
Department of Communication Systems
Lund Institute of Technology

Requirements Prioritisation and Retrospective
Analysis for Release Planning Process

Improvement

Lena Karlsson

ISSN 1101-3931

ISRN LUTEDX/TETS--1081--SE+192P

Printed in Lund, Sweden by E-kop

September 2006

To mum and dad

Contact Information:

Lena Karlsson
Department of Communication Systems
Lund University
P.O. Box 118
SE-221 00 LUND
Sweden

Tel: +46 46 222 03 65
Fax: +46 46 14 58 23
E-mail: lena.karlsson@telecom.lth.se

This thesis is submitted to the Research Education Board of the Faculty of Engineering at Lund
University, in partial fulfilment of the requirements for the degree of Doctor of Philosophy in
Engineering.

Abstract

The quality of a product can be defined by its ability to satisfy the needs and
expectations of its customers. Achieving quality is especially difficult in
market-driven situations since the product is released on an open market with
numerous potential customers and users with various wishes. The quality of
the software product is to a large extent determined by the quality of the
requirements engineering (RE) and release planning decisions regarding
which requirements that are selected for a product. The goal of this thesis is to
enhance software product quality and increase the competitive edge of
software organisations by improving release planning decision-making.

The thesis is based on empirical research, including both qualitative and
quantitative research approaches. The research contains a qualitative survey
of RE challenges in market-driven organisations based on interviews with
practitioners. The survey provided increased understanding of RE challenges
in the software industry and gave input to the continued research. Among
the challenging issues, one was selected for further investigation due to its
high relevance to the practitioners: requirements prioritisation and release
planning decision-making. Requirements prioritisation techniques were eval-
uated through experiments, suggesting that ordinal scale techniques based on
grouping and ranking may be valuable to practitioners. Finally, a retrospec-
tive method called PARSEQ (Post-release Analysis of Requirements SElec-
tion Quality) is introduced and tested in three case studies. The method aims
at evaluating prior releases and finding improvement proposals for release
planning decision-making in future release projects. The method was found
valuable by all participants and relevant improvement proposals were discov-
ered in all cases.

Acknowledgements

This work was funded by Lund University Faculty of Engineering as well as the Swedish
Agency for Innovation Systems (VINNOVA) under the grant for the Center for Applied Soft-
ware Research at Lund University (LUCAS) and the ITEA project for Embedded Systems
Engineering in Collaboration (MERLIN).

First and foremost, I would like to thank my supervisor Björn Regnell for
sharing his great creativity and knowledge. Thanks also to Martin Höst,
Per Runeson, and Thomas Thelin for support and assistance. Many
thanks to all past and present colleagues, co-authors, and friends at the
Department of Communication Systems, at Blekinge Institute of
Technology, at University of Skövde, and in the MERLIN project.
Thanks to all anonymous individuals who have contributed to the thesis:
interviewees and focus group participants, experiment subjects, industrial
case study participants, and reviewers. A special thanks to Per Klingnäs
and Mikael Jönsson for excellent development of the PARSEQ tool.
Finally, thanks to my family for constant encouragement, and to friends
who have stood by me through rain and sunshine.

Lena Karlsson
September, 2006

1

Introduction . 3
1. Research Focus . 9
2. Related Work . 10
3. Research Approach. 17
4. Research Results. 25

Part I . 33
1. Introduction . 34
2. Related Work . 35
3. Research Methodology . 38
4. Results . 45
5. Discussion. 59
6. Conclusions. 64
Appendix . 66

Part II . 69
1. Introduction . 70
2. Related Work . 72
3. Pair-wise Comparisons versus Planning Game Partitioning - Experiments
on Requirements Prioritisation Techniques . 81
4. Evaluating the Practical Use of Different Measurement Scales in
Requirements Prioritisation . 109
5. Closing Remarks . 124
Appendix . 126

Part III . 129
1. Introduction . 130
2. Related Work . 132

Contents

2

3. The PARSEQ Method .136
4. The PARSEQ Tool-Support. 141
5. The PARSEQ Method in Case Studies . 144
6. Discussion .176
7. Conclusions .181

References .185

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 3

Introduction

Software continually becomes a more and more important part of an
increasing number of products. Several different domains need to deal
with software development, e.g. the automotive industry, developers of
medical IT, and developers of commercial products such as mobile
phones and digital cameras. The intangible and flexible nature of software
causes software projects to be over-represented in project failure statistics.
Typical problems include lack of functionality, poor quality, budget
overruns and missed deadlines (The Standish Group, 2001).

Quality can be defined as the degree to which a system, component, or
process meets customer or user needs or expectations (IEEE, 1990). Even if a
product is delivered on time and within budget, it may be a failure due to
poor quality if it does not meet customer and user expectations. In
particular, market-driven organisations, which release their products on an
open market with numerous potential customers and users, experience
challenges with quality. Satisfying customer expectations is very difficult
when the customers are diverse and have different opinions.

In software product development the customer expectations are
elicited, analysed, specified, and validated in an activity called
requirements engineering (RE) (Sommerville, 2001). The activity lays the
foundation for successful planning and development of the product
before release to the market. In a competitive environment, such as the
one experienced by market-driven organisations, it is essential to plan

4

product releases with time-to-market in mind. Release planning is where
requirements engineering for market-driven software product
development meets the market perspective. Selecting a subset of
requirements for realisation in a certain release is as complex as it is
important for the success of the product (Carlshamre, 2002).

The main goal of the research presented in this thesis is to enhance
software product quality and to increase the competitive edge of software
organisations. By developing and applying methods and techniques for
assessing and improving RE and release planning, the software product
quality is expected to improve. The main contributions are: increased
understanding of RE challenges in the software industry based on a
qualitative survey, evaluation of requirements prioritisation techniques
based on experiments, and a method for retrospective analysis of release
planning decision-making evaluated in case studies.

The thesis starts with an introduction to the research area and the
research focus. Following the introduction there are three parts, each
including between one and three papers. In order to avoid repetition and
redundancy, each part has one introduction and one concluding section.
That is, when two or three papers are combined, the introduction and
conclusion sections have been integrated. In total, six papers are included
partly or completely in the thesis.

• Introduction. This section describes the background of the
research. Section 1 presents the research focus and research
questions examined in the thesis. Section 2 continues with a
description of related work to put the research into context. The
research approach and validation issues are described in Section 3,
before the research results and contributions are presented and
future research is discussed in Section 4.

• Part I: Requirements Engineering Challenges in Industry. The
first part presents a qualitative survey of RE challenges in market-
driven organisations (Paper 1). The paper describes challenging
areas within RE experienced by 14 interviewed practitioners.
Among the many challenges we find issues related to release
planning and requirements prioritisation.

• Part II: Evaluation of Requirements Prioritisation Techniques.
The work in Part II is focused on evaluating different techniques for
requirements prioritisation since it is an important activity in
release planning. The second part includes two studies: the first one

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 5

describes two experiments comparing different requirements
prioritisation techniques (Paper 2) and the second one presents an
archive analysis examining results from prioritisation sessions
(Paper 3).

• Part III: Retrospective Analysis for Release Planning Decisions.
Release planning process improvement is investigated in the third
part. A method for retrospective analysis of release planning
decision-making is presented, as well as results from three industrial
case studies (Paper 4 and 5). In addition, we present tool support
which was used and evaluated in one of the case studies (Paper 6).

