design. The above issues should be addressed together with analy-
sis of the requirement links that were assigned low similarity measures. That
could reveal the nature of natural language requirements and how it would be
possible to generically deal with them.

8 Conclusions

In this paper we have presented an approach to speed up requirements linking
using Linguistic Engineering techniques. We have shown that for an indus-
trial setting where numerous customer wishes and product requirements are
elicited, there is valuable support to be given using already well-known, robust
techniques.

We have shown that more than half of the links may be correctly suggested
and thus found in an easier way than they are today. An estimation based on
the evaluation also shows that for 63% of the linked product requirements,
all links would be found within a ranked list of 10 suggested customer wishes
and time savings of more than 65% could be made.

We argue that the linkage could be made quicker by pushing a button and
select from a list of requirements, rather than choosing and typing different
search terms. Even if the case is that only the easy 50% are found, it will still
be easier and faster. Further investigations will reveal how simple or advanced
links that may be found using further improved techniques.

A significant contribution of our work is that the approach has been eval-
uated using a large set of real industrial requirements. The varying quality
that is always found in authentic requirements is a real challenge to natural
language processing tools. Therefore, we believe it is of high importance to
make these empirical validations before any further steps are taken.

Further technical improvements are as always possible, making way for
important savings of time in industrial Requirements Engineering. We do not
expect these savings to be of an order of magnitude, but if effort as indicated
in Section 5.2 could be saved, we would call it considerable.

Linguistic Engineering techniques have not yet been fully exploited to
support software product development. The challenge is to consider all the
criteria to yield acceptance: usability, cost-benefit, flexibility, robustness and
efficiency, to mention a few (Garigliano, 1995). The presented results are
promising for a step towards well-engineered systems to aid Requirements

142 REFERENCES

Management in companies that rely on communication in natural language.

Acknowledgments. The authors wish to thank Pierre Breuls and Wim van Rijswijk at Baan in
Barneveld for kindly providing the requirements database. The Ernhold Lundström Founda-
tion covered travel expenses for trips to Italy and the Netherlands. Per Runeson and Lena Karls-
son provided valuable input, for which the authors are very grateful.

References

Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings
of the Third Conference on Applied Natural Language Processing, pages 152–
155, Trento, Italy.

Cybulski, J. L. and Reed, K. (1999). Automating requirements refinement
with cross-domain requirements classification. In Proceeding of the fourth
Australian Conference on Requirements Engineering (ACRE’99), pages 131–
145, Macquarie University, Sydney.

Denger, C., Dörr, J., and Kamsties, E. (2001). A survey on approaches
for writing precise natural language requirements. Technical report,
Fraunhofer Institut Experimentelles Software Engineering (IESE), Kaiser-
slautern, Germany.

Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., and Ruggieri, S. (1998).
Achieving quality in natural language requirements. In Proceedings of the
11th International Software Quality Week (QW’98), San Fransisco, CA.
Software Research Institute.

Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G. (2001). The linguistic
approach to the natural language requirements quality: Benefit of the use
of an automatic tool. In Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop, pages 97–105, Greenbelt, Maryland. IEEE
CS.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT
Press, Cambridge, MA.

Fliedl, G., Kop, C., and Mayr, H. C. (2003). From scenarios to KCPM
dynamic schemas: Aspects of automatic mapping. In Proceedings of the 8th
International Conference on Applications of Natural Language to Information
Systems (NLDB 2003), pages 91–105, Burg (Spreewald), Germany.

REFERENCES 143

Garigliano, R. (1995). JNLE Editorial. Natural Language Engineering, 1(1):1–
7.

Goldin, L. and Berry, D. M. (1997). AbstFinder, a prototype natural lan-
guage text abstraction finder for use in requirements elicitation. Automated
Software Engineering, 4(4):375–412.

Höst, M., Regnell, B., and Wohlin, C. (2000). Using students as subjects
– a comparative study of students and professionals in lead-time impact
assessment. Empirical Software Engineering, 5(3):201–214.

Jackson, P. and Moulinier, I. (2002). Natural Language Processing for Online
Applications: Text Retreival, Extraction and Categorization. John Benjamins,
Amsterdam, The Netherlands.

Keil, M. and Carmel, E. (1995). Customer-developer links in software devel-
opment. Communications of the ACM, 38(5):33–44.

Kilgarriff, A. (2001). Comparing corpora. International Journal of Corpus
Linguistics, 6(1):97–133.

Lesk, M. E. and Schmidt, E. (1975). LEX - a lexical analyzer generator.
Computer Science Technical Report, 39.

Manning, C. D. and Schütze, H. (2002). Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA.

Mich, L., Franch, M., and Novi Inverardi, P. L. (2004). Market research
for requirements analysis using linguistic tools. Requirements Engineering,
9(1):40–56.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological Review,
63:81–97.

Minnen, G., Carroll, J., and Pearce, D. (2001). Applied morphological pro-
cessing of english. Natural Language Engineering, 7(3):207–223.

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., and Karlsson,
J. (2002). A feasibility study of automated natural language requirements
analysis in market-driven development. Requirements Engineering, 7(1):20–
33.

144 REFERENCES

Novorita, R. J. and Grube, G. (1996). Benefits of structured requirements
methods for market-based enterprises. In Proceedings of the Sixth Annual In-
ternational Symposium on Systems Engineering (INCOSE’96), Boston, MA.

Osborne, M. and MacNish, C. K. (1996). Processing natural language soft-
ware requirements specifications. In Proceedings of the 2nd international
Conference on Requirements Engineering (ICRE’96), pages 229–236, Col-
orado Springs, CO.

Park, S., Kim, H., Ko, Y., and Seo, J. (2000). Implementation of an effi-
cient requirements-analysis supporting system using similaity measure tech-
niques. Information and Software Technology, 42(6):429–438.

Rolland, C. and Proix, C. (1992). A natural language approach for require-
ments engineering. In Proceedings of the Fourth International Conference
on Advanced Information Systems Engineering (CAISE’92), pages 257–277,
Manchester, UK.

Sawyer, P., Sommerville, I., and Kotonya, G. (1999). Improving market-
driven RE processes. In Proceedings of International Conference on Product
Focused Software Process Improvement (PROFES’99), pages 222–236, Oulu,
Finland.

Siegel, S. and Castellan, Jr, N. J. (1988). Nonparametric Statistics for the Be-
havioral Sciences. McGraw-Hill, Singapore, 2nd international edition.

IV

PAPER IV

A Linguistic Engineering Approach to
Large-Scale Requirements Management

Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, Björn Regnell

IEEE Software, 22(1), 32–39, 2005

Abstract

The development of large, complex software products aimed for a broad mar-
ket involves a continuous, massive inflow of customers’ wishes (collected from
the market) and product requirements (generated inside the developing orga-
nization). The interrelationships between these two sources of requirements
should be identified and maintained to enable well-founded development de-
cisions. Unfortunately, the manual linkage that is routinely performed today
is cumbersome, time-consuming, and error-prone.

This paper presents a pragmatic approach based on linguistic engineering
to support the between customer wishes and product requirements. An eval-
uation with real requirements from industry is presented, showing that such
automatic support could make linkage faster. Based on these data, we esti-
mate that considerable time savings are possible. The results, together with
the identified enhancement, are promising for improving software quality and
saving time in industrial requirements engineering.

146 IV. A L E A  L-S RM

1 Introduction

For large software companies, the sheer number of textual requirements presents
specific challenges. To find market opportunities, organizations must contin-
uously elicit new requirements and reevaluate old ones as market needs evolve.
Even so, you can implement only a subset of these requirements for the next
release. Using linguistic- engineering techniques early on in the requirements
management process could make this ongoing process less of a hindrance.

2 Market-driven requirements management

In a product company, requirements management bridges market interaction
(existing customers, prospects, and analysts) with product development plan-
ning (content, resource planning, and timing). We can therefore distinguish
between two major groups of requirements: customer wishes and product re-
quirements.

Customer wishes are expressions of the perceived market need. These
are naturally subject to frequent change – as the product evolves, the market
need changes accordingly. Customer wishes make up a vital and valuable
information source for decision-making. Also, because the wishes are written
using the customer’s own perspective, they enable better communication with
each customer.

Product requirements are those that the developing company finds worth-
while to pursue (stated from the developing company’s perspective). Compa-
nies also use these as a basis for product release planning as well as for con-
ducting feasibility studies and, if selected for implementation, starting actual
software development.

Customer wishes and product requirements often emerge independently
of one another, and, for several reasons, it’s essential to keep them separated.
For example, customers might express their wishes slightly differently from
one another and without referring to the software or business architecture.
However, a product requirement addressing all the differently stated wishes
might include additional information that’s required for decision-making and
development but that shouldn’t be communicated back to the customers (for
example, references to potential technical solutions, either the company’s own
or from competitive analysis).

Naturally, the two requirements groups share multiple associations. Orga-
nizations must find and maintain these links, because they constitute a signifi-
cant piece of information for requirements prioritization and release planning.

A -  147

Unfortunately, the linkage process is cumbersome. Each time a new cus-
tomer wish arrives, the task of determining whether it’s related to the wide
variety of product requirements is time consuming. Organizations often ac-
complish this task using simple search facilities, which takes effort and can
result in missing links. A hierarchical requirements organization that’s well
thought out might help (for example, based on the software architecture), but
as the product gets more complex, requirements won’t always fit nicely into
such a structure. Moreover, as the architecture, product, and company focus
evolve, the requirements hierarchy deteriorates.

3 A linguistic-engineering approach

Industrial experience shows the need for automated support in the require-
ments management area (Kaindl et al., 2002; Höst et al., 2001). Modeling
several thousand requirements, even incrementally, to be able to efficiently se-
lect only a small subset for implementation is simply not financially beneficial.
Any automated support must rely purely on the original form of requirements,
or unrefined natural language.

Approaches using natural language processing (NLP) techniques to model,
validate, and help understand requirements are available but aren’t directly
applicable here (Natt och Dag and Gervasi, 2005). These approaches present
interesting opportunities but can’t effectively cope with the large amount of
requirements we’re considering(Natt och Dag et al., 2002; Park et al., 2000).
We have to choose a more pragmatic angle.

A link between a customer wish and a product requirement indicates that
they refer to the same software functionality. Two requirements should be
linked if they have the same meaning, even if expressed in a different style and
vocabulary. Unfortunately, there’s still no method for representing meaning
in a way that automated systems can use successfully. We therefore choose to
recast the challenge into suggesting semantic similarity on the basis of lexical
features. We assume that customer wishes and product requirements refer to
the same functionality if they use the same terminology. In a requirements-
engineering context this is a reasonable assumption, because the language
tends to be more precise than in literary text, and, moreover, both customer
wishes and product requirements refer to the same domain.

When we submit the requirements to an automated process for establish-
ing proper links, an imagined support system first performs several internal
preprocessing steps (see the “Preprocessing” sidebar).

148 IV. A L E A  L-S RM

PREPROCESSING

The system first flattens each requirement by merging the label and
description fields and discarding other administrative information
(spelling errors are italicized for clarity).

Next, it transforms each requirement into a sequence of tokens after
removal of capitals, punctuation, brackets, and so on. This stage is
called tokenization.

The system then applies stemming to each token to remove affixes
and other lexical components. For example, after this step, both “man-
aged” and “managing” are transformed into “manage”, thus simplifying
further processing.

Finally, the system then removes common terms that are unlikely to
contribute to an appropriate similarity measure (stop words). Articles,
prepositions, and a few other words are discarded in this step.

For example, part of the market requirement in Table 1 (see main
text) is reduced as shown below:

Stage 1: Flat-
tened

Stage 2: Tok-
enized

Stage 3:
Stemmed

Stage 4: Stop
words removed

Pricing and
Containerization
Specifically
what I am
interested in is
containerization
and pricing. For
a prospect I am
working with
(pretty much
a distributor
of electonic
components)
I need pricng by
type of package
by cusotmer type
(wholesale or
retail).

pricing and
containerization
specifically
what i am
interested in is
containerization
and pricing for
a prospect i am
working with
pretty much
a distributor
of electonic
components i
need pricng by
type of package
by cusotmer type
wholesale or retail

price and
containerization
specifically
what i be
interest in be
containerization
and price for
a prospect i
be work with
pretty much
a distributor
of electonic
component i
need pricng by
type of package
by cusotmer type
wholesale or
retail

price
containerization
specifically
containerization
price prospect
pretty distributor
electonic
component pricng
type package
cusotmer type
wholesale retail

A -  149

THE VECTOR-SPACE MODEL AND THE COSINE MEASURE

The vector-space model is a standard way of representing texts through
the words they comprise. Each text is represented as a vector in the
high-dimensional space corresponding to the vocabulary used, where
each dimension represents a word.

Parts of the market and business requirements in Table 1 would be
represented by the word space and corresponding vectors shown in Ta-
ble A (where the values represent the number of occurrences of each
word).

The Cosine measure then takes the two vectors as input and returns
a similarity value between 0 and 1, corresponding to the cosine of the
angle between the vectors:

σ(rm, rb) =
~rm · ~rb

|~rm‖~rb|
The ~rm · ~rb denotes the dot product of rm and rb, which is calculated
by multiplying the corresponding frequencies of each word and then
adding them together. However, as the number of times a word oc-
curs is relevant, its relevance decreases as the number gets larger. One
common approach is therefore to weight the term frequencies using the
formula 1+ log2(term frequency). Thus, for the business and market
requirements in our example, the similarity becomes

σ(rm, rb) =
∑

i[1 + log2 rm(i)] · [1 + log2 rb(i)]√∑
i [1 + log2 rm(i)]2 ·

√∑
i [1 + log2 rm(i)]2

≈ 0.32

co
nt

ai
ne

r
co

nt
ai

ne
ri

za
tio

n
ite

m
le

ve
l

m
ai

n
pa

ck
ag

e
pr

ic
e

pr
in

t
pr

oc
es

s
pu

rc
ha

se
sa

le
se

qu
en

ce
sta

tis
tic

s
ty

pe

rm = (1,2 ,2 , 0 ,0 , 1 , 3 , 0 , 7 , 0 , 0 , 0 ,0 , 2)
rb = (6,0 ,5 , 4 ,2 , 0 , 1 , 2 , 0 , 1 , 1 , 0 ,8 , 1)

150 IV. A L E A  L-S RM

The system will then internally represent each requirement using a vector
of terms, according to the vector-space model (see the “The Vector-Space
Model and the Cosine Measure” sidebar). From the vectors, the system can
derive how many terms the requirements have in common; we can use this as
an intuitive starting point for a similarity measure.