List of Papers

The thesis is based on the following six papers:

1. REQUIREMENTS ENGINEERING CHALLENGES IN MARKET-DRIVEN SOFTWARE
DEVELOPMENT – AN INTERVIEW STUDY WITH PRACTITIONERS

Lena Karlsson, Åsa G. Dahlstedt, Björn Regnell, Johan Natt och Dag, Anne Persson
Accepted for publication in Information and Software Technology: Special Issue on
Understanding the Social Side of Software Engineering, Qualitative Software
Engineering Research, 2007.

2. PAIR-WISE COMPARISONS VERSUS PLANNING GAME PARTITIONING - EXPERI-
MENTS ON REQUIREMENTS PRIORITISATION TECHNIQUES

Lena Karlsson, Thomas Thelin, Björn Regnell, Patrik Berander, Claes Wohlin
Accepted for publication in Empirical Software Engineering Journal, 2006.

3. EVALUATING THE PRACTICAL USE OF DIFFERENT MEASUREMENT SCALES IN
REQUIREMENTS PRIORITISATION

Lena Karlsson, Martin Höst, Björn Regnell
Proceedings of the 5th ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE’06), Rio de Janeiro, Brazil, September 2006.

4. CASE STUDIES IN PROCESS IMPROVEMENT THROUGH RETROSPECTIVE ANALYSIS
OF RELEASE PLANNING DECISIONS

Lena Karlsson, Björn Regnell, Thomas Thelin
Accepted for publication in International Journal of Software Engineering and
Knowledge Engineering: Special Issue on Requirements Engineering Decision Support,
December 2006.

5. RETROSPECTIVE ANALYSIS OF RELEASE PLANNING DECISIONS IN A PRODUCT LINE
ENVIRONMENT - A CASE STUDY

Lena Karlsson, Björn Regnell

6

Submitted, 2006.

6. INTRODUCING TOOL SUPPORT FOR RETROSPECTIVE ANALYSIS OF RELEASE PLAN-
NING DECISIONS

Lena Karlsson, Björn Regnell
Proceedings of the 7th International Conference on Product Focused Software Process
Improvement (PROFES’06), Amsterdam, the Netherlands, June 2006, pp. 19-33.

Related Publications

The following publications are related but not included in the thesis:

7. UNDERSTANDING SOFTWARE PROCESSES THROUGH SYSTEM DYNAMICS SIMULA-
TION: A CASE STUDY

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Höst, Bertil I Nilsson
Proceedings of the 9th IEEE Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS’02), Lund, Sweden, April 2002, pp. 41-48.
(This paper presents a simulation model which worked as foundation for the model
presented in Paper 10.)

8. CHALLENGES IN MARKET-DRIVEN REQUIREMENTS ENGINEERING - AN INDUS-
TRIAL INTERVIEW STUDY

Lena Karlsson, Åsa G. Dahlstedt, Johan Natt och Dag, Björn Regnell, Anne Persson
Proceedings of the 8th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ’02), Essen, Germany, September 2002, pp.
37-49.
(This paper presents intermediate results from Paper 1 and is based on the first seven
interviews.)

9. POST-RELEASE ANALYSIS OF REQUIREMENTS SELECTION QUALITY - AN INDUS-
TRIAL CASE STUDY

Lena Karlsson, Björn Regnell, Joachim Karlsson, Stefan Olsson
Proceedings of the 9th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ’03), Velden, Austria, June 2003, pp. 47-56.
(This paper presents the first of the case studies described in Paper 4.)

10. AN ANALYTICAL MODEL FOR REQUIREMENTS SELECTION QUALITY EVALUATION
IN PRODUCT SOFTWARE DEVELOPMENT

Björn Regnell, Lena Karlsson, Martin Höst
Proceedings of the 11th IEEE International Conference on Requirements Engineering
(RE’03), Monterey Bay, California, the USA, September 2003, pp. 254-263.
(This paper is summarised in the Introduction, Section 2.3. It presents results from a
survey, which motivates the evaluation and improvement of requirements selection
quality.)

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 7

11. MARKET-DRIVEN REQUIREMENTS ENGINEERING PROCESSES FOR SOFTWARE
PRODUCTS - A REPORT ON CURRENT PRACTICES

Åsa G. Dahlstedt, Lena Karlsson, Johan Natt och Dag, Björn Regnell, Anne Persson
1st International Workshop on COTS and Product Software (RECOTS’03), Monterey
Bay, California, USA, September 2003.
(This paper presents intermediate results from Paper 1 and is based on the first seven
interviews. The paper compares the discovered challenges to the characteristics of
market-driven software development reported in literature.)

12. IMPROVING REQUIREMENTS SELECTION QUALITY IN MARKET-DRIVEN SOFT-
WARE DEVELOPMENT

Lena Karlsson
Licentiate thesis, ISRN LUTEDX/TETS-1063-SE+132P, Dept. of Communication
Systems, Lund University, Sweden.
(The licentiate thesis includes Papers 7, 8, 9, 10, and an early version of Paper 13.)

13. REQUIREMENTS PRIORITISATION: AN EXPERIMENT ON EXHAUSTIVE PAIR-WISE
COMPARISONS VERSUS PLANNING GAME PARTITIONING

Lena Karlsson, Patrik Berander, Björn Regnell, Claes Wohlin
Proceedings of the 8th International Conference on Empirical Assessment in Software
Engineering (EASE’04), Edinburgh, UK, May 2004, pp. 145-154.
(This paper presents the first of the two experiments in Paper 2.)

14. INVESTIGATION OF REQUIREMENTS SELECTION QUALITY IN MARKET-DRIVEN
SOFTWARE PROCESSES USING AN OPEN SOURCE DISCRETE EVENT SIMULATION
FRAMEWORK

Björn Regnell, Bengt Ljungquist, Thomas Thelin, Lena Karlsson
Proceedings of the 5th International Workshop on Software Process Simulation and
Modeling (ProSim’04), Edinburgh, UK, May 2004, pp. 84-93.
(This paper introduces a simulation framework for the analytical model of requirements
selection quality presented in Paper 10.)

15. ALIGNING THE REQUIREMENTS ENGINEERING PROCESS WITH THE MATURITY OF
MARKETS AND PRODUCTS

Lena Karlsson, Björn Regnell
Proceedings of the 10th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ’04), Riga, Latvia, June 2004, pp. 69-74.
(This paper describes market-driven RE from a lifecycle perspective, since it was
discussed by interviewees in Paper 8.)

16. HOW EVALUATION TECHNIQUES INFLUENCE THE RE-TOOL EVALUATION: AN
EXPERIMENT.
Raimundas Matulevicius, Lena Karlsson, Guttorm Sindre
Proceedings of the European Software Process Improvement Conference (EuroSPI’04),
Trondheim, Norway, November 2004, pp. I3B11-I3B16.
(This paper investigates RE tools, which is related to the topic in Paper 6.)

8

17. COMPARING ORDINAL AND RATIO SCALE DATA IN REQUIREMENTS PRIORITISA-
TION

Lena Karlsson, Björn Regnell
Proceedings of the 3rd International Workshop on Comparative Evaluation in
Requirements Engineering (CERE’05), Paris, France, August 2005, pp 21-29.
(This paper presents the measures for comparing prioritisation results from different
measurement scales, which are further evaluated with a larger data set in Paper 3.)