However, better measures exist that consider both the requirements’ length
and the number of times the shared terms occur. One common measure the
literature suggests is the Cosine measure, which calculates the angle between
the vectors in the high-dimensional space (see the “The Vector-Space Model
and the Cosine Measure” sidebar).

Once we define the similarity measure, suggesting potential links for an in-
coming requirement is a matter of sorting preexisting requirements according
to their similarity to the new one and offering the most similar requirements
to the user as candidates for establishing links.

4 Experiment: The Baan requirements set

From 1998 through 2002, Brinkkemper introduced a new requirements man-
agement process at Baan (now part of SSA Global). As Figure 1 shows, re-
quirements management is part of the overall release development process,
which also consists of development management to create the new releases and
delivery management to control the software component delivery to customers
(not shown in the figure).

The concepts this process introduces are

Market requirement (MR) A customer wish related to future products, de-
fined in the customer’s perspective and context.

Business requirement (BR) A product requirement to be covered by Baan
products, described in Baan’s perspective and context.

Release initiation (RI) A formal document that triggers a release project in
Baan (containing criteria for selecting BRs)

Version definition (VD) A document listing the new release’s BRs with the
needed personnel resources.

Conceptual solution (CS) A document explaining the business solution prefer-
ably for one BR.

E: T B   151

Figure 1: The Baan Requirements Management Process.

Continuously and as soon as possible after their receipt or creation, the
new MRs and BRs are inserted into the Baan Requirements Database (BRD).
Only after company management decides to start a new release project, an
RI document triggers the writing of the corresponding VD and CS. These
are then input for the development processes, which include writing design
documents and actual coding.

Copying MRs into the BRD occurs without altering the original text as
specified by the customer. So, if several customers suggest the same functional
extensions, these are each recorded in separate MRs. Providing timely feed-
back helps maintain a good relationship with the customer, who receives an
informative message after input review and also after the release is complete.

Product managers responsible for (a part of) the product create BRs,
which should reflect a coherent, well-defined extension of the product. It
might be that an MR is very large and therefore linked to many different BRs.
A non-coherent MR dealing with dispersed functional areas is also linked to
different BRs. Hence, the MR-BR relationship is of many-tomany cardinality,
making proper MR-to-BR linking an essential process.

Linking MRs to BRs, and vice versa, is a daily routine for the product
managers. Each time a new MR arrives into the BRD, they first check it by
searching to find out whether one or more BRs already include the specified
functionality. This process is quite time consuming, as current tools allow

152 IV. A L E A  L-S RM

only text search in the requirement description.
Similarly, when a new BR is created, the corresponding MRs have to be

found in the BRD, since the objective is to satisfy as many customers as pos-
sible. Finding all MRs that the BR at hand covers is virtually impossible
because of the numerous MRs and the time-consuming process of trying to
understand MR content.

For an idea of the high volume and complexity in the requirements man-
agement process, consider these statistics. By the end of 2000, the Baan soft-
ware framework consisted of 250 modules and 10,000 components, com-
prising about 4.5 millions of lines of code. From 1996 through 2002, Baan
elicited 3,800 business and 8,300 market requirements. Each month, 100
new market requirements arrive, of which 20 are handled for the coming re-
lease. Over the years, 2,400 market requirements have been linked to 1,100
business requirements.

4.1 Example requirements

Table 1 features representative examples of an MR and a linked BR. In the
label and description fields, we find the principal information that constitutes
the requirement. The contents in these fields are written in English, Baan’s
corporate language, and might very well contain spelling errors (italicized for
clarity in the examples), acronyms, code snippets, and so on.

Currently, product managers would look for candidate MRs for the BR
in Table 1 by searching for specific terms. For example, the term container
gives hits in the label field of 37 requirements and in the description field of
318 requirements. In our case, five MRs were linked by experts, of which four
were found through the label field. The last link was found by searching for
statistics (giving 40 label and 99 description hits).

4.2 Evaluation results

For a particular requirement of a given type, we’re interested in the other
type’s list of candidate requirements. We therefore construct a top list for each
market requirement by sorting the business requirements by similarity.

To evaluate how well the approach performs when it comes to presenting
the correct links, we use the product manager’s manually identified links as
the “presumably correct” answer. We can then calculate the recall rate as a
function of the top list size (the ratio between the number of correct links
found in the top list and the total number of correct links).

E: T B   153

Table 1: Example market and business requirements.

Field Example

Id MR10739 [Market requirement]
Example [Request raiser’s company. Proprietary information]
Request Person [Request raiser. Proprietary information]
Date 1996-05-29
Label Pricing and Containerization
Description Specifically what I am interested in is containerization and pricing. For

a prospect I am working with (pretty much a distributor of electonic
components) I need pricng by type of package by cusotmer type
(wholesale or retail). I think pricing by container solves this problem,
but I understand to use this feature the item must be a process item
and I don’t know if this is good or bad. If I must use process what do I
gain or lose, like do I have to run a seperate MRP etc. Do I have to have
one process company and one non-process company. They have mainly
an assembly operation with no process involved. If process would be to
cumbersome how difficut a mod would it be to disconnect containerzation
from process.

Keywords Pricing, order planning
Priority Medium
Type Functionality
Status Closed/Completed
User name [Requirement submitter. Proprietary information]
Comments 020699: functionality is available in BaanERP in the Pricing module
Agreement None

Id BR10025 [Business requirement]
Date 1998-01-27
Label Statistics and containers
Description 1. Container (end item) in statistics

Purchase and sales statistics used to be maintained only at main item
level. But now it has also become possible to build statistics at container
level. There are two aspects: printing statistics in the number of
containers for a main item selecting and/or printing statistics at container
level
2. Displays in statistics
Displays are compositions of end items (for example, an attractive display
of different types of cake). The statistics will be updated at both the levels
of display item and container (which is part of the display). Prevention of
duplicate counting, and correct pricing must be arranged in a procedural
manner.

Keywords Process industries
Type Usability
Status Assigned
User name [Requirement submitter. Proprietary information]
Comments Warehousing only

154 IV. A L E A  L-S RM

1 10 100 1,000 10,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top−List Size

R
ec

al
l

term weight = term frequency

term weight = 1 + log
2
(term frequency)

Figure 2: Recall for linking an MR to BRs.

A top list size of 1 isn’t necessary, or wanted. For example, a top-10 list
lets us quickly spot one or more correctly related requirements, while taking
into account that we aren’t able to reach 100 percent recall.

The results from our evaluation show the recall curve for the top lists
of suggested BRs for each MR (see Figure 2). The solid line represents the
recall curve for calculating similarity using 1 + log2(termfrequency), and
the dashed line for calculating it using just the term frequency.

As you can see, we never reach 100 percent recall. This is because some
links couldn’t be identified at all – that is, some related requirements have
no terms in common. We couldn’t identify 204 links, which resulted in a
maximum recall of approximately 94 percent – that is (3,259 - 204)/3,259
– but to reach the maximum recall, we would require a top list of 3,000
requirements, which is quite unreasonable.

For a reasonable top list size of 10, as the figure shows, we reach a recall
of 51 percent. This is good considering the pragmatic approach we took and
the impact on the time that could be saved in industry.

T RS  155

4.3 Saving time

To indicate the amount of time the process could save, we make a rough
estimate on the basis of these statistics and another measure reflecting how
many requirements could be completely linked just by browsing a top-10 list.
We found that for 690 of the BRs, the recall rate would be 100 percent using
a top list size of 10. This means that every related MR for each of the BRs
would be found within a top-10 list. The 690 BRs link to 1,279 MRs, giving
an average of 1.85 MRs per BR. But to not exaggerate the gain, we assume
that, in the manual case, one search term is enough to find all the links for
one requirement.

We further assume that a manual search would return approximately 30
hits (based on the previous search examples). Thus, the worstcase scenario
would be to browse 30 requirements. With a top list size of 10, the worst-
case scenario with automated support would be to browse 10 requirements.
Consequently, the process could save up to 66-percent effort.

If we assume that it takes about 30 seconds to accept or reject a require-
ment as a link, we find that the gain is (6903̇00̇.5) − (6901̇00̇.5) minutes,
which is 6,900 minutes, or 115 hours.

The critical reader might say that in a real setting it’s impossible to know
the stop criterion, or how to know if a presented top-10 list comprises all the
possible links for an arbitrary requirement. Although that’s true, the same
applies to the manual case: searching for more keywords could yield more
links. Nevertheless, the calculations just given show that a similar coverage
level can be reached more efficiently (that is, with less effort) by applying
lexical similarity compared to keywords search. If so desired, the time saved
can be spent in increasing the level of coverage, by examining more candidates,
or devoted to other RE activities if the coverage attained is deemed acceptable.

5 The ReqSimile tool

Considering the need for automated support in the described linkage process
and also to demonstrate our approach, we’ve implemented an open source tool
in Java called ReqSimile (see Figure 3; http://reqsimile.sourceforge.net). The
tool operates on arbitrary requirements sources, which are accessed through
a standard interface (Java Database Connectivity). ReqSimile can therefore
integrate well with existing requirements databases (provided a database driver
is present). All the involved database tables and fields can be specified from
within the tool.

156 IV. A L E A  L-S RM

Figure 3: ReqSimile, an open source tool in Java.

The left side in the top pane of the window presents a brief list of require-
ments. Selecting a requirement makes the requirement’s details show on the
right. Double-clicking a requirement makes ReqSimile calculate the require-
ment’s similarity to all the requirements in the other set.

A list of candidate requirements, sorted by similarity, then shows in the
bottom pane. For flexibility, the user can affect the ranking by adding more
search terms in a separate text box.

Already linked requirements are highlighted, and each requirement’s de-
tails are shown on the right when the requirement is selected. Through the
buttons next to each requirement, the user can remove or add links between
the selected requirements, and the program will update the requirements
database accordingly.

For research purposes, the program also calculates and reports different
measures, such as statistics on the requirements sets and recall rates based on
the currently linked set.

For practical use, a company can integrate the technique we describe into

F  157

its existing requirements management solution, or it can use ReqSimile as an
external tool supporting the linking step. In the latter case, the company ob-
tains integration with the existing requirements management practices by con-
figuring ReqSimile to interface with the organization’s requirements database.

6 Further work

The ReqSimile tool and the underlying techniques do a good job of support-
ing the linkage process. Our approach’s statistical nature makes it resilient to
unintentional errors in the text (for example, spelling errors). It’s not worth
trying to correct such errors automatically as part of the linking process. In
fact, automatic correction is likely to introduce more errors. Furthermore,
occasional typos have negligible impact on the recall. However, we’ve identi-
fied other issues that might be interesting to pursue (previous work provides
a more elaborate review of potential improvement Natt och Dag et al. (2002,
2004)).

One worthwhile approach would be to incorporate and aggregate several
different similarity calculation techniques.6 Different linguistic models might
together contribute to better precision.

Another promising approach for improving the precision in future sugges-
tion lists would be to reuse the information in previously linked requirements.
A support tool could use the information to improve similarity measures, to
leave out already linked requirements, or as a learning set to add relevant terms
not originally in the requirement.

A third issue is to incorporate semantics to catch more distant similari-
ties. We expect the handling of synonyms, hypernyms (more general terms,
such as vehicle), and hyponyms (more specific terms, such as bike) to provide
marginal improvement over the results reported.

Implementing all the extensions we’ve mentioned would likely bring fur-
ther improvements over our results, making the approach even more effective.

Software engineers have yet to fully exploit linguistic-engineering tech-
niques to support large-scale software product development (Mich et al., 2004).
One reason for this is researchers’ limited access to industrial requirements col-
lections. These information sources, together with the requirements activities
currently performed in industry, will reveal new opportunities for applicable
linguistic-engineering research. The challenge is to consider all the criteria to
yield acceptance: usability, cost-benefit, flexibility, robustness, and efficiency,
to mention a fewGarigliano (1995). The approach we present is a promising

158 REFERENCES

step toward well-engineered systems to aid large-scale requirements manage-
ment in companies that rely on communication in natural language.
Acknowledgments. The authors wish to thank Pierre Breuls and Wim van Ri-
jswijk at Baan in Barneveld for kindly providing the requirements database.
Thanks to Per Runeson and Lena Karlsson for critical reviews. Thanks to
Ernhold Lundström Foundation for covering travel expenses.

References

Garigliano, R. (1995). JNLE Editorial. Natural Language Engineering, 1(1):1–
7.

Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and Nyberg, C. (2001).
Exploring bottlenecks in market-driven requirements managament pro-
cesses with discrete event simulation. The Journal of Systems and Software,
59:323–332.

Kaindl, H., Brinkkemper, S., Bubenko jr, J. A., Farbey, B., Greenspan, S. J.,
Heitmeyer, C. L., Leite, J. C. S. d. P., Mead, N. R., Mylopoulos, J., and
Siddiqi, J. (2002). Requirements engineering and technology transfer: Ob-
stacles and incentives. Requirements Engineering Journal, 7.

Mich, L., Franch, M., and Novi Inverardi, P. L. (2004). Market research
for requirements analysis using linguistic tools. Requirements Engineering,
9(1):40–56.

Natt och Dag, J. and Gervasi, V. (2005). Managing large repositories of
natural language requirements. In Aurum, A. and Wohlin, C., editors,
Engineering and Managing Software Requirements. Springer-Verlag.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2004). Speed-
ing up requirements management in a product software company: Link-
ing customer whishes to product requirements through linguistic engineer-
ing. In Proceedings of the International Requirements Engineering Conference
(RE2004), pages 283–294, Kyoto, Japan. IEEE CS.

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., and Karlsson,
J. (2002). A feasibility study of automated natural language requirements
analysis in market-driven development. Requirements Engineering, 7(1):20–
33.

REFERENCES 159

Park, S., Kim, H., Ko, Y., and Seo, J. (2000). Implementation of an effi-
cient requirements-analysis supporting system using similaity measure tech-
niques. Information and Software Technology, 42(6):429–438.

V

PAPER V

An Experiment on Linguistic Tool Support for
Consolidation of Requirements from Multiple
Sources in Market-Driven Product Development

Johan Natt och Dag, Thomas Thelin, Björn Regnell

Submitted to Empirical Software Engineering

Abstract

This paper presents an experiment with a linguistic support tool for consol-
idation of requirements sets. The experiment is designed based on the re-
quirements management process at a large market-driven software develop-
ment company that develops generic solution to satisfy many different cus-
tomers. New requirements and requests for information are continuously is-
sued, which must be analyzed and responded to. However, new requirements
should first be consolidation with the old to avoid reanalysis of previously
elicited requirements and to enable informed decisions on which requirements
are the most rewarding to implement.

In the presented experiment, a new open-source tool is evaluated in a
laboratory setting. The tool calculates similarities between requirements and
presents a ranked list of suggested similar requirements, between which links
may be assigned. It is hypothesized that the proposed technique for finding
and linking similar requirements makes the consolidation more efficient.

The results show that subjects that are given the support provided by the
tool are significantly more efficient and more correct in consolidating two
requirements sets, than are subjects that do not get the support. The results
suggest that the proposed techniques may give valuable support and save time
in an industrial consolidation process.

162 V. E  L T S  R. C

1 Introduction

Requirements engineering is generally regarded as an important success fac-
tor in software development (Hofmann and Lehner, 2001). One of the
activities within requirements engineering, requirements management, deals
with requirements storage, change management, and traceability issues (Som-
merville, 2001). These activities are generally challenging. In market- and
technology-driven software development they are exceptionally difficult due
to the particular characteristics of the development situation (Lubars et al.,
1993; Novorita and Grube, 1996; Potts, 1995; Regnell et al., 1998; Sawyer
et al., 1999; Yeh, 1992). Fundamental organizational issues, such as the pri-
mary goal, the success measurements, and the product life cycle, present chal-
lenges not found in bespoke, or contractual, development. Unfortunately,
many industrial requirements management activities are left untouched by
the research world and there is an urgent need for a better understanding and
improved support (Brinkkemper, 2004).

This paper presents an experiment with a new open-source tool, which in-
corporates linguistic engineering techniques to support a specific requirements
management activity: consolidation of large amounts of requirements that are
elicited either from different stakeholders or from the same stakeholder at dif-
ferent points of time. The general purpose of the consolidation process is
to find the overlap of two requirement sets with respect to the functionality
they convey. The general background to this activity is further explained in
Section 2. This is followed in Section 3 by a detailed description of a case
in industry, where requirements consolidation is particularly challenging and
where much work could be saved if consolidation was better supported.

The experiment was designed to capture the consolidation process in the
industrial case. The purpose has been to investigate if the proposed tool and
the underlying techniques may give adequate support in that process. The
two subjects group were asked to consolidate two requirements sets by find-
ing and linking requirements that address the same underlying functionality.
The groups were given two different version of the support tool. One version
comprised linguistic engineering techniques aimed at giving automatic assis-
tance in finding similar requirements. The other version offered the possibility
to submit search terms for finding similar requirements.

The main results show that the subjects in the group using the tool with
automatic assistance performs, in average, significantly better. Not only are
they able to consolidate requirements faster, but they are also doing it more
correctly - assigning more correct links and missing less.

B 163

The paper is structured as follows. In the next section, the general back-
ground to the consolidation process is given. This is followed by a problem
description captured from our industrial partner. The experimental concep-
tion, preparation, planning, and operation are then presented in Sections 4
through 7. The analysis of the experimental results are presented in Section 8.
A short discussion can be found in Section 9 followed by Section 10, which
summarizes and concludes the paper.

2 Background

Market- and technology-driven software development companies essentially
concentrate on three parameters in order to succeed (Novorita and Grube,
1996; Sawyer et al., 1999):

• The point of time when new releases shall reach the market, i.e. how
well the market window is targeted.

• The release content, i.e. the quality and functionality of the product
release.

• The cost of development, comprising the full life-cycle of the release.

To increase market share and decrease risks, companies concentrate on
serving many needs within one market (i.e. market specialization (Kotler,
2002)). To fulfill specific needs within the market, customization and cus-
tomerization has been adopted. Customization allows end-users to buy in-
dividually differentiated products within certain prescribed aspects (e.g. by
individually specify the components to be included in a new computer). Cus-
tomerization goes one step further and involves the interaction with each cus-
tomer, allowing each customer to request customization on a certain product.

To optimally enable market specialization and product customization in
software development, software engineering has embraced the concept of prod-
uct lines (Clements and Northrop, 2002). A software product line is a family
of software-intense products that share a common set of features. Each indi-
vidual product is then developed from a common set of assets in a controlled
manner. The objective of a software product line is to optimize software engi-
neering effectiveness and efficiency and to gain improvements in productivity,
cost, and quality (Krueger, 2003; Clements and Northrop, 2002).

164 V. E  L T S  R. C

For software product line development in a market-driven company, the
requirements engineering activities differ compared to those for single systems
in the following ways (Clements and Northrop, 2002; Potts, 1995):

Requirements elicitation A larger set of stakeholders, such as marketing,
support, development, testing, usability evaluations, and technology
forecasting. To remain competitive on the market, requirements collec-
tion is insufficient and new requirements must also be invented within
the organization based on foreseen end-user need. For individual cus-
tomer satisfaction, possible and anticipated variations points must ex-
plicitly be captured.

Requirements analysis A focus on identifying commonalities and variations
in order to identify reuse. Close contact with potential customers en-
ables feedback and negotiation of opportunities for saving money by
using more common features in favor of unique ones.

Requirements specification Two levels: product-line-wide requirements and
product-specific requirements. The product-line-wide specification must
indicate where variations points are possible. The product-specific re-
quirements complete or extends the product-wide specification.

Requirements verification Occurs in two stages according to the two levels
of specification.

Requirements management Must acknowledge the two levels of specifica-
tion and the two stages of verification. Impact of changes to the prod-
uct line must be systematically assessed with respect to all the products
in the product line. Links between the core assets and the product line
requirements must be identified and maintained.

These activities are conducted continuously and in parallel, making it in-
creasingly important to maintain an effective and efficient requirements en-
gineering process. When a company that has embraced the product line ap-
proach is growing, more product variations and customization will be part of
the product line. Each individual product has its own life-cycle and so does
the whole product line. Thus, new product lines may be started in parallel
with already existing, reusing parts of the soon to be phased-out product line.

To effectively manage commonalities and variations points, requirements
are stored in a central repository. Changes are made to the requirements in the

I   165

repository and project requirements specification are extracted on a needs ba-
sis. With the possibility to assign links between requirements to indicate inter-
relationships, e.g. commonalities, requirements from different customers may
be kept separated. This enables better communication with each customer.

New requests arriving from customers and new requirements invented
within the organization must therefore be consolidated with the requirements
already in the repository. Generally speaking, the consolidation process is the
process of finding the differences between the requirements in the repository
and the newly arrived requirements, in terms of new and changed require-
ments.

When the product line approach is scaled up, the number of stakehold-
ers increases and the complexity of both the product and development esca-
lates. As a consequence, requirements arrive at a higher pace and in larger
volumes, which require more time for the identification of commonalities be-
tween stakeholders. Meanwhile, the time-to-market constraint remains.

Eventually, companies face the challenge of dealing with huge informa-
tion flows that may overwhelm their management and analysis capabilities.
Due to the increasing difficulty of identifying and maintaining requirements
interrelationships, the consolidation process becomes overloaded, resulting in
requirements repository deterioration. The effects can be serious, impeding
proper decision-making and customer satisfaction.

3 Industrial problem description

The general problem described in the previous section has been identified
through collaboration with our different industrial research partners. One of
our partners, Sony Ericsson Mobile Communications AB (SEMC), has found
it particular important to resolve their instance of the problem. Our collab-
oration has comprised investigations into their situation and a preliminary
evaluation of the techniques that are used in a proposed support tool (more
on the tool is found in Section 5.2). This section provides a description of our
industrial partner’s development situation and their consolidation problem in
the requirements management process.

SEMC develops mobile phones for a global market. As a market- and
technology-driven company with many stakeholders, SEMC must handle re-
quirements from a number of sources. As shown in Figure 1, the stakeholders
situation presents a more complex flow of requirements than in typical single-
systems software projects.

166 V. E  L T S  R. C

 Requirements

SRS

TRS

PRS

Operators

GPM

DU

Platforms

Ericsson

Projects

CTO

Market

End-Users

Concept

Application
Planning

Product and
Application Planning

Broadcom

- Java
- Email
- Sms
 etc.

- Mechanics
- Applications
 etc.

- Consumer Research

- Sales & Marketing
- Competitive Intelligence

CTO - Chief technology officer
DU - Development unit
GPM - Global product management
PRS - Product requirements specification
SRS - System requirements specification
TRS - Technical requirements specification

Figure 1: Requirements sources

The arrows in the figure indicate the flow of requirements. In the top
left part of the figure, the hardware platform vendors are shown, represented
by the two companies Ericsson Mobile Platforms and Broadcom. SEMC’s
technical requirements on the platform are stored in a Technical Requirements
Specification. This document is managed by the Chief Technology Officer,
who is also responsible for negotiation with the platform vendors.

In the right part of the figure, inputs from the market, end users, and
concept studies are shown. Information from the market is gathered from
sales and marketing, and through business intelligence and competitive anal-
ysis. Although SEMC does not sell their phones directly to end-users, re-
quirements stemming from their own consumer research programs comprise
a valuable source of information for future undertakings. Ideas that may pro-
vide competitive advantage are evaluated through concept studies and may
generate requirements on both hardware and software.

Application planning, shown at the bottom of the figure, are responsible
for the different application areas (e.g. Games, Java, etc.). They act as internal
customers who have their own set of requirements on the phone, which must
be fulfilled in order for the applications to integrate nicely in the phone.

Finally, at the top of the figure, SEMC’s primary customers, the opera-
tors, are shown. The operators are responsible for selling the phones to the
end user, either directly or through a third party. Through the close contact

I   167

RFIRFI
RFI

RFIRFI
RFI

Messaging

Memory

Area of Expertise

Coordinator

Operator A

Operator B

Key Account
Manager

Bid Support
Specialist

Global Product Management

RFIRFI
RFI

Operator N

RFI - Request for information

Figure 2: The Request for Information Process at Sony Ericsson

of Global Product Management with the operators, SEMC provides mobile
phone customization. In order to optimize software engineering effectiveness
and efficiency, this is managed through a product line approach. Require-
ments are gathered and negotiated through a process that is experiencing se-
vere overload. This process is described in Section 3.1.

A mobile phone project is initiated by a pre-study on the Product Require-
ments Specification, essentially comprising high-level requirements stemming
from the operators. Further input in the initial phase are the concept study
reports and consumer research reports. The output from the pre-study is an
initial version of the System Requirements Specification, which include both
hardware and software requirements. The responsibility for the System Re-
quirements Specification is assigned to a development unit, DU, which are
the developers of a project.

3.1 The RFI process

In order for the operators to acquire knowledge in the technical capabilities
of SEMC’s phones, Requests for Information (RFI) are submitted to SEMC
by the operators. Two kinds of RFI’s can be identified: general information
requests and requests for statement of compliance. Statements of compliance,
which are the most common ones, comprise specific requirements and are
replied upon using simple standardized statements on whether or not a stated
requirement is fulfilled by the product.

The RFI process is depicted in Figure 2. Each year each operator submits
a couple of RFIs. The RFIs arrive to the Key Account Managers, one for

168 V. E  L T S  R. C

each major operator, in different document formats (PDF, Excel, MSWord,
etc) and at different times. The main specification technique for the RFI
requirements is feature style, i.e. function specification in natural language
(Lauesen, 2002).

The Key Account Manager passes the RFI on to a Bid Support Specialist,
who reviews the RFI from a market point of view and decides which products
shall be considered when dealing with the RFI. The Bid Support Specialist
then passes the documents on to the Coordinator, who analyzes the RFI and
the accompanying instruction and then distributes relevant parts of the RFI
to Areas of Expertise.

An Area of Expertise consists of a Function Group and a Technical Work
Group. The Technical Work Group works with road maps (i.e. future func-
tions) and the Function Group works with implementation and testing. When
the Areas of Expertise have stated the compliance to each requirement, they
send the RFI reply back to the coordinator. The coordinator reviews the an-
swers and sends the replies on to the Bid Support Specialist, who also checks
the answers.

If the RFI originates from a major operator, a meeting is held with the
Global Product Management, the coordinator and experts from the Areas of
Expertise in order to discuss the answers which are to be submitted back to the
operator. The RFI reply is then sent back to the operator by the Key Account
Manager.

The RFIs play an important role in the operator’s strategic planning. The
RFIs also provide SEMC with vital business intelligence information as the
features prioritized by the operators may be used as a guideline when devel-
oping future phones. The operators thus have a great deal of influence on the
final requirements for a product and a good relationship with the operators,
based on timely and correct replies to the RFIs, is therefore of utmost concern.

The efficiency of the RFI process, in which requirement are analyzed and
checked against product features, is however severely impeded. The Areas of
Expertise are concerned with their primary assignment in development and
testing and have trouble finding the time required to analyze the RFIs. Fur-
thermore, they get particularly frustrated as they have to state the compliance
to the same or very similar requirements over and over again. Large parts of
the new versions of RFIs arriving from the same operator are typically the
same as previous versions. Furthermore, it is often the case that the same and
very similar requirements appear in the RFIs from different operators.

Unfortunately, the requirements identifiers for the same requirements in

E  169

two consecutive version of an RFI from the same operator may differ and can
therefore not be used for simple consolidation. In general, the revision history
of the RFIs cannot be relied upon as the operators’ requirements processes are
not suited or adapted to the activities that SEMC must conduct (unfortu-
nately, there are not enough financial incentives for the operators to make the
required changes to their processes).

Consequently, there is much unnecessary redundant work required by the
Areas of Expertise and SEMC considers it an important goal to resolve the
process bottlenecks. The following sections present the experiment that was
designed capture and investigate a potential solution to support the described
work situation.

4 Experimental conception

SEMC and many other market-driven companies (Karlsson et al., 2002; Mich
et al., 2004) specify their requirements in natural language. Previous research
has shown that linguistic engineering may give valuable support in other large-
scale requirements management activities, such as duplicate identification and
linkage between customer and business requirements (Natt och Dag et al.,
2002, 2004). That research, together with the problem description in the
preceding section, gave incentives for conducting a controlled experiment for
investigating if there is any significant gain from using linguistic engineering
techniques to support requirements consolidation.

A laboratory experiment was design to capture the essence of the consol-
idation problem at SEMC and for evaluating a potential solution that could
support the activity. A tool was developed for the purpose of giving support
in the consolidation process. The tool takes two requirements sets as input
and presents suggestions on similar requirements by calculation the fraction
of words the requirements have in common (more information about the tool
can be found in the next section).

Figure 3 depicts the conceptual solution of the consolidation activity. To
the left in the figure, two requirement sets, A and B, are shown. Suppose that
the two sets represent two consecutive submissions of RFIs from the same op-
erator. The earlier RFI, lets assume it is A, would already have been analyzed
and the result from the analysis should be available in the central requirements
database. The coordinator then uses the support tool to find requirements in
B that are already analyzed in A and to mark them by assigning a link be-
tween them. The output of the process is shown to the right in the figure.