18. A CASE STUDY IN RETROSPECTIVE ANALYSIS OF RELEASE PLANNING IN AN AGILE
PROJECT

Lena Karlsson, Björn Regnell, Thomas Thelin
1st Workshop on the Interplay of Requirements Engineering and Project Management
in Software Projects (REProMan’05), Paris, France, August 2005.
(This paper presents the second of the case studies presented in Paper 4.)

Contribution Statement

The author of the thesis is the main author of the six included papers.
This means responsibility for running the research process, dividing the
work between coauthors and conducting most of the writing. Paper 1 and
2 were produced in cooperation with other universities and have five
authors each. In both cases, a lot of the design and analysis was performed
together with coauthors, while most of the writing and division of work
was performed by the main author. The research in Paper 3, 4, and 5 was
performed primarily by the main author, who designed and conducted
most of the work, as well as reported on the studies. Paper 6 describes a
tool which was designed by the author, but developed by two external
developers. The paper is written primarily by the main author.

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 9

1. Research Focus

The goal of this research is to find means for improving the RE and
release planning processes. The purpose is to enhance software product
quality and increase the competitive edge of software organisations. The
main research questions that have been investigated are:

RQ1. Which challenges related to RE are experienced by practitioners
in the market-driven software development industry?

RQ2. How can requirements prioritisation techniques be characterised
and compared?

RQ3. How can retrospective analysis be used to evaluate and improve
the release planning process?

The research questions RQ1-RQ3 correspond to Part I-III in the thesis.
The relation between the research questions is illustrated in Figure 1.

RQ1 was posed in order to discover and understand RE challenges
experienced by practitioners and was used to select focus for the research.
Among the many challenges that appeared in the qualitative survey, issues
regarding requirements prioritisation and release planning emerged.
Therefore, these areas were targeted in the continued research.

RQ2 was examined to understand and compare requirements
prioritisation techniques since requirements prioritisation is a vital
activity for release planning. The characteristics of different techniques
were identified in experiments and their potential support for release
planning decision-making was examined.

RQ1: Requirements engi-
neering challenges

Domain understanding
and research focus

RQ2: Evaluation of
requirements prioritisa-
tion techniques

Support for release
planning

RQ3: Retrospective analy-
sis for release planning
decisions

Release planning proc-
ess improvement

Figure 1. The three parts of the thesis

10

RQ3 aims at improving the release planning process through
retrospective analysis. The results from RQ2 were used to create a method
for evaluating the release planning process and discovering possible
improvements. The retrospective analysis method was applied in three
industrial case studies with different characteristics in order to investigate
its possibilities and limitations.

2. Related Work

This section provides some theoretical background to the requirements
engineering area and describes the context of the research in the thesis.
The successive subsections describe related work in general, while in
Section 4 related work is discussed in relation to the thesis findings.

Software engineering is an engineering discipline whose goal is to cost-
effectively develop software systems. This includes all aspects of software
development; from the early stages of system specification through to
maintaining the system after it is put into use (Sommerville, 2001).
Software requirements are by the Software Engineering Body of Knowledge
(SWEBOK, 2004) defined as properties that must be exhibited in order
to solve some problem of the real world. In other words, requirements
define what the system should do, i.e. what functionality and qualities the
system shall include. Thus, requirements engineering regards the process of
identifying, analysing, documenting, validating and managing these
software properties (Lauesen, 2002).

Systems engineering is concerned with all aspects of computer-based
systems development, including hardware, software, electrical and
mechanical engineering, thus software engineering is part of this area. The
software in these systems is embedded in a hardware system and must
respond, in real-time, to events from the system’s environment
(Sommerville, 2001). In the thesis, the term product is also used to refer to
a system that partly or completely consists of software.

2.1 Requirements Engineering

Traditionally, RE takes place in the beginning of every project, and results
in a specification that defines the product to be developed. This view is
based on the Waterfall model (Royce, 1970), where requirements
engineering is followed by design, implementation, testing and

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 11

maintenance activities. However, this cascade process may not be the
most appropriate in practice, since the flexible nature of software requires
the development process to be more iterative and evolutionary. New and
changed requirements appearing during development calls for continuous
RE efforts.

The four main activities in the RE process, as defined by Sommerville
(2001), are illustrated in Figure 2. The feasibility study is performed
before starting with elicitation, and the activities are, in practice,
performed iteratively in order to handle changing requirements. In
addition, requirements management is performed continually throughout
the product life-cycle to understand and control requirements changes.

• Feasibility study is performed to decide whether or not it is worth
carrying on with development. The system should contribute to the
overall objectives of the organisation and be possible to implement
with the current technology and within the given cost and schedule
constrains.

• Requirements elicitation and analysis starts with gaining application
domain understanding and moves on to collecting requirements
from stakeholders for the system. Next, the requirements are
classified and conflicting views among stakeholders are resolved. In
any set of requirements, some are more important than others.
Prioritisation is performed to discover the most important
requirements. Finally, the requirements are checked for
completeness, consistency, and accordance with the stakeholders’
wishes.

Feasibility
study

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

Figure 2. The requirements engineering process

12

• Requirements specification involves documenting the elicited
functional and non-functional requirements in detail. Non-
functional requirements are also called quality requirements and
affect how well a system must perform its functions (Lauesen,
2002). In addition, the specification may include purpose and
scope of the product, user characteristics, and development
constraints.

• Requirements validation involves showing that the requirements
actually define the system which the customer wants and is
concerned with finding problems with the requirements. Validation
can be performed with different techniques such as reviews or
prototyping.

2.2 Market-Driven Requirements Engineering

Products can be divided into different categories depending on the type of
market where the product is vended. Among the early work that
characterises the differences between customer-specific and market-driven
development is the field study by Lubars et al. (1993). The authors
investigated differences between the two types of development in the areas
of requirements definition, specification and validation.

In the customer-specific case (also called bespoke or contract-driven) the
product is ordered by a specific customer and the supplier develops and
maintains the product for that customer. The customer often represents a
large organisation such as a military, governmental or financial
institution. A product contract is negotiated with the customer,
describing what the product shall include, when it shall be delivered, and
how much it will cost.

Market-driven software systems or products (also called packaged or
commercial-of-the-shelf) are developed for an open market. The customer
may be another organisation or a consumer and the products may be, for
example, computer packages, development tools, or mobile phones. In
both cases there is a large range of potential customers on a mass market
and suppliers need to take diverse needs into account.

The characteristics of market-driven development have been described
by Lubars et al. (1993), Potts (1995), Sawyer (2000), and Carlshamre
(2001). Some of their findings are summarised below.

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 13

The characteristics of market-driven RE include, for example, that the
mass market product often has a life cycle with several consecutive releases
and it lasts as long as there is a market for it. Therefore, release planning is
an important activity. A highly important issue is to have shorter time-to-
market than the competitors, in order to yield high market shares and be
successful on the market.

Requirements are often invented by developers or elicited from a set of
potential customers since there is no single customer to ask. This may
yield too many requirements with respect to the available resources for
one release. It is necessary to make estimations of implementation effort
and market value in order to prioritise and select a set that will fit the
market and corporate strategy. Requirements are prioritised within the
market-driven developing organisation before release planning, while in
the customer-specific situation the requirements are negotiated and
contracted with the customer.

Many organisations do in fact deal with both market-driven and
customer-specific projects. In this thesis, we focus mainly on the market-
driven aspects of these organisations.