170 V. E  L T S  R. C

A’

B’

B

A

C

Coordinator

Figure 3: The process of using the support tool for requirements consolidation

The subset A’ comprises all requirements that were previously analyzed but
are no longer requested by the operator (remind that the overlap can nei-
ther be provided by the operator nor easily be found through requirements
identifiers. See Section 3.1). The subset B’ represents all new requirements
that have not previously been analyzed. Finally, there is the subset C, which
comprises all requirements in the new RFI that previously have been analyzed
(these are the interlinked requirements). The coordinator would then send
the requirements in set B’ to the Areas of Expertise for analysis. The Areas of
Expertise are thus relieved from the burden of re-analyzing the requirements
in subset C.

5 Experimental preparation

To minimize costs and spare resources at SEMC, the first level of experimen-
tation was chosen, i.e., experimentation in a laboratory environment (Juristo
and Moreno, 2001). Positive results from a first experiment may justify fur-
ther experimentation in real projects. The rest of this section describes the
preparation needed to conduct the experiment and the subjects acting in the
experiment.

5.1 Subjects

The experiment was conducted in an academic environment and the exper-
iment subjects were students taking a course in requirements engineering1.
The course is given in the last year of a 3-year bachelor-level education pro-

1The course code is ETS671 and course information is available at
http://serg.telecom.lth.se/education/

E  171

gram in software engineering. The students are thus soon to become profes-
sional practitioners in software engineering. The course gives 5 credit points
corresponding to a quarter of a semester and the duration of the course is 8
weeks. The course includes the following parts:

• lectures based on the textbook by Lauesen (2002),

• 6 open-ended home exercises, each handed in by a group of students
followed by classroom discussions session regarding the assessment and
alternative solutions,

• a practical project in cooperation with local industry involving real RE
problems with real stakeholders,

• and two hands-on lab session; one on prioritization using a commer-
cially available RE tool and, this time, one on the requirements consol-
idation problem described in this paper.

The experiment operation and data collection was planned as a part of
the lab session, which was scheduled in the 4th week of the course. Before
the data collection, the students had been taught requirements engineering
terminology and have gained experience from the practical project. This is
believed to be enough knowledge and experience in order to understand and
carry out the experiment tasks.

The student population were between 21 and 30 years old with an aver-
age age of 23 years and there were 1 female and 22 male students. Further
characteristics of the population, based on a pre-test, is given in Section 6.3.

5.2 Tools

Two adapted versions of the ReqSimile tool (Natt och Dag et al., 2005), de-
veloped by the first author, were used in the experiment. The user interfaces
of the two versions of the tool, ReqSimileA and ReqSimileM, are shown in
Figure 4 and Figure 5 respectively.

The left side in the top pane of the window presents a brief list of re-
quirements. Selecting a requirement (l1) makes the requirement’s details show
on the right (l2) and a list of similar requirements in the other set appear in
the bottom pane, sorted on the similarity value (l3). The similarity value is
calculated based on the words that the requirements have in common (pre-
processed to remove inflections, etc.). The calculation procedure is described
in more detail in Natt och Dag et al. (2004).

172 V. E  L T S  R. C

1

6

7

5

8

3

2

4

Figure 4: ReqSimileA - Providing automatic support

By clicking any of the Link buttons (l4), a link is assigned between the
selected requirement (l2) and the requirement with the associated link button.
The link is stored in an external database. A link may be removed by clicking
the Unlink button, and the program will update the database accordingly.
Linked requirements are highlighted according to the color scheme in the
figure (l5, l6, l7). All other requirements that are unlinked are uncolored (l8).

ReqSimileM was modified so it did not provide an automatically calcu-
lated list of similar requirements. Instead, it provides the possibility to enter
search terms (l9), which are used to retrieve similar requirements. The person
using ReqSimileM must consequently come up with relevant search terms by
him/herself. The keyword search support was provided to mimic the search
facilities available in requirements management tools2, while, for experimen-
tation purposes, keeping the differences between the version as small as pos-

2There is actually one tool, Focal Point (http://www.focalpointus.com), which do provide
functionality to find similar requirements based on the research presented in (Natt och Dag
et al., 2002))

E  173

1

6

7
5

8

3

2

4

9

Figure 5: ReqSimileM - Providing manual key word search support

l1 SELECTED REQUIREMENT Currently selected requirement for which
details are shown on the right and candidate requirements are shown on the
bottom.l2 On the right hand side the details are shown for a requirement that has been
selected on the left.l3 The requirements are sorted by similarity to the above selected requirement.
The fields are colored with a shade between red and white, representing the
similarity. Red, or 1, represents an exact match.l4 This column has buttons for linking. Link is pressed to link and Unlink to
unlink.l5 LINKED REQUIREMENT 1 This requirement has been linked to the
currently selected requirement above.l6 LINKED REQUIREMENT 2a This requirement has been linked. If you
select it, the links may be reviewed using the bottom pane.l7 LINKED REQUIREMENT 2b This requirement has been linked, but not
to the currently selected!l8 UNLINKED REQUIREMENTS White background means unlinked re-
quirements. To link a requirement to the currently selected requirement,
press the link button.l9 SEARCH TERMS Search terms are entered to fetch requirements that
match the search terms. Multiple terms are separated by space. If no search
terms are entered, all requirements are shown.

174 V. E  L T S  R. C

sible. Actually, ReqSimileM provides better support than available require-
ments management tools as it sorts the resulting list of requirements based
on the occurrence of keywords. Furthermore, the keywords are first prepro-
cessed to remove inflections, etc., in the same manner as is done with the
requirements in ReqSimileA.

Both versions of the tool were preset to use the requirements prepared
as described in the next section. The original tool allows a user to select a
requirement from either of the two sets (by clicking one of the tabs in the top
half of the window named ‘PUSS A’ and ‘PUSS B’) in order to be presented
with a list of similar requirements from the other set. To assure that the
two experiment groups conducted the consolidation task in the same manner,
both version of the tool were locked to enable selection from only one of the
sets.

5.3 Requirements

For the consolidation experiment we used requirements specifications pro-
duced by students from the Master’s degree program. The requirements spec-
ification had been produced as part of a course “Software Development for
Large Systems”3. The course comprise a full development project including
requirements specification, test specification, high-level design, implementa-
tion, test, informal and formal reviews, and acceptance test. At the end of
the course the students deliver a first release of the controller software for an
Ericsson switch board.

The requirements specifications, SRS A and SRS B, were chosen with
respect to the experiment participants’ knowledge in the domain. They had
themselves taken the course one year earlier and were thus familiar with the
requirements on such a system. Giving the course for 12 years we have seen
that although the students are developing the same system and are guided
to write their requirements in one particular way, they naturally write their
requirements differently. Furthermore, in order to make the projects slightly
different (partly in order to avoid the possibility to cheat) the projects are
requested to develop different sets of services (e.g., redial, call forwarding, and
take call). This results in different sets of requirements on two levels. First,
the requirements required for each service and, secondly, the requirements
resulting from resolving interaction issues between the services (e.g. in what
way it is possible to take a call that has been forwarded to another subscriber).

3The course code is ETS032 and course information is available at
http://serg.telecom.lth.se/education/

E  175

Two specifications were randomly selected from the course given in the
year 2002 and 2003. Note that the specifications were taken from the Mas-
ter’s degree program and that the subjects were following the Bachelor’s degree
program (the programs are given in different cities, about 55 km apart). The
requirements had been specified in the use case style or the feature style (Laue-
sen, 2002) and thus all requirements were written using natural language. In
order not to burden the students (who produced the specification) with do-
main terminology challenges in both Swedish and English, they had been
recommended to write their specifications in Swedish (they have challenges
enough to handle in the project). The two specifications, respectively, com-
prised 139 and 160 unique requirements and scenarios (see also Section 6.3
about the requirements used in the experiment).

As our experimentation tool expects the requirements to be written in En-
glish (the underlying linguistic engineering techniques are adapted for the En-
glish language) the requirements specifications were independently translated
to English by the first two authors. No discussion was allowed between the
translators during the translation in order to reduce internal validity threats.
In particular, we wanted to preserve the possibilities of using different word-
ings and injecting spelling errors. However, no errors or differences between
the requirements sets were deliberately injected.

The experimentation tool expects the requirements to reside in a database
so the requirements documents’ structure was transferred to fields in a database
table. The resulting structure and example requirements can be found in Ta-
bles 1 and 2. The two tables show requirements from the requirements speci-
fications that are semantically similar. The examples also show the varying lin-
guistic quality and the presence of differences between similar requirements.
The two scenarios refer to the same underlying functionality. Note the error in
the scenario in Table 1, where it says that no subscriber initially is unhooked
(compare to the other scenario). Also note the left-out steps in the scenario
in Table 2. Requirements SRS41606 in Table 1 and SRS42403 in Table 2 are
similar but are written differently. Requirement SRS41804 in Table 1 refer
to the same functionality as requirements SRS4306 and SRS4311 in Table 2
(together, i.e. a split requirement). Notice the alternate spelling of canceled.

In this experiment, the content from the section and the description fields
were used to calculated the similarity between requirements. For more infor-
mation about the underlying calculation procedure see (Natt och Dag et al.,
2004).

176 V. E  L T S  R. C

Ta
bl

e
1:

E
xa

m
pl

e
re

qu
ir

em
en

ts
fr

om
sp

ec
ifi

ca
ti

on
co

m
pr

is
in

g
13

9
re

qu
ir

em
en

ts

K
ey

Id
Ty

pe
Se

ct
io

n
D

es
cr

ip
ti

on

3
Sc

en
ar

io
13

fu
nc

ti
on

al
Se

rv
ic

e:
R

eg
ul

ar
ca

ll
R

eg
ul

ar
ca

ll
-

bu
sy

A
ct

or
s:

A
:C

al
lin

g
su

bs
ri

be
r,

B
:C

al
le

d
su

bs
cr

ib
er

,S
:S

ys
te

m

Pr
er

eq
ui

si
te

s:
B

ot
h

A
an

d
B

ar
e

co
nn

ec
te

d
to

th
e

sy
st

em
an

d
ar

e
no

t
un

ho
ok

ed
.

St
ep

13
.1

.A
un

ho
ok

s.
St

ep
13

.2
.S

st
ar

ts
gi

vi
ng

di
al

to
ne

to
A

St
ep

13
.3

.A
di

al
s

th
e

fir
st

di
gi

ti
n

B
’s

su
bs

cr
ib

er
nu

m
be

r
St

ep
13

.4
.S

st
op

s
gi

vi
ng

di
al

to
ne

to
A

.
St

ep
13

.5
.A

di
al

s
th

e
re

m
ai

ni
ng

th
re

e
di

gi
ts

in
B

’s
su

bs
cr

ib
er

nu
m

be
r

St
ep

13
.8

.S
st

ar
ts

gi
vi

ng
bu

sy
to

ne
to

A
St

ep
13

.9
.A

ha
ng

s
up

St
ep

13
.1

0.
S

st
op

s
gi

vi
ng

bu
sy

to
ne

to
A

80
SR

S4
16

06
fu

nc
ti

on
al

Se
rv

ic
e:

C
al

lf
or

w
ar

di
ng

A
ct

iv
at

io
n

of
ca

ll
fo

rw
ar

di
ng

to
a

su
bs

cr
ib

er
th

at
ha

s
ac

ti
va

te
d

ca
ll

fo
r-

w
ar

di
ng

sh
al

lb
e

ig
no

re
d

by
th

e
sy

st
em

.T
hi

si
sr

eg
ar

de
d

as
an

er
ro

ne
ou

s
ac

ti
va

ti
on

,
an

d
an

er
ro

r
to

ne
is

gi
ve

n
to

th
e

su
bs

cr
ib

er
.

(M
ot

iv
ai

on
:

To
ge

th
er

w
it

h
SR

41
60

7,
av

oi
ds

ca
ll

fo
rw

ar
di

ng
in

cl
os

ed
lo

op
s)

11
1

SR
S4

18
04

fu
nc

ti
on

al
Se

rv
ic

e
in

te
ra

ct
io

n
T

he
se

rv
ic

e
ca

ll
fo

rw
ar

di
ng

sh
al

lb
e

de
ac

ti
va

te
d

if
an

op
er

at
or

re
m

ov
es

ei
th

er
th

e
su

bs
cr

ib
er

fr
om

w
hi

ch
ca

lls
ar

e
fo

rw
ar

de
d

or
th

e
su

bs
cr

ib
er

to
w

hi
ch

ca
lls

ar
e

fo
rw

ar
de

d.

E  177

Ta
bl

e
2:

E
xa

m
pl

e
re

qu
ir

em
en

ts
fr

om
sp

ec
ifi

ca
ti

on
co

m
pr

is
in

g
16

0
re

qu
ir

em
en

ts

K
ey

Id
Ty

pe
Se

ct
io

n
D

es
cr

ip
ti

on

41
Sc

en
ar

io
13

Fu
nc

ti
on

al
Se

rv
ic

e
re

qu
ir

em
en

ts
-

N
or

m
al

ca
ll

"N
or

m
al

ca
ll

-
bu

sy
"

A
ct

or
s:

A
C

al
lin

g
su

bs
cr

ib
er

.
B

:
Su

bs
cr

ib
er

w
hi

ch
ar

e
ca

lle
d

to
.S

:S
ys

te
m

.

C
on

di
ti

on
:

B
ot

h
A

an
d

B
ar

e
co

nn
ec

te
d.

A’
s

re
ce

iv
er

is
on

ho
ok

.B
’s

re
ce

iv
er

is
off

ho
ok

.

St
ep

13
.1

-1
3.

5.
[T

he
sa

m
e

as
11

.1
-1

1.
5]

St
ep

13
.6

.S
gi

ve
s

bu
sy

to
ne

to
A

.
St

ep
13

.7
.A

on
ho

ok
.

St
ep

13
.8

.S
st

op
s

bu
sy

to
ne

to
A

.

91
SR

S4
24

03
Fu

nc
ti

on
al

Se
rv

ic
e

re
qu

ir
em

en
ts

-
ca

ll
fo

rw
ar

di
ng

If
ca

ll
fo

rw
ar

di
ng

is
do

ne
to

a
su

bs
cr

ib
er

nu
m

be
r

w
hi

ch
in

it
s

tu
rn

is
fo

rw
ar

de
d,

an
er

ro
r

to
ne

sh
al

lb
e

us
ed

.