2.3 Release Planning Decision-Making

Release planning is one of the specific RE activities conducted in market-
driven organisations, along with prioritisation and cost estimation.
Release planning can be described as selecting an optimal subset of
requirements for realisation in a certain release. Thus, it is a major
determinant of the success of the software product (Carlshamre, 2002).

Wohlin and Aurum (2005) identified relevant criteria for release
planning based on a survey with practitioners. One of the criteria
regarded as relevant to all respondents in the survey was the actual cost-
benefit trade-off for implementing a requirement. This is similar to the
criteria used by Karlsson and Ryan (1997) in the cost-value approach.
The approach is based on optimising the relation between the
requirements’ value and cost in order to achieve stakeholder satisfaction.

The requirements selection and release planning process is supported
by requirements prioritisation, which can be defined as the activity during
which the most important requirements for a system are identified
(Sommerville, 2001). Issues that determine the priority of a requirement
include importance to users and customers, implementation costs, logical
implementation order, and financial benefit (Lehtola et al., 2004). There

14

are several prioritisation techniques described in literature, but
prioritisation practice is informal in many companies (Lehtola and
Kauppinen, 2006). Some of the prioritisation techniques are summarised
in Table 1. For more details regarding requirements prioritisation
techniques, see e.g. Moisiadis (2002) and Berander and Andrews (2005),
as well as Part II of this thesis.

The selection of requirements for a release is often made in several
steps of the RE process, since release plans are revised and changed
throughout development as more knowledge is gained about market
expectations and development progress. Starting out with a large set of
potential requirements, the selection brings the number down for each
activity in the requirements process. This is illustrated in Figure 3, which
is adapted from Regnell et al. (2003) (Paper 10). The discarded
requirements are typically stored in a database for investigation in future
releases. During elicitation, decisions concern which stakeholder
representatives to consult to elicit ideas for new features. Then there is
often a screening activity performed to make a first quick assessment to
decide whether a requirement is worth spending more time on.
Requirements that are clearly out of scope for the next release are rejected

Table 1. Summary of prioritisation techniques

Technique Description References

Planning
game

Grouping and ranking requirements on an ordi-
nal scale. Usually based on the criteria value,
cost and risk.

Beck, 2005

Pair-wise
comparisons

Comparisons between all pairs of requirements.
Based on the Analytical Hierarchy Process
(AHP) and the result is on a ratio scale. Usually
based on cost and value criteria.

Saaty, 1980;
Karlsson, 1997

Numeral
Assignment

Grouping requirements in e.g. 3 or 5 groups,
usually based on customer value. The result is
presented on an ordinal scale.

IEEE, 1998;
Karlsson, 1996

$100 test Also called cumulative voting and is suitable in
distributed environments. Based on assigning
fictional money to requirements and the result is
on a ratio scale.

Leffingwell and
Widrig, 2000

Wiegers’
method

Combines the customer value, penalty if the
requirement is not implemented, implementa-
tion cost, and risks. The result is on a ratio scale.

Wiegers, 1999

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 15

in order to avoid overload in the process (Regnell et al., 1998). The
evaluation activity includes prioritising requirements and identifying
requirements that are interdependent. Finally, the requirements can be re-
assessed during development and decisions regarding postponing or
removing requirements can be made based on the information gained
during implementation.

In Regnell et al. (2003), the requirements selection process is described
as a queuing network model, with parameters for arrival rates, service
rates, number of servers, and probability for a requirement to remain in
the process. The parameters were estimated based on a survey with
practitioners from companies developing software-intensive products.
The survey indicates that, on average, only 21% of all incoming
requirements are good enough to be implemented with regard to market
opportunities, product strategy and development resources. Evidently it is
difficult to determine which of the incoming requirements to select for
implementation. Furthermore, a majority of the respondents estimate
that only 25-50% of the requirements selection decisions made in their
organisation are correct. It appears that there is a large opportunity for
improving the release planning process and thereby the requirements
selection quality.

2.4 Retrospective Analysis for Process Improvement

Several different approaches to Software Process Improvement (SPI) have
been suggested. Among the common ones are maturity models such as
the Capability Maturity Model (CMM) (Paulk et al., 1993) and standards
such as ISO9000 (www.iso.org). These approaches aim at assessing and
improving the process through a set of principles or practices. However,
many of those who have applied CMM have been disappointed about the
time and costs required for the assessment and improvement (Herbsleb
and Goldenson, 1996).

Figure 3. The RE process from a requirements selection viewpoint

Elicitation Screening Development Evaluation

16

An alternative to using pre-defined principles and practices is to base
the process improvement effort on the experiences of your own
organisation or project. One such approach is the Experience Factory
(Basili et al., 1994). It is aimed at capitalising and reusing lifecycle
experiences and products through processing project information and
data, and giving feedback to project activities. Basili et al. (1994) state
that reuse of knowledge is the basis of improvement. Another approach
based on internal experiences is the retrospective analysis, acknowledged as
one of the most important steps toward improving the software process
(Kerth, 2001). Retrospective analysis has been used under different names
such as postmortem analysis (Birk et al., 2002), postmortem project
evaluation (Ulrich and Eppinger, 2000), and postmortem review (Dingsoyr,
2005). Retrospective analysis is usually performed after the project is
finished and may consist of an open-ended discussion of the strengths and
weaknesses of the project plan and execution. Sometimes it is facilitated
by an outside consultant or someone with an objective view of the
project. At the end of the session, a postmortem report is prepared as a
formal closing of the project, which is then used in the project planning
stage of future projects (Ulrich and Eppinger, 2000).

Retrospective analysis is also recognised as a valuable method for
knowledge management, which promotes an organisation’s intellectual
capital (Rus and Lindvall, 2002). It focuses on the individual as an expert
and bearer of important knowledge that he or she can systematically share
within the organisation. The retrospective analysis has also been used in
the agile community, which uses the concept process refactoring (Collins
and Miller, 2001) in order to emphasise the continuous approach to
process improvement. Instead of waiting until a project is finished,
process refactoring takes place during the project in order to improve
before it is too late. Retrospective analysis is discussed further in Part III
of the thesis.

Some of the more recent work focus on the outcome of the
retrospective analysis, i.e. how the findings are reported and used.
Dingsoyr (2005) describes a case study at a company where every project
wrote an experience report, but these were seldom read by other projects.
It seems important to consider how the results from the retrospective
analysis are reported and transferred to future projects. One way to make
postmortem analysis results more accessible is presented by Schalken et al.
(2006). The authors present a method to derive findings from a set of
postmortem review reports and transform the qualitative information

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 17

into quantitative information. The results may provide guidance in a
process improvement initiative. Desouza et al. (2005) describe an
evaluation of two different outcomes from the retrospective process:
traditional reports and stories. The differences in structure, cost of
preparation, richness of knowledge, and ease of comprehension require
each project to decide which one is more appropriate.

3. Research Approach

This section gives an overview of the different research approaches that
are used in the thesis. It also describes certain validity issues that need to
be considered for each approach. The section starts with an introduction
of some research methodology concepts and continues with three sections
describing the research approach and validity for each research question.
The validity is discussed from a research design perspective, i.e. which
measures that were taken during design to increase validity of the results.
In Section 4, the validity is discussed from the perspective of the results,
e.g. limitations of the results and the results in relation to literature.

One main research approach is used for each research question. The
first research question is answered by a qualitative survey, the second by
experiments, and the third by a series of case studies.