12
5

SR
S4

30
6

Fu
nc

ti
on

al
In

te
ra

ct
io

n
re

qu
ir

em
en

ts
If

a
su

bs
cr

ib
er

nu
m

be
r

is
fo

rw
ar

de
d

to
an

ot
he

r
su

bs
cr

ib
er

nu
m

be
ra

nd
th

e
la

te
ri

sr
em

ov
ed

,t
he

n
th

e
ca

ll
fo

rw
ar

di
ng

sh
al

lb
e

ca
nc

el
le

d.

13
0

SR
S4

31
1

Fu
nc

ti
on

al
In

te
ra

ct
io

n
re

qu
ir

em
en

ts
If

a
fo

rw
ar

de
d

su
bs

cr
ib

er
is

re
m

ov
ed

,
th

en
th

e
ca

ll
fo

r-
w

ar
di

ng
sh

al
lb

e
ca

nc
el

le
d.

178 V. E  L T S  R. C

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Position in ranked list

N
um

be
r

of
 r

eq
ui

re
m

en
ts

Figure 6: Histogram of the positions of similar requirements in the automati-
cally produced ranked list of similar requirements

5.4 Correct consolidation

To enable measurement of the subjects’ accuracy of linking requirements that
are semantically similar, the first author created a key where the correct links
had been assigned. The author have been teaching in the course for several
years, taking different roles in the course, such as requirements expert, test ex-
pert, and expert reviewer, as well as holding exercises and laboratory sessions.
It is therefore justifiable to regard the key as one provided by an expert in the
domain. The key was created prior to any analysis of the subjects’ assigned
links in order to reduce any related validity threats.

A way of measuring the tool’s ability of calculating similarities between
requirements is too see at which position the correctly similar requirements
end up in the ranked list produced by the tool. The requirements that the
expert considers to be similar should preferably end up at the top of the list.
Of the 30 requirements that the subjects were asked to link (see Section 6.3),
20 requirements were considered similar by our expert analysis.

In Figure 6, a histogram is found showing the distribution of the posi-
tions at which the correctly similar requirements end up in the ranked lists
produced by the tool (see Section 5.2). As shown in the figure, almost all (17

E  179

out of the 20) ended up at position 8 or better in the ranked list and should
therefore quickly be spotted. For presentation purposes, one data point is ab-
sent in the figure. One similar requirement was found at position 64 in the
produced top list. We found two reasons for this. Firstly, vital information
was available in another requirement (i.e. the requirement was split). Sec-
ondly, the varying lengths of the requirements seems to affect the similarity
calculation adversely.

6 Experimental planning

In this section, the variables, the hypotheses and design of the experiment are
described. In addition, the threats to the validity are discussed.

6.1 Variables

The variables in the experiment are described below, divided into indepen-
dent, controlled, and dependent.

• The independent variable is the methods used in the experiment. The
two methods compared are manual and assisted.

• The controlled variable is the experience of the participants. A ques-
tionnaire was used prior to the experiment to analyze the individual
experience of the subjects.

• The dependent variables are:

T time used for the consolidation

N the number of analyzed requirements

Ncl number of correct links

Nil number of incorrect links

Ncu number of correctly not linked

Niu number of missed links (incorrectly not linked)

These dependent variables are used to analyze the hypotheses. The
number of analyzed requirements are used in case the subjects are not
able to analyze all requirements, which will affect Niu and Ncu.

180 V. E  L T S  R. C

6.2 Hypotheses

The hypotheses of the experiment were defined to investigate whether the re-
quirements engineers can be aided by using the assisted method. Six null hy-
potheses were defined, which are presented below. The assisted method refers
to the method used by subject group that used the ReqSimileA tool. The
manual method refers to the method used by the subject group that used the
ReqSimileM tool (see Section 5.2 for a description of the tools).

H1
0 The assisted method results in equal number of requirements analyzed

per minute, N/T , as the manual method.

H2
0 The assisted method results in equal share of correctly linked require-

ments, Ncl/(Ncl + Niu), as the manual method.

H3
0 The assisted method results in equal share of missed requirements links,

Niu/(Ncl + Niu), as the manual method.

H4
0 The assisted method results in equal share of incorrectly linked require-

ments, Nil/N , as the manual method.

H5
0 The assisted method is equally precise, Ncl/(Ncl +Nil), than the man-

ual method.

H6
0 The assisted method is equally accurate, (Ncl + Ncu)/(Ncl + Nil +

Ncu + Niu), than the manual method.

In this experiment we are only interested to find out if the assisted method
outperforms the manual. The reason for this is that it is of no practical impor-
tance if the assisted method is less effective than the manual method. So, we
only want to reject the null hypotheses when the difference is in the expected
direction. Therefore, we specify the following one-sided alternative hypothe-
ses:

H1
1 The assisted method results in a greater number of requirements ana-

lyzed per minute, N/T , compared to the manual method.

H2
1 The assisted method results in a larger share of correctly liked require-

ments, Ncl/(Ncl + Niu), compared to the manual method.

E  181

H3
1 The assisted method results in a smaller share of missed requirements

links, Niu/(Ncl + Niu), compare to the manual method.

H4
1 The assisted method results in a smaller share of incorrectly linked re-

quirements, Nil/N , compared to the manual method.

H5
1 The assisted method is more precise, Ncl/(Ncl +Nil), than the manual

method.

H6
1 The assisted method is more accurate, (Ncl +Ncu)/(Ncl +Nil +Ncu +

Niu), than the manual method.

6.3 Design

As a preparation to the experiment, a pilot experiment was performed to eval-
uate the instrumentation and design. Four colleagues participated and used
the methods evaluated in the experiment. After the pilot experiment, it was
concluded that the number of requirements should be reduced in order to
enable the subject to consolidate an expected number of requirements within
a lab session. Therefore, 30 requirements were randomly selected from the set
of 139 requirements (see Section 5.3 about the requirements). The same set
of 30 requirements were given to each subject during the experiment.

Before the main experiment, a questionnaire (pre-test) comprising 6 ques-
tions was handed out to the students to explore their experience from in-
dustrial software development and course participation, and skills in English
reading and writing. The questionnaire showed that they had equal industrial
experience (none) and equal experience from earlier courses. The differences
in reading and writing skills were small, but could be used to randomly as-
sign the participants to two experiment groups. This resulted in 11 students
in the subject group that were given the ReqSimileM tool (groupM) and 12
students in the subject group that were given the ReqSimileA tool (groupA).
One student in groupM and two students in groupA were removed from the
analysis, since they did not perform all parts of the experiment. The experi-
ment was carried out during two hours, which included a short introduction
to the task, the experiment, and a post-test.

The experiment data have been analyzed with descriptive analysis and sta-
tistical tests (Montgomery, 2001). The data were checked for normal dis-
tribution (normal probability plots), and the conclusion was that parametric
hypothesis tests could be used. The two-sample one-tailed t-test is used to
investigate the hypotheses (Montgomery, 2001). The significance value of

182 V. E  L T S  R. C

rejecting the null hypotheses is set to 0.05 for all tests.

6.4 Threats to Validity

An important analysis when performing experiments is the validity of the
results. The result of an experiment should be interpreted in the light of the
threats to the validity, in order to help future replications, and generalization
of the result. In this section, the threats are analyzed related to four groups of
threats: Conclusion validity, internal validity, construct validity and external
validity (Wohlin et al., 2000).

Conclusion validity concerns the relation between the treatments and the
outcome of the experiment. The threats related to the statistical tests used
in the experiment are considered being under control as normal probability
plots have been used to check that parametric tests can be used. These have
greater power that non-parametric, which is advantageous since only 23 sub-
jects participated in the experiment. Threats with respect to the subjects are
also limited since the subject groups are rather homogeneous, the subjects
have attended the same education program during 2.5 years.

Internal validity of the experiment concerns the question whether the ef-
fect is caused by the independent variables or by other factors. The experi-
ment has limited threats due to history, maturation, mortality, etc., since it
is applied during a 2 hour period. The social threats are limited since the
subjects had nothing to gain from the actual outcome of the experiment. The
grading of the courses was only based on their participation in the experi-
ment, not on their performance. The threat of selection is also under control,
as the experiment is a mandatory part of a course. However, three subjects
were considered as outliers since they did not make their best effort during
the experiment session, see Section 8.

A potentially more problematic threat is that the subjects had to analyze
and link requirements written in English when they had themselves used only
Swedish to specify their own requirements in the domain. This threat were
minimized through the pre-test were we asked about their ability to read and
write common and technical English. Although the questions were answered
through self-assessment, the students’ answers that they generally can read and
write both common English and technical English quite easily or fluently, is
credible. Swedish students generally speak and write English well and a major
part of their course material is in English. Furthermore, our own experience
from translating the specifications suggests that it is easier to understand the
Swedish concept based on the English written one, than to translate to the

E  183

correct English term from Swedish.

Construct validity concerns the ability to generalize from the experiment
result to the concept behind the experiment. There are two potential threats,
experimenter expectations and interaction of testing and treatment. The main
experimenter developed the tool, which is the basis of the persons research.
Hence, he expected the tool to be better than the manual method. To reduce
this threat, two other peopled were included as experimenters (planning, op-
eration and analysis), who are not directly involved in the research of the
main experimenter. Furthermore, since two measures in the experiment are
the number of correct and faulty links, the subjects may have been more aware
of their errors. Also, when the subjects know that the time is measured, it is
possible that they get more aware of the time they spend, and thus the time-
consumption is affected. Subject’s awareness cannot be controlled, but the
analysis do not point in that direction.

The experiment would need another set of requirements in order to enable
us to discover whether the results are the same, or if the set of requirements
have affected the results.

External validity concerns the ability to generalize the results to industry
practice. The largest threat is that only a few requirements have been used
in the experiment. With larger sets, the automatic similarity calculation may
not result in high ranking of actually similar requirements. Earlier research
investigates this with larger sets (Natt och Dag et al., 2002, 2004) and shows
that the techniques are good enough to give valuable support. Nevertheless,
further experimentation is motivated.

Another large threat is that students are used as subjects. However, the
students are in their third year of software engineering studies and thus close
to start working in industry. The participants are familiar with the appli-
cation domain, which is industry-like, as they participate in a requirements
engineering course. Furthermore, as most experimental conditions, the time
is an important factor. In order to reduce the fatigue effect, the number of
prioritized requirements are fewer than in most real cases. Thus, it is difficult
to judge whether extending the number of requirements would lead to the
same result.

In summary, the threats are not considered large in this experiment. The
main threats are that fewer requirements were used than in a real case and that
students were used as subjects. Hence, future replications and case studies
have to be performed in order to reduce these threats.

184 V. E  L T S  R. C

7 Experimental operation

The experiment was run in one two-hours lab session in fall 2004. The first
15 minutes of the 90 minutes lab session was dedicated to a presentation
of the general problem, the industrial applicability, and the goal of the lab
session. All students were given the same presentation, which also included
an overview of the generic aspects of the two versions of the tool. The general
differences between the tools were communicated without favoring one over
the other. To avoid biasing, no hypotheses were revealed and it was made very
clear that we did not know whether one of the approaches was in any way
superior over the other.

After the presentation, the students were separated into two groups de-
pending on which version of the tool they were going to use during the ex-
periment. The two groups were directed to separate rooms and instructed
to prepare for and begin the task as written in the material. Each group was
accompanied by a supervisor. The students were not allowed to discuss their
work with other students during the experiment. However, they were allowed
to ask questions to the supervisor if they experienced any problems. Some
students asked questions, which were mainly about how two requirements
could be regarded as similar or not. Direct answers to these questions were
not given. Instead we referred to the definitions given in the material and
rephrased or clarified these if needed.

The material used in the experiment comprised:

• The ReqSimile package. This had been put into a zip file, which was
downloadable from the course home page. Depending on the group
the students were asked to download one of the packages and run the
application. The package included:

– The ReqSimile application, either with automated support or for
manually specifying search terms.

– MS Access database including

∗ 30 randomly selected requirements from SRS A. These could
be browsed and was to be linked to requirements in SRS B.

∗ All 160 requirements from SRS B. These could be browsed
through the suggestion list which was, depending on the tool
version, presented upon selection of a requirements from SRS
A or upon entering search terms in the search text box.

E  185

∗ Preprocessed requirements. Separate tables to speed up the
similarity calculation. For the full set of requirements this
stage only took only 3 seconds but was removed to minimize
the complexity of the task.

∗ Empty link table in which the links set by the students would
be stored.

• A document including:

– Industrial scenario describing the actual challenge

– A general task description

– Detailed tasks with room for note down start and end times.

– A short FAQ with general questions and answers about the re-
quirements

– A screen shot of the tool user interface with descriptions of the
different parts.

The instructions to the students were:

• Walk through as many of the requirements as possible of the 30 shown
in the tool. For each requirements, investigate if there are any require-
ments in the other set that can be considered identical or very similar
(only differing in some detail) with respect to intended functionality.

• Assign a link between requirements that are considered identical or very
similar.

• Log the times for start and finish

• When finished, notify the supervisor.

The subjects were initially given 60 minutes for the consolidation task,
but due to operating system difficulties (promptly resolved by the subjects)
the subject had about 45 minutes to consolidate the requirements.

15 minutes before the end of the lab session, the students that had not
analyzed all 30 requirements were ask to stop working. All students were then
given a post-test document. In the post-test document they were asked to
note down the finishing time and the number of requirements they had been
analyzing.

186 V. E  L T S  R. C

Table 3: The collected experimental data

Subject T (min) N Ncl Ncu Nil Niu

A1 47 27 11 7 18 6
A2 44 17 7 5 12 3
A3 46 25 9 8 12 7
A4 46 17 8 5 12 2
A5 40 30 8 11 1 12
A6 37 17 6 4 8 4
A7 29 3 1 0 6 0
A8 30 3 1 0 3 0
A9 45 13 5 3 8 3
A10 47 22 12 5 9 1
A11 45 21 10 5 11 2
A12 35 30 14 7 11 6

M2 43 19 7 6 6 5
M3 42 19 6 5 6 6
M4 43 15 2 3 10 7
M5 45 15 6 2 10 3
M6 45 20 4 6 6 8
M7 45 13 4 3 17 4
M8 45 15 4 5 2 5
M9 45 16 5 5 3 4
M10 45 22 9 6 11 4
M11 40 15 3 6 1 6
M12 60 4 0 3 2 1

8 Analysis

This section presents the data collected during the experiment and the results
from the statistical analyses used to investigate if any of the null hypotheses
could be rejected. Each of the different hypotheses will be addressed separately
and conjectures will be made iteratively based on the accumulated results from
the hypothesis tests. All the measurements of the dependent variables are
found in Table 3. It should be noted that one analyzed requirements can be
linked to several others. Therefore, no functional relationship can be found
between the number of analyzed requirements and the other measures.

A 187

8.1 Performance

The background for the experiment and the industrial case shows that it is a
time-consuming task to consolidate requirements. Therefore, one of the first
interesting collected data is the number of requirements the subjects were able
to analyze during the time of the experiment.

The subject did not use the same amount of time so we calculated the
number of requirements they were able to analyze per minute. This would
be an appropriate measure of their performance. Figure 7 shows the results
and it is clear that there is a significant difference between the manual method
and the assisted method. GroupA analyzed in average 0.35 requirements per
minute (2.8 minutes per requirement), while groupB analyzed in average 0.22
requirements per minute (4.5 minutes per requirement). In this case, the
means and the medians coincide. The notches of the box plot gives a graphical
representation of the significance of the difference between two means. In all
the presented box plots the means of the data sets are significantly different at
approximately the 0.05 level if the box plot’s notches do not overlap.

In this particular case it is possible to reject the null hypothesis H1
0 at a

level of significance below 0.004. Thus, using the assisted method provides
a significantly greater performance than using the manual method. This is
a welcomed result, as we are interested in saving time in industry. However,
further analysis is required before we may draw any final conclusions about
the approach.

8.2 Quality

Naturally, nothing can be said whether the assisted method is actually better
than the manual if the quality of the subjects performance is not evaluated.
Three hypotheses have been formulated to decide if the assisted method en-
ables the subjects to assign more correct, fewer missed, and fewer incorrect
links (Section 6.2).

To test the null hypothesis H2
0 , we compared each subject’s assigned links

with the correct answers produced from our expert analysis. The result is
shown in Figure 8. Again, it clearly shows a difference between the manual
and assisted method. GroupA correctly assigned in average 68% of the links
that the expert assigned (the median is just 0.6% less), while groupB correctly
assigned in average 48% of the links (the median is, as can be seen in the
figure, 50%).

The t-test shows that we can reject the null hypothesis at a significance

188 V. E  L T S  R. C

Manual Assisted
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

eq
ui

re
m

en
ts

 /
m

in
ut

e

Figure 7: Analyzed require-
ments per minute.

Manual Assisted
0

10

20

30

40

50

60

70

80

90

100

%
 c

or
re

ct
ly

 a
ss

ig
ne

d
lin

ks

Figure 8: Correctly linked
requirements.

level below 0.005. We may thus conclude that the assisted method enables
the subjects to correctly link a significantly larger number of requirements
than if they had used the manual method. Together with the performance
statistics, this suggests that the assisted method is superior to the manual.
However, further quality aspects exist.

For hypothesis H3
0 , we looked at each subject’s analyzed requirements and

counted how many links that should have been assigned, but were not. Since
the subjects did not analyze the same number of requirements, it is important
to only consider the requirements they had been able to analyze. The subjects
had stated in the post-test how many requirements they had analyzed and
they had worked through the requirements one after the other. This enabled
us to correctly count the number of missed links compared to the our expert
analysis. Figure 9 shows that there is a significant difference. GroupA missed
in average 32% of the links that the experts assigned (median is about 0.5%
higher), while groupB missed in average 52% of the links (median is 50%).

The t-test also reveals that we may reject the null hypothesis on a sig-
nificance level below 0.005. This enable us to make the conjecture that the

A 189

assisted method helps the subjects to miss significantly fewer requirements
links. This only makes the case stronger; that the assisted method is to prefer
over the manual.

A conclusive quality measure would be the number of links that have been
incorrectly assigned between two requirements. In Figure 10, the number of
incorrectly assigned requirement for the two subjects groups are shown. It
can be noted from the figure that the means are not significantly different
(In average 51% for groupA and 53% for groupB, with medians 52% and
57% respectively). A t-test also acknowledge that we are not able to reject the
null hypothesis H4

0 . Although the figure indicates that the subjects using the
assisted method actually assign more incorrect links, there is no statistically
significant difference.

How does the last statistic affect our case? In the consolidation process
it would be very unfavorable to say that two requirements are similar when
they are not, because those requirements might not be further analyzed and
the mistake would be discovered too late. The error is human and must be
addressed in other ways. One way is to raise the threshold for linking two
requirements, meaning that if the human analysts are only the slightest hes-
itant of the similarity between two requirements, they should let it be. The
requirement will the be sent to the Area of Expertise who makes a proper
analysis.

8.3 Precision and accuracy

There is another way to assess the quality of the subjects performance by using
the concepts of precision and accuracy. Precision is a measure that takes into
account both the correctly and incorrectly linked requirements. Using an
analogy, it is a measure of how much weed we have in the harvest. Accuracy,
then, is a measure of how well the result conform to the truth. The truth
in this case would be to assign all links correctly, not miss any, and not link
anything that should not have been linked.

Unfortunately, both precision and measure incorporates the number of
incorrectly linked requirements, which has a great impact on the measures.
The number of incorrectly linked requirements are comparatively large in re-
lation to the other measures (see Table 3). Therefore, it is not likely that we
will find any significant differences between the two groups. The statistics of
the incorrectly linked requirements propagates to the statistics of these mea-
sures. And quite so, our analysis of precision and accuracy of the two subject
group shows now statistical differences. Thus, we are unable to reject both

190 V. E  L T S  R. C

Manual Assisted
0

10

20

30

40

50

60

70

80

90

100
%

 m
is

se
d

lin
ks

Figure 9: Missed require-
ments links.

Manual Assisted
0

10

20

30

40

50

60

70

80

90

100

%
 in

co
rr

ec
tly

 a
ss

ig
ne

d
lin

ks

Figure 10: Incorrectly linked
requirements.

hypothesis H5
0 and H6

0 .

9 Discussion

The analysis of the experiment data allows for the rejection of three out of six
null hypotheses (Table 4). Although it can not be statistically determined if
there are any differences in precision and accuracy, the other results point in
the same direction: that the assisted method is superior to the manual.

Previous investigations by Natt och Dag et al. (2002, 2004) suggests that
linguistic engineering techniques may give support in certain requirements
management activities. These activities (duplicate identification and linkage
of customer wishes and business requirements) rely on an underlying activity
which they share with the requirements consolidation process: that of finding
and matching similar requirements. Previous research suggests that the lin-
guistics engineering techniques may support this activity and that time could
be saved in requirements management. The results from this experiment gives
further evidence to this claim.

The results from this experiment are also supported by initial evaluations

C 191

Table 4: Summary of the results of the hypotheses

Hypothesis p-value

H1
0 , Speed 0.0034 (significant)

H2
0 , Correct links 0.0047 (significant)

H3
0 , Missed links 0.0047 (significant)

H4
0 , Incorrect links 0.39

H5
0 , Precision 0.39

H6
0 , Accuracy 0.15

made at SEMC. In parallel with the operation and analysis of this experiment,
two students have worked on the ReqSimile tool, adapting it to the specific
requirements management process at SEMC and to the requirements analysts’
needs. The initial evaluation with experts is very promising, indicating time-
savings up to 30-40% in the activities of consolidating and analyzing RFIs.
The experts have also provided their subjective feedback on the tool, which
is very positive. Further studies are motivated, but that even initial results
from a real industrial setting point in the same direction as the results from
the presented experiment, makes the case somewhat stronger.

As always, when conducting experiments to increase the body of knowl-
edge, the experiment should be replicated in different contexts. This experi-
ment has been conducted in a laboratory setting and it would now be inter-
esting to use experts as subjects in a real project.

Improvements to the tool and the underlying techniques are of course
possible. Different models for calculating similarity are possible. This is elab-
orated further in related work (Natt och Dag et al., 2002, 2004, 2005; Natt
och Dag and Gervasi, 2005).

10 Conclusions

In this paper we have presented an experiment with a tool that aims at giving
support in a specific large-scale requirements management activities, namely
requirements consolidation. A background and an industrial case has been
presented to explain the origin of the requirements consolidation activity and
to motivate the experiment. Experiences from initial evaluation of the tool in
a real industrial environment have also been reported.

Two treatments were compared. One assisted, in which the subjects were
presented with an automatically calculated ranked list of similar requirements,

192 REFERENCES

and one manual in which the subject had to come up with their own search
terms to find similar requirements. The task for the subjects was to assign
links between requirements that could be considered similar.

The main results from the experiment is that the subjects using the assisted
method are able to assign more correct links and also do this faster. Further-
more, they miss fewer links than the subjects using the manual method. The
important results from the experiment are:

Speed The subjects using the assisted method are able to analyze significantly
more requirements than the subjects using the manual method.

Correctness The subjects using the assisted method assign significantly more
correct links than the subjects using the manual method.

Missed links The subjects using the assisted method miss significantly fewer
links than the subjects using the manual method.

The presented experiment is an experiment at the first level of experi-
mentation, i.e. conducted in a laboratory environment (Juristo and Moreno,
2001). The results from the experiment are promising for proceeding with
both replications and with new experiments in a real industrial environment.

Acknowledgments. The authors would like to thank Daniel Karlström,
Per Runeson, Martin Höst, and Lena Karlsson for participating in the pilot ex-
periment. The authors would also like to thank the students for participating
in this investigation and Lena Karlsson for acting as a stand-in experimenter
during the experiment session with the students.

References

Brinkkemper, S. (2004). Requirements engineering research the industry is
(and is not) wating for. In Regnell, B., Kamsties, E., and Gervasi, V.,
editors, Proceedings of the 10th Anniversary International Workshop on Re-
quirements Engineering: Foundations for Software Quality, pages 267–284,
Essen, Germany. Essener Informatik Beiträge.

Clements, P. and Northrop, L. (2002). Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, MA.

REFERENCES 193

Hofmann, H. F. and Lehner, F. (2001). Requirements engineering as a success
factor in software projects. IEEE Software, 18(4):58–66.

Juristo, N. and Moreno, A. M. (2001). Basics of Software Engineering Experi-
mentation. Kluwer Academic Publishers, Boston, MA.

Karlsson, L., Dahlstedt, A. G., Natt och Dag, J., Regnell, B., and Persson,
A. (2002). Challenges in market-driven requirements engineering - an in-
dustrial interview study. In Saliensi, C., Regnell, B., and Pohl, K., editors,
Proceedings of the Eigth International Workshop on Requirements Engineering:
Foundation for Software Quality, pages 37–49, Essen, Germany. Essener In-
formatik Beiträge.

Kotler, P. (2002). Marketing Management. Prentice Hall, Upper Saddle River,
NJ.

Krueger, C. W. (2003). Towards a taxonomy for software product lines. In
Proceedings of the 5th International Workshop on Product Family Engineering,
Siena, Italy.

Lauesen, S. (2002). Software Requirements: Styles and Techniques. Addison-
Wasley, London, UK.

Lubars, M., Potts, C., and Richter, C. (1993). A review of the state of the
practice in requirements modeling. In Proceedings of IEEE International
Symposium on Requirements Engineering, pages 2–14, Los Alamitos, CA.
IEEE CS.

Mich, L., Franch, M., and Novi Inverardi, P. L. (2004). Market research
for requirements analysis using linguistic tools. Requirements Engineering,
9(1):40–56.

Montgomery, D. C. (2001). Design and Analysis of Experiments. John Wiley
& Sons, USA.

Natt och Dag, J. and Gervasi, V. (2005). Managing large repositories of
natural language requirements. In Aurum, A. and Wohlin, C., editors,
Engineering and Managing Software Requirements. Springer-Verlag.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2004). Speed-
ing up requirements management in a product software company: Link-
ing customer whishes to product requirements through linguistic engineer-

194 REFERENCES

ing. In Proceedings of the International Requirements Engineering Conference
(RE2004), pages 283–294, Kyoto, Japan. IEEE CS.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2005). A
linguistic-engineering approach to large-scale requirements management.
IEEE Software, 22(1):32–39.

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., and Karlsson,
J. (2002). A feasibility study of automated natural language requirements
analysis in market-driven development. Requirements Engineering, 7(1):20–
33.

Novorita, R. J. and Grube, G. (1996). Benefits of structured requirements
methods for market-based enterprises. In Proceedings of the Sixth Annual In-
ternational Symposium on Systems Engineering (INCOSE’96), Boston, MA.

Potts, C. (1995). Invented requirements and imagined customers: Require-
ments engineering for off-the-shelf software. In Proceedings of the Second
IEEE International Symposium on Requirements Engineering, pages 128–
130, Los Alamitos, CA. IEEE CS.

Regnell, B., Beremark, P., and Eklundh, O. (1998). A market-driven require-
ments engineering process – results from an industrial process improvement
programme. Journal of Requirements Engineering, 3(2):121–129.

Sawyer, P., Sommerville, I., and Kotonya, G. (1999). Improving market-
driven RE processes. In Proceedings of International Conference on Product
Focused Software Process Improvement (PROFES’99), pages 222–236, Oulu,
Finland.

Sommerville, I. (2001). Software Engineering. Pearson Education, Harlow,
UK, 6th edition.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wess-
lén, A. (2000). Experimentation in Software Engineering - An Introduction.
Kluwer, Norwell, MA.

Yeh, A. (1992). Requirements engineering support technique (REQUEST) - a
market driven requirements management process. In Proceedings of the Sec-
ond Symposium on Assessment of Quality Software Development Tools, pages
211–223, Los Alamitos, CA. IEEE CS.

A

APPENDIX A

ReqSimile Technical Architecture

Johan Natt och Dag

Technical Report, CODEN:LUTEDX(TETS-7206)/1-28/(2005)&local1,
Department of Communication Systems, Lund University, Sweden

1 Change history

Date Version Description Author

2005-01-06 1.0 First version of the soft-
ware architecture for
ReqSimile version 1.2

Johan Natt och Dag

2 Introduction

This document provides an overview of the technical architecture of the open-
source tool ReqSimile. The primary purpose of ReqSimile is to provide semi-
automatic support to requirements management activities that rely on one
common activity: finding requirements that are semantically similar, i.e., refer
to the same underlying functionality.

This document is intended to capture and convey the significant architec-
tural decisions which have been made in designing and building the system.
The purpose is to support future development and enable other researchers
and developers to relatively easy adapt the tool to suit their particular needs.

ReqSimile may be used for any purposes of matching two arbitrary in-
put sets, but is specifically aimed at providing a way to link requirements
between very large input sets. It aims at saving time in the management of
large amounts of requirements.

196 A. RS T A

3 Background and related work

The ReqSimile tool was originally developed by Johan Natt och Dag for pro-
viding the means for investigating the benefits of using linguistic engineering
techniques to support requirements management activities. Another motive
was to enable and speed-up transfer of applied research to industry. It was
developed based on the research conducted primarily by the following re-
searchers:

• Johan Natt och Dag at the Department of Communication Systems,
Lund University, Sweden.