3.1 Research Designs

There are two main types of research designs: fixed and flexible designs
(Robson, 2002). The fixed design, also called quantitative, deals with
designs that are highly pre-specified and prepared. A conceptual
framework or theory is required in order to know in advance what to look
for. It is often concerned with quantifying a relationship or comparing
two or more groups and the results are often prescriptive, i.e. it suggests a
solution, method or tool that is more appropriate than another.

The flexible design, also called qualitative, relies on qualitative data
and requires less pre-specification. The design is intended to evolve and
develop during the research process as the researchers gain more
knowledge. The flexible design is concerned with studying objects in their
natural setting and is often descriptive, i.e. it describes some issue of the
real world. Qualitative data may include numbers, but are to a large
extent focused on words. Many times, however, a design may include

18

both fixed and flexible methods and yield both quantitative and
qualitative data.

The research in this thesis uses three major types of methods: survey,
experiment and case study. Surveys and case studies can be both fixed and
flexible, while experiments are typically fixed (Wohlin et al., 2000). Pure
qualitative research designs include strategies such as grounded theory and
ethnography, which are discussed briefly in Part I of this thesis and more in
depth by Robson (2002).

All research designs and approaches have certain validity issues that
need to be considered. In fixed designs there are mainly four types of
validity: conclusion, internal, construct and external validity. In flexible
designs there is a different set of validity issues, which regards description,
interpretation and theory (Robson, 2002). In addition to these, there are
matters of respondent and researcher bias, i.e. when people involved in
the research, deliberately or not, affect the results.

3.2 Survey on RE Challenges

This section describes the qualitative survey methodology, which was used
to answer the first research question. It also discusses validity issues for
flexible designs and for the performed survey.

SURVEYS. Surveys can be both flexible and fixed, i.e. include different
degrees of pre-specification. Survey is a wide term that includes
everything from open-ended interviews (typically flexible) to
questionnaires with closed questions (typically fixed). While
questionnaires can reach a large set of people and provide data that is easy
to analyse, there is a risk of low response rates and questionnaires can be
prone to misunderstandings. Interviews have higher response rates and
the interviewer may explain and clarify questions during the session to
avoid misunderstandings. However, there are disadvantages such as high
time consumption and that the interviewer may impose a bias (Robson,
2002). The purpose of surveys is to understand, describe, explain or
explore the population (Wohlin et al., 2000).

VALIDITY IN FLEXIBLE DESIGNS. The three main validity issues in flexible
designs are presented here. A more detailed presentation is available in
Robson (2002).

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 19

1. Description is regarding the accuracy and completeness of the data.
Thus, if interviews occur they should be audio-taped and possibly
transcribed in order to keep all data for reference and analysis.

2. Interpretation implies that frameworks and theories shall emerge
from the knowledge gained during the research, instead of being
predetermined and biased. This is achieved by analysing and
demonstrating how the interpretation was reached.

3. Theory is closely related to interpretation, but regards the threat of
not considering alternative explanations of the phenomena under
study. This is confronted by continuously revising and refining the
theory until it accounts for all known cases.

The first research question was investigated by conducting a flexible
survey at eight different Swedish companies involved in market-driven
software development. Fourteen practitioners participated in interviews,
which were recorded and later transcribed and analysed with support
from a commercial data analysis tool. The interviews were open-ended
and had a flexible structure, and took different shape depending on the
responses. To validate intermediate results, a focus group meeting was
held with five RE practitioners.

The data was stored both on audio tape and as printed transcriptions
in order to keep data complete and accurate. Thus, the description validity
is taken into consideration. In most interviews, two or three researchers
participated and extensive notes were taken. During analysis, three
researchers with different research interests examined the data and drew
different conclusions that were later discussed. Such discussions from
different angles help to ensure that conclusions were not emerged through
prejudices, but through the knowledge gained during the study. Thereby,
we believe that the interpretation validity is regarded.

The eight companies were of different size and age, and from different
business areas, and at six of the companies, interviews were held with two
people in different organisational positions. In that manner, we believe
that the gained knowledge is based on many different aspects and the
results reflect a broad image of the reality. The selection of companies

RESEARCH QUESTION 1.
Which challenges related to RE are experienced by practitioners
in the market-driven software development industry?

20

from different categories of age, size and business were made with the
intent to regard theory validity.

Since the study is based on a flexible design we do not intend to
generalise the results to a larger population, but only to the setting under
study. The intention with the survey was to gain understanding of RE and
describe RE challenges. Based on the gained understanding we could find
areas in need of further research.

3.3 Experiments on Prioritisation Techniques

This section describes the methodology of experiments as it was used to
answer the second research question. Although Paper 3 is not a controlled
experiment but an archive analysis, the methodology and validity issues of
experiments can be applied. It also discusses validity in fixed designs and
presents how the validity threats were handled in the studies.

EXPERIMENTS. Experiments are used when we want control over the
situation and wish to manipulate the behaviour. Results are often reported
as averages and proportions, thus it is a quantitative design. Controlled
experiments involve more than one treatment to compare the outcomes
and enable statistical analysis. As other fixed designs, the experiment is
theory-driven and requires a substantial amount of conceptual
understanding from the start (Robson, 2002).

The design of an experiment should be made so that the objects
involved represent all the methods or tools we are interested in. The
strength of an experiment is that we can investigate in which situation the
claims are true and they provide a context in which certain methods or
tools are recommended for use (Wohlin et al., 2000).

VALIDITY IN FIXED DESIGNS. Some of the validity problems encountered
in fixed designs are briefly described here, while more thorough
presentations are available in Robson (2002) and Wohlin et al. (2000).

1. Conclusion validity is concerned with the relationship between the
treatment and the outcome. We want to make sure that there is a
statistical relationship, i.e. with a given significance. The threats are
concerned with choice of statistical tests, sample sizes and care
taken in the implementation and measurement of the experiment.

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 21

2. Internal validity is needed to make sure that the relationship
between the treatment and outcome is a causal relationship, i.e. that
the treatment actually caused the result. Threats to internal validity
concern issues such as how the subjects are selected and divided
into classes, and how subjects are treated during the experiment, i.e.
factors that can make the experiment show behaviour that is not
due to the treatment.

3. Construct validity is concerned with the relation between the theory
and the observation and refers to the extent to which the
experiment setting actually reflects the construct under study. Using
multiple strategies to measure the same thing may improve the
construct validity and ensure that the result is an effect of the
treatment.

4. External validity regards generalisability of the setting and the
subjects. Although internal validity is regarded, i.e. there is a causal
relationship between the cause and effect, the results might not be
valid outside the context of the specific study. Therefore, scalability
from small, individual tasks to large tasks performed by teams need
to be regarded. Similarly, the transfer from e.g. students to
practitioners must be elaborated for different cases.

The second research question was examined in two separate studies. The
first study aimed at comparing requirements prioritisation techniques in
two controlled experiments. In total, 46 academics participated in the
experiments. The design was fixed, i.e. prepared and well-defined.

Controlled experiments are fixed in nature and apply to all four
validity issues described earlier. Internal validity is considered by isolating
the treatment from other influencing factors to ensure that the outcome is
actually caused by the treatment. A typical example of threats to internal
validity is that the groups given different treatments already differ from
each other in one way or another. This was regarded by sampling the
subjects based on pre-tests so that the groups’ characteristics were as
similar as possible and additionally the subjects were given treatments in
different orders.