• Dr. Björn Regnell at the Department of Communication Systems,
Lund University, Sweden.

• Dr. Vincenzo Gervasi at the Computer Science Department, University
of Pisa, Italy.

• Prof. Sjaak Brinkkemper at the Institute of Information and Comput-
ing Sciences, Utrecht University, The Netherlands.

References to the related research may be found in the bibliography at the
end of this document.

4 Definitions

5 Architectural representation

The modeling, implementation, and documentation of a software system is
made using different views. This documents uses the views specified by the
Software Engineering Institute (SEI) (Clements et al., 2002):

Module view (Mod) Describes the structure of the system with respect to
the static, logical units.

Component & Connector view (C&C) Describes the run-time behavior and
the interaction between different elements in the system.

Allocation view (Alloc) Describes how the architecture relates to the envi-
ronment, e.g., how the code is organized.

A  197

The architecture of ReqSimile is represented using the specific views listed
in Table 1. For further documentation of the methods in the classes, JavaDoc
documentation is available together with each release of the ReqSimile tool
(Natt och Dag, 2004).

Table 1: Architectural views

View Type Description

ReqSimile Decomposition Mod The packages of the system

ReqSimile Dependencies Mod The dependencies between the packages

ReqSimile Classes Mod The classes and interfaces in the ‘reqsimile’
package

ReqSimile Data Classes Mod The classes and interfaces in the ‘reqsim-
ile.data’ package

ReqSimile SimCalc Classes Mod The classes and interfaces in the ‘reqsim-
ile.simcalc’ package

ReqSimile GUI Classes Mod The classes and interfaces in the ‘reqsim-
ile.gui’ package

ReqSimile Startup C&C Activity diagram showing execution flow at
startup.

ReqSimile Preprocess requirements C&C Activity diagram showing execution flow
for preprocessing requirements.

ReqSimile Fetch requirements C&C Activity diagram showing execution flow
when a selecting a requirement or submit-
ting additional search terms.

ReqSimile Shutdown C&C Activity diagram showing execution flow at
shutdown.

198 A. RS T A

6 Architectural views

6.1 View: ReqSimile Decomposition

Primary presentation

ReqSimile is organized according to the Java package structure below.

reqsimile

data simcalc gui

biz.chitec.quarterback

swing

Element catalog

Class/interface Description

reqsimile Comprise all application-generic classes

data Comprise classes for all database operations, including fetching require-
ments, and storing preprocessed requirements

simcalc Comprise classes for preprocessing requirements and calculating similar-
ity between requirements

gui Comprise classes for the graphical user interface

swing External class collection comprising 3rd-party Swing utilities

Context diagram

The view represents the whole system, represented by the shaded box below.

Requirements
Repositories

Analyst

ReqSimile
Requirements
Repositories

Variability guide

No open questions.

A  199

Architecture background

The early decision to select Java as the language for implementation has af-
fected the architecture from start (the main reason for choosing Java is its
portability and wide-spread use). However, the architecture is not made de-
pendent on the particular language.

The external Java QuarterBack class collection was chosen for its open
source availability also licensed according to GPL (GNU public license). Cur-
rently (2005-01-07), only one class is used: TableCellSizeAdjustor. Imple-
mentation in another language than Java would just make the dependency on
this class obsolete.

The package structure was initially selected for its straight-forwardness.
Refactoring has been made continually in order to comply to the initial design
and to avoid architectural deterioration.

200 A. RS T A

6.2 View: ReqSimile Dependencies

Primary presentation

Dependencies between the Java packages are shown below.

swing

reqsimile

datasimcalc gui

Element catalog

Class/interface Description

reqsimile Comprise all application-generic classes

data Comprise classes for all database operations, including fetching require-
ments, and storing preprocessed requirements

simcalc Comprise classes for preprocessing requirements and calculating similar-
ity between requirements

gui Comprise classes for the graphical user interface

swing External class collection comprising 3rd-party Swing utilities

Context diagram

Not applicable

Variability guide

No open questions.

Architecture background

The system is not very large, but the almost complete dependencies and com-
munication between packages, may call for an overview of the current archi-
tecture and potential changes.

A  201

6.3 View: ReqSimile Classes

Primary presentation

reqsimile

APPCONSTANTS
<<interface>>

INIFile

INISection

ApplicationappPrefs

m_theApp

Common

ProjectFileFilter

Element catalog

Class/Interface Description

APPCONSTANTS Contains all application-wide constants

Application Application is the starting point of the application, which creates
the central classes and provides information about these (such as the
application itself, the gui, database connections, etc.).

Common Contains generic functions that are used throughout the applica-
tion.

INIFile INIFile class provides methods for manipulating (Read/Write) files
in the INI format (Microsoft).

INISection Private class representing the INI Section.

ProjectFileFilter Provides the project extension filter to the file dialog.

Context diagram

Not applicable

Variability guide

Project file handling (reading and writing) could be put in a separate class.

Architecture background

The APPCONSTANTS interface is implemented by virtually every class. This
design is to some regarded as a violation of good style. The reason for imple-

202 A. RS T A

menting it as an interface is that access to the constants becomes much easier.
Instead of writing APPCONSTANT.CONSTANT_NAME to access the constant, it is
possible to write just CONSTANT_NAME. To switch to good style, which is rec-
ommended, the APPCONSTANTS interface should be implemented as a static
class.

The INIFile class is based on the code in the article by Prasad P. Khan-
dekar (found at http://www.codeproject.com/useritems/INIFile.asp). Since
it did not measure up to what was needed, several major enhancements are
made, which are found in the change log in the source file.

A  203

6.4 View: ReqSimile Data Classes

Primary presentation

data

DBConnections

DBConnection
InputFieldsTableModel

PreProcessRs

PopulateRs

ReqDataModelReqData

DriverShim

Driver
<<interface>>

◄ dataSet

Element catalog

Class/Interface Description

ReqDataModel The middle layer between the actual data and a table in the user
interface. It provides a JTable with the data to present in the ta-
ble and fetches that data from an associated data set instantiated
from ReqData. (ReqData) => (ReqDataModel) => (JTable).

ReqData Holds all the requirements data used. It is used by ReqData-
Model to present all or a subset of the available information.

PopulateRs Reads all the data from the database and populates the data sets
from which the tables get their data to display. Any field as
specified to be included in the summary view, detail view or the
calculation are fecthed from the database. The field for calcula-
tion are used in the preprocessing step (PreProcessRs) This class
should not be used if data is to beread on a needs basis. The
current approach is not memory efficient as it reads all data into
memory. It is done for speed purposes and because the program
currently can not answer incrementally to any database changes.
The preprocessing is made upon request and on the snapshot of
the database, read by the run method in this class.

204 A. RS T A

Class/Interface Description

PreProcessRs Preprocesses a requirement according to these steps:

1. Tokenization, stemming and stop word removal of each
requirement.

2. Updates the table that holds all distinct tokens (and to-
ken ids).

3. Updates the frequency table that keeps the representa-
tion of which tokens occur in the requirements, and their
corresponding frequency.

InputFieldsTableModel The table model for the tables in the settings dialog used for
selecting which fields that are to be displayed in the summary
and detail views, and be used for calculation.

DriverShim A shim class used as a workaround to enable dynamic loading of
JDBC driver at runtime. The workaround makes it possible to
use a driver that is not in the classpath, nor in the jar.

DBConnections Creates and saves all database connections. This is done so that
database connections may be reused.

DCConnection Holds one connection to a database.

The following classes and interfaces are part of the Java2 language.

Class/Interface Description

Driver Interface that every driver class must implement.

Context diagram

Not applicable.

Variability guide

No open questions.

Architecture background

The ReqDataModel class is designed to provide the data for all table views,
both the summary view (list of requirements) and the detail view (require-
ments details). This has made several methods rather complicated and it
would be a good idea to split it up for easier maintenance.

A  205

DBConnections will accept connection using the JDBC interface for high-
est portability (several native drivers and bridges exist for various platform).
It could be possible to also support common file formats, but tabular data in
virtually any type of file may be accessed via JDBC as long as there is a driver.

206 A. RS T A

6.5 View: ReqSimile SimCalc Classes

Primary presentation

simcalc

PreProcessor

TokenFrequenciesTokens

Cosine

FetchSimilar

Element catalog

Class/Interface Description

FetchSimilar FetchSimilar fetches all similar requirements to a specified require-
ments (e.g. a requirements selected in a table). It is run every time
a new list of requirements shall be fetched. For performance reasons
this should be kept simple and fast.

Cosine Cosine contains helper methods to calculate the Cosine angle between
two requirements in the word space. In the current implementation,
the Cosine is calculated in a two-step process:

• Preprocessing where weights and square sums calculated

• SQL statement in which the final calculation is made

This class contains only helper functions. For further information on
how the measure is calculated see PreProcessRs and FetchSimilar.

Tokens Tokens temporarily holds all the tokens/words used in the require-
ments sets. It is used in the preprocessing step to rebuild the token
table, which is stored in an external database table.

TokenFrequencies TokenFrequencies temporarily holds the token frequencies for one
single requirement. It is used in the preprocessing stage to rebuild
the complete token frequency table (for a whole requirements set),
which is stored in an external database table.

PreProcessor This class is a scanner generated by JFlex 1.4 from the flex specifica-
tion file (preprocessor.flex). The scanner handles tokenization, stem-
ming and stop word removal at once, implemented through a finite
state automata (generated by JFlex).

A  207

Context diagram

Not applicable.

Variability guide

No open questions.

Architecture background

For performance reasons, all requirements will be preprocessed before similar
requirements are calculated (i.e. during the main operative mode of the tool).
The preprocessing step is made using the PreProcessor scanner, which is gen-
erated from a flex grammar. The size of the generated source is huge, but the
run-time imprint is small and performance is high. The preprocessing takes
less than 0.03 seconds per requirement (based on average calculated from pre-
processing 11,723 requirements of various sizes on a 1.7 GHz Pentium II
processor).

208 A. RS T A

6.6 View: ReqSimile GUI Classes

Primary presentation

GUI_MainMenu

GUI_SettingsReqSources

GUI_EventHandler

MouseAdapterGUI_Main

RowHeaderRenderer SimValueColorRendererReqSetColorRenderer

RsSelectionListener ListSelectionListener

RsDoubleClickListener

LinkButtonListener

SearchTermSubmitListener

LinkAction ActionListener

GUI_MainMenuListener

ActionListener

KeyListener

ConnectAction

ConnectLinksAction

ResetAction

SaveSettingAction

FetchFiedlsForLinksTableAction

FetchFieldsForTableAction

AbstractAction

settingsGUI ►

settingsGUI ►

settingsGUI ►

SwingExtensions

guiEventHandler▼ gui▲

JScrollPaneAdjuster

JTableButtonEditor

JTableButtonRenderer

JTableRowHeaderResizer

JTableRowHeightResizer

MultiLineCellRenderer

1..*

searchTermsOnlyItemListener

KeyListener

Element catalog

Class/Interface Description

GUI_EventHandler GUI_Eventhandler handles all events resulting from
interaction with the gui by the user. This includes all
buttons, table selections but not menu actions. Menu
actions are handled by GUI_MainMenuListener. This
class contains all classes derived from the associated ac-
tions or listeners.

GUI_Main This class comprises the main GUI of the application.

GUI_MainMenu GUI_MainMenu defines the main window menu.

A  209

Class/Interface Description

GUI_MainMenuListener GUI_MainMenuListener handles the actions to be
taken upon selection of menu items in the application
menu.

GUI_SettingsReqSources Defines the settings dialog window (for setting data
sources).

JScrollPaneAdjuster Java bug-fix class. Workaround for synchronization of
scrolling in table header and viewport. JScrollPane’s
support for synchronization between row/column
headers and the main view is asymmetric. While it ad-
justs the headers if the position in the view changes, it
doesn’t do so if the headers’ positions changed. This
means that even a simple scrollRectToVisible call on a
row/column header component will scroll the header,
but not properly adjust the main view. This happens
for example if you use a JTable as row header and the
user selects by keyboard or by dragging, as then implicit
scrolling happens. This is a known bug (#4202002).

JTableButtonEditor Decides what happens when the Link/Unlink button
is pressed in a table (according to general Java Swing
guidelines).

JTableButtonRenderer Represents the visual appearance of the Link/Unlink
button (according to general Java Swing guidelines).

JTableRowHeaderResizer Support class to enable resizing of a table row header.

JTableRowHeightResizer Support class to enable resizing of the height of a table
row.

MultiLineCellRenderer Extends JTextArea to display a long line in a table as a
multiline row using line wrap.

ReqSetColorRenderer Provides coloring of table cells based on the require-
ments status (e.g. selected, linked, etc.)

RowHeaderRenderer Define the look/content for a cell in the row header.

SimValueColorRenderer Provides coloring of table cells that show the similarity
value. Color is based on both the similarity value and
the requirements status (e.g. selected, linked, etc.)

SwingExtensions Provides common methods for GUI manipulation

RsSelectionListener Handles the action of selecting a row in a table.

RsDoubleClickListener Handles the action for the Link button in the result
table.

LinkButtonListener Used to synchronize the selected row in the result table
with the pressed Link/Unlink button.

210 A. RS T A

Class/Interface Description

SearchTermSubmitListener Handles the action of pressing Enter in the search term
box above the result table.

searchTermsOnlyItemListener Handles the action of changing the state of the check
box used to indicate whether only the specified search
terms shall be used to find similar requirements or if
both the selected requirement and the search terms
shall be used.

LinkAction Handles the action for the Link/Unlink buttons.

ConnectAction Handles the action for the Connect button in the re-
quirements sets tabs in the settings dialog.

ConnectLinksAction Handles the action for the connect button in the links
tab in the settings dialog.

SaveSettingsAction Handles the action for the Save button in the settings
dialog.

ResetAction Handles the action for the Reset button in the settings
dialog.

FetchFieldsForTableAction Handles the action when a table is selected in the
combo box in the settings dialog.

FetchFieldsForLinksTableAction Handles the action when a table is selected in the
combo box in the settings dialog’s links tab.

The following classes and interfaces are part of the Java2 language and de-
scription of their usage may be found in official Java documentation.

Class/Interface

ListSelectionListener

MouseAdapter

KeyListener

ActionListener

AbstractAction

Context diagram

Not applicable.

A  211

Variability guide

It would be a nice if it was possible to design a middle layer where generic
logic for setting and reading GUI component properties are put. The lowest
GUI layer would then “simply” be a specification file of the user interface,
read by the middle layer. The feasibility, benefits, and drawbacks of such an
architectural change must be further investigated.