RESEARCH QUESTION 2.
How can requirements prioritisation techniques be
characterised and compared?

22

Conclusion validity was regarded by plotting the data and conducting
appropriate hypothesis tests, which present significance of the results. The
experiments were performed with a rather small and specific set of
subjects. It increases the homogeneity of the subjects and thus the
conclusion validity, although it reduces the external validity of the
experiment since the subjects are not selected from a general population.
The simplified setting and task might not be scalable to industrial usage.
However, it is likely that the practitioners who are intended to use the
techniques would perform similarly to the subjects (in this case mainly
PhD students and master’s students in their final year). Therefore, it
would be appropriate to evaluate the techniques in industry.

Construct validity concerns the extent to which the experiment setting
reflects the construct under study. In other words, we need to consider if
we measure what we want to measure. The measures need to be defined
and the treatments need to be applied carefully. Time-consumption is an
objective and well-defined measure, which was tested using a watch. The
subjects were aware of the measure, thus there may have been an
interaction between testing and treatment. Ease-of-use is a subjective and
well-defined measure, which was tested after the experiment using a
questionnaire. No interaction between testing and treatment was present
since the subjects were not aware of the test during the experiment.
Similarly, no interaction between testing and treatment was present for
the subjective measure of accuracy. However, the accuracy for a
prioritisation technique is less well-defined, since there is no correct
prioritisation key to compare with to determine accuracy. Construct
validity is regarded by testing the same measures in two separate
experiments. Performing the experiment with another set of requirements
or another set of subjects would further increase the construct validity.

The second study was designed as an archive analysis (Robson, 2002)
in which prioritisation data from requirements prioritisation assignments
were used to evaluate the use of different measurement scales. The design
was fixed, but differs from a controlled experiment since the subjects, as
well as the researchers, were unaware of the usage of the data at the time
of data collection. Conclusion validity was regarded since statistical tests
were used when appropriate, and measures and treatments are considered
reliable. However, the statistical power would be higher if more subjects
were involved. Internal validity is less applicable in this case since the
subjects were unaware of the analysis. Thus, threats such as learning
effects and repeated testing are reduced. Threats to construct validity

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 23

concerns whether the used measures actually reflects what we want to
measure. We believe the presented measure of skewness to be well-defined
and valid for comparing prioritisation results from different distributions,
since it is based on the standard deviation.

Finally, the external validity can be discussed. Since the data are taken
from a small-scale prioritisation task performed by students and PhD
students it is difficult to generalise to an industrial setting. However, we
believe that the study indicates that the presented measures are ready to be
evaluated in industry.

3.4 Case Studies on Retrospective Analysis for Release
Planning Decision-Making

The third research question was answered primarily by flexible case study
methodology and the validity issues are mainly the same as presented in
Section 3.2. This section describes the validity issues considered in the
three case studies investigating the developed retrospective analysis
method.

CASE STUDIES. A case study is conducted to investigate a single case
within a specific time space and can be either fixed or flexible. The
researcher typically collects detailed information on one single project,
and different data collection procedures may be applied. Case studies
differ from experiments in that the variables are not being manipulated,
i.e. the case study samples from variables representing the typical
situation. A case study is an observational study and may be easier to plan
than a controlled experiment because it requires less pre-specification.
However, it may be more difficult to interpret the result and generalise to
other situations. Also, the effects of a change can only be assessed at a high
level of abstraction and might not be possible to measure immediately
(Wohlin et al., 2000). Case study methodology typically involves multiple
data collection methods such as observation, interview and documentary
analysis (Robson, 2002).

VALIDITY IN CASE STUDIES. The validity for case studies depends on the
specific design. In this thesis, the case studies are mainly flexible. The
collected data are primarily subjective and statistical methods are not
applicable. The validity for flexible designs is discussed in Section 3.2. In
addition, we can discuss analytic generalisation for multiple case studies

24

(Robson, 2002). The purpose of multiple case studies is not to gather a
sample of cases so that generalisation to a population can be made, but to
seek complements to the first study by focusing on an area not originally
covered. In that manner it is possible to develop a theory which helps
understanding other cases or situations. The strategy has similarities with
performing multiple experiments in an attempt to replicate or
complement earlier studies. Thus, the results may either confirm the
theory or lead to revision and further development of the theory.

The third research question was investigated in three different case studies
in which the retrospective analysis method PARSEQ (Post-release
Analysis of Requirements SElection Quality) was developed and applied.
The method aims at finding improvements for the release planning
process through retrospective analysis of already developed releases. A
sample of requirements that were candidates for the investigated releases is
re-estimated to find release planning decisions that would be made
differently in retrospect. Those incorrect release planning decisions are
investigated in a root-cause analysis where reasons for incorrect decisions
are discussed, and improvements are suggested.

We used a flexible design and the three participating organisations
have different characteristics, which required us to adapt the method to
the different situations. The organisations were selected with respect to
their differences, in order to discover limitations and possibilities of the
method.

Description validity was regarded by taking extensive notes. In addition,
charts and diagrams that were created during workshops were saved for
further analysis. Since the method is based on the participants’ knowledge
and experiences, it is important to select the right people. In all cases
several practitioners participated, such as product managers, project
managers, chief developers, system architects, and users. They were
carefully selected with respect to their experience of release planning for
the investigated product. Interpretation validity was considered in two of
the three cases since two researchers participated and could discuss the
results afterwards to prevent misinterpretations. The results were also fed
back to the participants for validation. Theory validity was handled by

RESEARCH QUESTION 3.
How can retrospective analysis be used to evaluate and improve
the release planning process?

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 25

conducting multiple case studies with different characteristics. In
addition, employees from different departments and in different roles
participated in all studies. Analytic generalisation was regarded by seeking
complementary cases so that different situations could be analysed. The
case studies complement each other and give a comprehensive picture of
the usage of the PARSEQ method.

4. Research Results

In this section, the main research results and contributions are
summarised and plans for further work are described. Section 4.1
describes contribution C1-C3 which corresponds to the research
questions RQ1-RQ3. Similarly, further research FR1-FR3, in Section 4.2,
corresponds to future plans for RQ1-RQ3.

4.1 Main Contributions

This section describes the main contributions in the thesis C1-C3,
corresponding to the three research questions. The results are discussed in
relation to related research, some of which were presented in Section 2.
Validity of the results is discussed in more comprehensive terms as a
complement to the detailed validity discussion from a research design
perspective in Section 3.

C1: Increased understanding of RE challenges in market-driven
software development

The first research question aims at discovering challenges experienced by
RE practitioners in software development. A flexible survey was
performed with practitioners in industry. The paper reports on findings
from interviews with 14 practitioners involved in RE at eight different
software-developing companies. A large number of challenging issues
were found, which were organised into twelve areas. Some of the
challenges are also acknowledged by other sources. For example, the
difficulty of writing understandable requirements is discussed by Al-
Rawas and Easterbrook (1996). Further, the communication gap between

26

marketing staff and developers is also described by Hall et al. (2002). In
addition, the problem of implementing and improving RE in an
organisation is also identified by Kauppinen et al. (2002).

Hence, several of the challenges discovered in the survey have also been
identified in related research. However, some challenges have not been
discussed in other surveys, probably because the challenges are special to
market-driven development. For example, release planning is noticed as
problematic for several of our participating companies, because it is often
based on uncertain estimates of cost and value. All participants discuss
requirements prioritisation, although most of the companies use an ad hoc
approach based on grouping requirements. Similarly, managing the
constant flow of incoming requirements suggestions, and handling the
balance between eliciting requirements from potential users and inventing
new ones in-house were referred to as challenging.

Challenges confirmed by other sources increase the credibility of the
results, and new ones help us increase the understanding of the RE
challenges experienced by practitioners. The sampling was made with
respect to the differences between participants since we wanted to
discover an as broad spectrum of challenging issues as possible. It is
possible that other challenges would appear if other companies
participated. Thus, the picture of industrial RE challenges we provide is
not a universal one. However, it has suited its purpose of increasing the
understanding of the area, and helping to find research areas in need of
further investigation. The area of requirements prioritisation and release
planning decision-making was selected for the continued research because
it was one of the four areas which were discussed by all participants and it
received the highest number of quotations in the interviews.

C2a: Report on characteristics of different requirements
prioritisation techniques

The contribution to the second research question is divided into two
parts: C2a and C2b. The first one is investigated in experiments,
evaluating the differences in time, ease of use, and accuracy between three
requirements prioritisation techniques. The results suggest that Pair-wise
comparisons with tool-support (Telelogic, 2006) is the fastest of the three
investigated techniques, and the Planning game is the second fastest. The
two mentioned techniques do not differ regarding ease of use. The

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 27

manual Pair-wise comparisons technique is the most time-consuming and
least easy to use among the investigated techniques. The accuracy of the
prioritisation results does not differ among the techniques.

These results contradict some earlier work. In Karlsson et al. (1998), a
technique similar to the Pair-wise comparisons technique is found to be
superior to a technique similar to the Planning game regarding ease of use
and reliability of results. However, Pair-wise comparisons is the most
time-consuming technique in their evaluation, which is also true in our
case. Our results are supported by Lehtola and Kauppinen (2006) who
discovered in their case study that pair-wise comparisons were difficult
and time-consuming to perform, especially with more than 20
requirements. Some users also argued that pair-wise comparisons are
pointless and it would have been easier for them to just select the most
important requirements without comparisons. On the other hand,
dividing requirements into three groups, as is done in the Planning game,
is often used in practice (Lehtola and Kauppinen, 2006; IEEE, 1998;
Karlsson, 1996). Techniques based on grouping and ranking, such as the
Planning game, may be more efficient to introduce than the Pair-wise
comparisons, since grouping is often already used in practice.

In summary, two studies confirm that pair-wise comparisons is a time-
consuming technique (Karlsson et al., 1998; Lehtola and Kauppinen,
2006). Therefore, we regard the results on time-consumption as
trustworthy. However, the results regarding ease of use is confirmed in
one study (Lehtola and Kauppinen, 2006) and contradicted in another
(Karlsson et al., 1998). Therefore, further studies are needed to investigate
this difference in results before validity can be assured.

C2b: Evaluation of measurement scales in requirements prioritisation

The second research question is also investigated in an archive analysis,
examining the decision-support provided by different requirements
prioritisation techniques using different measurement scales. The
measurement scales relevant to requirements prioritisation are the ordinal
scale and the ratio scale, which are further described in Part II and in
(Fenton and Pfleeger, 1997).

Results from prior prioritisation exercises were re-examined in an
archive analysis. Four different data sets, with 36 data points in total,
resulting from prioritisation with a ratio scale technique were investigated.
The purpose was twofold: to investigate the skewness of the different ratio

28

scale prioritisation results, and to compare the cost-value approach for
ordinal and ratio scale data. The paper presents a measure for the
skewness based on the standard deviation from a baseline distribution.
The measure indicates that some of the subjects tend to get a more
skewed distribution, i.e. they use the extreme values on the ratio scale
more than others. The subjects expressed that one reason for using
modest values is lack of domain knowledge. The measure can be used to
evaluate in which situations it is worth the added effort of using the ratio
scale compared to the ordinal scale.

The evaluation of the cost-value approach compares cost-value
diagrams drawn from ordinal scale data to diagrams drawn from ratio
scale data. It indicates that the ordinal cost-value diagram agree
substantially to the one based on ratio scale data. Thus, decisions based
on ordinal scale data would be substantially similar to decisions based on
ratio scale data.

The results speak in favour of using the ordinal scale, at least in
situations when domain knowledge is weak and it may be sufficient with
ordinal scale data. The cost-value approach can then be used as decision-
support. Lehtola and Kauppinen (2006) support this view by describing
that some practitioners found it difficult to estimate which number to
give to factors when using a ratio scale technique. Further, they conclude
that prioritisation techniques are valuable for putting a set of
requirements in order, and using the results as a basis for discussion.

The presented approaches to compare ordinal and ratio scale data are
novel and we need more data to confirm the conclusions. Industrial usage
is needed to validate whether the ordinal scale can bring the same
decision-support for practitioners as the ratio scale.

C3a: Method for retrospective analysis of release planning decision-
making

The contribution to the third research question is divided into two parts:
C3a and C3b. The third research question investigates how retrospective
analysis can be used to improve the release planning process. A method
called PARSEQ was developed for the purpose of analysing the release
planning process and improve the requirements selection quality in a
structured manner.

The method is evaluated in three separate industrial case studies with
different characteristics. The first case examined a small software

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 29

developer, the second investigated an in-house software project, and the
third examined product line development for an embedded software
product. In the first case a handful of improvement suggestions for the
release planning process were found. The second case was found to have
made successful release plans for the product and the study focused on the
positive experiences from the project. In the third case, a large number of
root-causes and improvement suggestions were found.

The application of the PARSEQ method differed between the cases.
The first one was supported by a requirements management (RM) tool
and a ratio scale prioritisation technique was used. Since we wanted a
faster approach, not depending on a commercial RM tool, the ordinal
scale techniques were considered. The studies for RQ2 indicated that the
ordinal scale seemed sufficient for our purposes, and therefore the other
two cases used a more agile approach based on the Planning game and
ordinal scale cost-value diagrams.

Retrospective analysis has shown fruitful in other areas such as project
management (Kerth, 2001), knowledge management (Rus and Lindvall,
2002), and agile development (Collins and Miller, 2001). Our results
indicate that it is also successful in finding improvements for the release
planning process. The three case studies are performed at different
organisations with different characteristics. The method seems feasible for
the investigated cases and therefore it is likely that it will work in other
situations as well, although further cases need to be investigated to find
the possibilities and limitations of the method.

C3b: Tool-support for the retrospective analysis method

Based on the experiences from the first two case studies, a tool was
developed with the purpose of making the process more efficient and
increase possibility of visualisation. The tool handles all steps from
importing a sample of requirements to exporting process improvement
suggestions. The tool uses a number of windows to guide the user
through the process. The re-estimation can be performed with one of
three different requirements prioritisation techniques: the Planning game,
the $100 method, and the Pair-wise comparisons. Two criteria of ones
own choice can be entered: one to maximise and one to minimise, e.g.
value and cost. After re-estimation, the tool illustrates the results in a cost-
value diagram, which is then used for analysis. The discussion regarding

30

root-causes and improvement suggestions can be documented in a root-
cause matrix, which in turn can be exported along with the cost-value
diagram from the tool.