Architecture background

In general, GUI architectures easily become complex. This class has gone
through several refinements and been subject for many additions during the
analysis and implementation stage. The model has been updated continu-
ously and its current form may call for a division into smaller, less complex
classes.

212 A. RS T A

6.7 View: ReqSimile Startup

The following activity diagram shows the execution behavior at startup. In
short, the settings file is read and if a project file is specified the specified data
sources are read and the user interface tables are populated.

Read application
 preferences

Read project
preferences

Initialize
data storage and

table models

Initialize database
connections for

requirement set #1

Associate database
connection to
data storage

Initialize database
connections for

requirement set #2

Associate database
connection to
data storage

Initialize database
connections for
for links table

Associate
data storagres

and data models
to GUI components

Create main
GUI window Initialize GUI

components

Show window

Application PopulateRs INIFile ReqData:1 ReqData:2 GUI_Main

Continued...

A  213

Clear
results table

PopulateRs GUI_Main

Get field names
from project settings

Disable
component

listeners

Count
requirements in
database table

Fetch
requirements data

Reset progressbar

ReqData

Update progressbar

Get requirement

0.2%
progress?

Yes

Store data

Initialize data
model

ReqDataModel
(summary table)

Initialize data
storage

Continued...

Get database
connection

Get table name
and field names

of link table
from project settings

Fetch links

ReqDataModel
(detail table)

DefaultTableModel
(detail row header table)

Assign links Set row headers

Set field mapping
to underlying data

Set height of
description field row

Assign multi-line
cell renderer

to description field

Synchronize
row heights

Enable
component

listeners

Update column names

Yes

Processed
all
requirements?No

Processed
all
rows?

Yes

No

No

Element catalog

The elements in this catalog are a selection of the classes described in the
following model views.

Class/Interface Model view

Application Section 6.3.

PopulateRs Section 6.4.

INIFile Section 6.3.

214 A. RS T A

Class/Interface Model view

ReqData Section 6.4.

ReqDataModel Section 6.4.

GUI_Main Section 6.6.

DefaultTableModel Standard Java Swing class.

Context diagram

Not applicable.

Variability guide

No open questions.

Architecture background

The decisions for the activity flow has emerged during implementation. The
overall package structuring has guided the separation of logic to different parts
of the program.

A  215

6.8 View: ReqSimile Preprocess requirements

The following activity diagram shows the execution behavior for preprocess-
ing requirements (that previously have been fetched from from an external
database). In short, all requirements are preprocessed (tokenization, stem-
ming, and stop word removal) are stored in an external database together
with tokens, token frequencies and pre-calculations for the cosine measure.

PreProcessRs

Drop tokens
table

Create tokens
table

Get database
connection for

data set

GUI_Main

Disable
component

listeners

ReqData

Fetch tokens
from database

Drop preprocess
table

Create preprocess
table

Drop
token frequency

table

Create
token frequency

table

Get
requirement

PreProcessor

Parse next token
from requirement

More
tokens?

Yes

Store
token

Increment
token’s frequency

Fetch requirement
key

No

Store requirement’s
token’s frequencies and
logarithm of frequency

in database

Store preprocessed
requirement and

square sum of logarithms
of token frequencies

in database

Update progressbar

0.2%
progress?

Yes

No

Enable
component

listeners

Store full set
of tokens

in database

Processed
all
req’s?

Yes

No

216 A. RS T A

Element catalog

The elements in this catalog are a selection of the classes described in the
following model views.

Class/Interface Model view

GUI_Main Section 6.6.

ReqData Section 6.4.

PreProcessor Section 6.4.

PreprocessRs Section 6.4.

Context diagram

Not applicable.

Variability guide

ReqSimile is a stand-alone application. It is an open question to what ex-
tent it would be possible to fully integrate it with requirements management
tools in order to perform continuous preprocessing when requirements are
change. This would require the possibility to receive and send events between
ReqSimile and the requirements management tool.

Anyhow, if the techniques are implemented into a requirements manage-
ment tool altogether, it could be possible to have a background process to keep
similarity values between requirements up-to-date. The background process
would for example be notified by changes of relevant contents of the require-
ments.

Architecture background

The preprocessing procedure was based on an early design decision for speed-
ing up similarity calculations during the main activity (of finding similar re-
quirements by the click of a button).

The similarity calculations are separated into two stages: the preprocessing
stage and the final calculation stage (the latter which is based on the currently
selected requirement).

The procedure is balanced so that each stage takes minimal time. Cal-
culation of the full similarity matrix would speed up the fetching of similar

A  217

requirements tremendously, but the preprocessing would then take extremely
long time.

The preprocessing step produces tables that are used to quickly fetch sim-
ilar requirements (see Section 6.9). The tables and their structures are as
follows:

rsPreProcessedA (A is the requirements set)

Field Description

ReqKey Unique numeric identifier.

Tokens Textual representation of the preprocessed requirement.

SqSum Square sum of requirement tokens’ weights (this is the term in the denominator
of the formula for the Cosine similarity measure).

rsTokens

Field Description

TokenKey Unique numeric identifier of token.

Token Textual representation of the preprocessed token.

rsTokenWeightsA (A is the requirements set)

Field Description

ReqKey Unique numeric identifier of requirement.

TokenKey Unique numeric identifier of token.

Weight The weight (e.g. 1 + log2(frequency)) of the token ‘TokenKey’ in the re-
quirement ‘ReqKey’.

218 A. RS T A

6.9 View: ReqSimile Fetch requirements

The following activity diagram shows the execution behavior when the user
selects a requirement or when the user submits search terms. In short, the
preprocessed selected requirement (if any) is fetched and the search terms are
preprocessed. The result is used to fetch all similar requirements and calculate
the similarity value. The currently set links are then fetch from the database
to be able to reflect the link status in the graphical user interface.

FetchSimilar

Get database
connection for

data set of selected
requirement

GUI_Main

Disable
component

listeners

ReqDataModel
(summary result table)

Drop temporary
 token weights table

ReqDataModel
(detail result table)

Additonal
search terms
specified?

Yes No

Use
search
terms
only?

Create empty
temporary

token weights
table

Get
preprocessed
requirement

Yes No

Create
temporary

token weights
table

Insert
search terms

into
temporary

token
weights table

Get
preprocessed
requirement

Fetch
preprocessed

 similar
requirement

Calculate
similarity to

selected
requirement

Fetched
all similar
requirements?

No
Set data source

and filter
Set data source

and filter

Fetch all requirements
that are linked to the currently selected

Fetch all requirements
that are linked to any except the currently selected Set link status

Set row headers

Set field mapping
to underlying data

Update column names

DefaultTableModel
(detail result row header

table)

Set link/unlink
button renderer

Assign multi-line
cell renderer

to description field

Synchronize
row heights

Enable
component

listeners

A  219

Element catalog

The elements in this catalog are a selection of the classes described in the
following model views.

Class/Interface Model view

FetchSimilar Section 6.4.

ReqDataModel Section 6.4.

GUI_Main Section 6.6.

Context diagram

Not applicable.

Variability guide

No open questions.

Architecture background

The fetch procedure was based on the same early design decisions as de-
scribed in the architecture background for the preprocessing procedure (See
Section 6.8.

The calculation of the similarity value between the requirements is partly
left to the database engine used for storing the preprocessing tables. The
fetching of similar requirement is made simultaneously with the calculation
of the product sum in the nominator of the formula for the Cosine similarity
measure (Natt och Dag et al., 2004). In a pre-study it was found that this can
be performed through one single database query statement.

The example below illustrates the procedure. It is assumed that the user
has selected requirement #1 from requirements set A (normally, there would
many more requirements in set A). The similarity is calculated by matching
the TokenKeys. If there are no TokenKeys in common, then the requirement
will not end up in the resulting table. The product sum is calculated by mul-
tiplying the token weights for the tokens the requirements have in common,
and adding the products together.

220 A. RS T A

TokenKey

1

2

3

4

5

6

7

8

9

10

Token

character

contain

hold

max

message

open

project

recent

startup

unicode

ReqKey

1

1

1

1

2

2

2

2

3

3

3

ReqKey

1

1

rsTokens

rsTokenWeightsB

rsTokenWeightsA
TokenKey

1

5

TokenKey

6

7

8

9

1

2

4

5

1

5

10

ReqKey

1

rsPreProcessedA
Tokens

character message

Weight

1

2

Weight

1

1

1

1

2

1

1

1

1

1

1

ReqKey

1

2

3

rsPreProcessedB
Tokens

open project recent startup

character contain max message

character message unicode

SqSum

2

SqSum

4

7

3

ReqKey

2

3

similarity
SqSum

7

3

ProdSum

4

3

2•1+1•2=4
1•1+1•2=3

The last calculation step, for reaching a final similarity, is done by looping
through the resulting table. This is done internally, and the result is not stored
in any database.

A  221

6.10 View: ReqSimile Shutdown

The following activity diagram shows the execution behavior when ReqSimile
is closed down. In short, database connections are closed and the applications
preferences are saved.

Application INIFile

Close all
open connections

DBConnections

Save
application

preferences

Element catalog

The elements in this catalog are a selection of the classes described in the
following model views.

Class/Interface Model view

Application Section 6.3.

INIFile Section 6.3.

DBConnections Section 6.4.

Context diagram

Not applicable.

Variability guide

To preserve application settings if system crashes, applications preferences
could be saved each time they are changed, instead of when the application is
closed.

Architecture background

None.

222 REFERENCES

References

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord,
R., and Stafford, J. (2002). Documenting Software Architectures: Views and
Beyond. The SEI Series in Software Engineering. Addison-Wesley, Boston,
MA.

Natt och Dag, J. (2004). Reqsimile home page. http://reqsimile. sourceforge.
org.

Natt och Dag, J. and Gervasi, V. (2005). Managing large repositories of
natural language requirements. In Aurum, A. and Wohlin, C., editors,
Engineering and Managing Software Requirements. Springer-Verlag.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2004). Speed-
ing up requirements management in a product software company: Link-
ing customer whishes to product requirements through linguistic engineer-
ing. In Proceedings of the International Requirements Engineering Conference
(RE2004), pages 283–294, Kyoto, Japan. IEEE CS.

Natt och Dag, J., Gervasi, V., Brinkkemper, S., and Regnell, B. (2005). A
linguistic-engineering approach to large-scale requirements management.
IEEE Software, 22(1):32–39.

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., and Karlsson,
J. (2002). A feasibility study of automated natural language requirements
analysis in market-driven development. Requirements Engineering, 7(1):20–
33.

Reports on Communication Systems

101. On Overload Control of SPC-systems
Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102. Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103. Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104. Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105. Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106. Software Reliability and Performance Modelling for Telecommunication
Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107. Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108. Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109. On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110. Enhancements of Communication Resources
Johan M Karlsson, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1018- -SE+132P

111. On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112. Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113. Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114. End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

115. An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

116. Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

117. Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

118. On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

119. Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

120. Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

121. Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

122. On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

123. Network Oriented Load Control in Intelligent Networks Based on Opti-
mal Decisions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

124. Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

125. Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

126. Models for Estimation of Software Faults and Failures in Inspection and
Test
Per Runeson, Ph.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

127. Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128. Switch Performance and Mobility Aspects in ATM Networks
Daniel Søbirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

129. VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

130. On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

131. Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

132. Requirements Engineering with Use Cases - a Basis for Software Develop-
ment
Björn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

133. Utilisation of Historical Data for Controlling and Improving Software
Development
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

134. Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

135. Improving Software Quality through Understanding and Early Estima-
tions
Anders Wesslén, Ph.D. thesis, June 1999.

ISRN LUTEDX/TETS- -1043- -SE+242P

136. Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

137. Controlling Software Quality through Inspections and Fault Content Es-
timations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

138. On Fault Content Estimations Applied to Software Inspections and Test-
ing
Håkan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

139. Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

140. Dynamic traffic Control in Multiservice Networks - Applications of Deci-
sion Models
Ulf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

141. ATM Networks Performance - Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142. Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

143. Controlling Fault-Prone Components for Software Evolution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

144. Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

145. Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

146. Elicitation and Management of User Requirements in Market-Driven Soft-
ware Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

147. Supporting Software Inspections through Fault Content Estimation and
Effectiveness Analysis
Håkan Petersson, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1055- -SE+237P

148. Empirical Evaluations of Usage-Based Reading and Fault Content Esti-
mation for Software Inspections
Thomas Thelin, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1056- -SE+210P

149. Software Information Management in Requirements and Test Documen-
tation
Thomas Olsson, Lic. thesis, October 2002.
ISRN LUTEDX/TETS- -1057- -SE+122P

150. Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlström, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1058- -SE+125P

151. Changes to Processes and Architectures; Suggested, Implemented and An-
alyzed from a Project viewpoint
Josef Nedstam, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1059- -SE+124P

152. Resource Management in Cellular Networks -Handover Prioritization and
Load Balancing Procedures
Roland Zander, Lic. thesis, March 2003.
ISRN LUTEDX/TETS- -1060- -SE+120P

153. On Optimisation of Fair and Robust Backbone Networks
Pål Nilsson, Lic. thesis, October 2003.
ISRN LUTEDX/TETS- -1061- -SE+116P

154. Exploring the Software Verification and Validation Process with Focus on
Efficient Fault Detection
Carina Andersson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1062- -SE+134P

155. Improving Requirements Selection Quality in Market-Driven Software
Development
Lena Karlsson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1063- -SE+132P

156. Fair Scheduling and Resource Allocation in Packet Based Radio Access
Networks
Torgny Holmberg, Ph.D. thesis, November 2003.
ISRN LUTEDX/TETS- -1064- -SE+187P

157. Increasing Product Quality by Verification and Validation Improvements
in an Industrial Setting
Tomas Berling, Ph.D. thesis, December 2003.
ISRN LUTEDX/TETS- -1065- -SE+208P

158. Some Topics in Web Performance Analysis
Jianhua Cao, Lic. thesis, June 2004.
ISRN LUTEDX/TETS- -1066- -SE+99P

159. Overload Control and Performance Evaluation in a Parlay/OSA Environ-
ment
Jens K. Andersson, Lic. thesis, August 2004.
ISRN LUTEDX/TETS- -1067- -SE+100P

160. Performance Modeling and Control of Web Servers
Mikael Andersson, Lic. thesis, September 2004.
ISRN LUTEDX/TETS- -1068- -SE+105P

161. Integrating Management and Engineering Processes
Daniel Karlström, PhD. thesis, December 2004.
ISRN LUTEDX/TETS- -1069- -SE+230P

162. Managing natural language requirements in large-scale software develop-
ment
Johan Natt och Dag, PhD. thesis, February 2005.
ISRN LUTEDX/TETS- -1070- -SE+200P