The tool was used and evaluated in the third case study. The
evaluation shows that it did speed up the process and decrease manual
labour. It was valuable to be able to select prioritisation technique and
criteria during the workshop. It also provided good visualisation support
through the automatically generated cost-value diagram. However, some
drawbacks were also found, such as lack of support for distributed
workshops. Further development is needed before it can be used as
support in all steps of the method.

4.2 Further Research

This section describes how the research can be continued and evolved in
the future. All included papers have possibilities of deeper investigation,
which is further detailed in the different parts. This section is arranged in
three sub-sections, describing further work for each research question.

FR1: Increasing survey sample with focus on diversity and good
experiences

In order to provide a more comprehensive picture of practitioners’ RE
challenges, it would be valuable to add further interviews with people in
other organisations. Although the sample in the conducted qualitative
survey is broad, additional medium-sized organisations would further
extend the sample. Organisations that develop embedded systems, as well
as products sold on consumer markets would further increase the range of
the sample. The agile development approaches are gaining land and
further experiences from agile and incremental development would be
valuable.

The performed study focused on challenges in RE. However, it could
be even more valuable for practitioners to report on good experiences
from successful projects. Therefore, future studies could focus on projects
and organisations which can share their knowledge and demonstrate
encouraging examples of solutions to the stated challenges. A large scale
study of that kind could end up in a guidebook, where practitioners could
recognise challenges and find examples of possible solutions based on
industrial experiences.

Introduction

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 31

FR2: Industrial validation of requirements prioritisation techniques

The results from the investigation on requirements prioritisation
techniques would benefit from industrial validation. It is not certain that
the results achieved in the papers are valid for industrial use since the scale
and domain are different. The number of requirements investigated is
small compared to most situations in a real project and the domain of
high-level requirements for mobile phones is a simplified representation
of real requirements. An industrial case study could involve a
combination of the investigated techniques, i.e. to use a simple technique
(such as the Planning game) for assigning requirements in groups and
then use a more rigorous technique (such as Pair-wise comparisons) for
the requirements that need more detailed evaluation.

There are other techniques that could be compared in further
experiments, such as Wiegers’ method and the $100 method. Both are
based on a ratio scale but Wiegers’ method takes several criteria into
consideration, while the $100 method focuses on one criterion at the
time. The criteria in Wiegers’ method are customer value, penalty if the
requirement is not implemented, cost of implementation, and risks. An
interesting procedure would be to compare Wiegers’ method to the cost-
value approach, where cost and value are estimated with e.g. $100
method, to evaluate which one gives more valuable support for release
planning. In addition, time-consumption and ease of use can be
measured.

To further validate the usage of different measurement scales for
requirements prioritisation, data sets from industrial requirements
prioritisation sessions may be used. It would then be possible to
investigate whether some people use the more extreme values on the ratio
scale, while others are more modest, also in industrial requirements
prioritisation. Industrial requirements prioritisation data could also be
used to further evaluate the usage of the ordinal cost-value diagrams. It
may be possible to set up a case study in industry to evaluate if the
practical decision-support achieved by the ordinal scale prioritisation
techniques is sufficient. Interviews could then reveal the practitioners’
opinions after using different techniques.

32

FR3: Possibilities and limitations for the PARSEQ method

The PARSEQ method could be applied in additional organisations to
examine its possibilities and limitations. The method need to be
adaptable to different situations such as different development
approaches, different project types, and different product types.
Therefore, organisations and projects with different characteristics need to
be involved. If a large number of case studies is performed, the method
could be used as a ground for finding general improvement areas to the
release planning process. It may be possible to see patterns between
certain organisational characteristics and certain process improvements.
In that case, general recommendations could be developed regarding
release planning process improvements.

The tool support for the method also needs more evaluation and
improvement. Improvements are needed e.g. to be able to perform
PARSEQ in a distributed manner. Modifications can be developed as part
of a Master’s student project. Thereafter, the tool needs industrial
validation in further case studies.

Available resources for future research

As discussed above, this research can be carried on in a number of ways.
To assist others who aim at investigating this area we recommend the
following available resources. This thesis is available online along with the
included publications at http://serg.telecom.lth.se/research/publications/.
In addition, the design and other material used in the experiments in
Part II can be found at http://serg.telecom.lth.se/research/packages/
ReqPrio/. The PARSEQ tool and source code, along with guidelines and
the development report, can be downloaded from http://
serg.telecom.lth.se/research/packages/ParseqTool.

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 33

PART I: REQUIREMENTS ENGINEERING CHALLENGES

Paper 1. Requirements Engineering Challenges in Market-Driven Software Develop-
ment - An Interview Study with Practitioners.
Lena Karlsson, Åsa G. Dahlstedt, Björn Regnell, Johan Natt och Dag, Anne Persson
Accepted for publication in Information and Software Technology: Special Issue on
Understanding the Social Side of Software Engineering, Qualitative Software Engineering
Research, 2007.

Abstract

Requirements engineering for market-driven software development
entails special challenges. This paper presents results from an empirical
study that investigates these challenges, taking a qualitative approach
using interviews with fourteen employees at eight software companies and
a focus group meeting with practitioners. The objective of the study is to
increase the understanding of the area of market-driven requirements
engineering and provide suggestions for future research by describing
encountered challenges. A number of challenging issues were found,
including bridging communication gaps between marketing and
development, selecting the right level of process support, basing the
release plan on uncertain estimates, and managing the constant flow of
requirements.

I

34

1. Introduction

This paper reports on results from an industrial qualitative survey1,
focusing on current practice and challenges for market-driven
requirements engineering (RE) in Swedish software development
organisations. Market-driven software can be combined with hardware in
embedded systems or sold as COTS (Commercial Off-The-Shelf)
products. Before problems related to inefficient RE can be properly
addressed, more research is needed to better understand the challenges
faced by the software industry. The purpose of the research is to discover
and describe RE challenges found in industry today, in order to increase
the understanding of the area of market-driven RE. The study also aims at
discovering proposals for future research in the area, which is important
since most available research focuses on the traditional customer-specific
manner of software development. In addition, the study complements
existing RE surveys, since few of them have focused on the specific
challenges found in market-driven software development. The main
research question investigated in this paper is: Which RE challenges do
market-driven software development companies face?

The study focuses on market-driven software development, which is
gaining increased interest in the software engineering community
compared to development of customer-specific systems. This is due to the
emergence of the market for COTS or packaged software (Carmel and
Becker, 1995; Sawyer, 2000a). Software is an essential part of numerous
commercial products today, and hence, a growing number of companies
are involved in market-driven software development. Products of all
kinds, such as mobile phones, automobiles, aircrafts, toys, and games,
contain software. Market-driven software products are vended on an open
market and there is a large range of potential customers, thus diverse
requirements need to be considered. Market-driven products are often
developed in several consecutive releases for which competition is high.
The characteristics of market-driven RE differs from the characteristics of
customer-specific RE in several ways, as further explained in the
subsequent section on related work.

There are several surveys that concern or include RE issues
(Chatzoglou, 1997; Curtis et al., 1988; El Emam and Madhavji, 1995;

1. By qualitative survey we refer to a field study including a series of interviews with practitioners

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 35

Hall et al., 2002; Hofmann and Lehner, 2001; Lubars et al., 1993; Nikula
et al., 2000). However, none of these focus primarily on market-driven
development. Furthermore, in most of these surveys, the studied projects
and organisations are mainly large, both in terms of the number of
persons and requirements involved, and in terms of the duration of the
projects. This qualitative survey complements the mentioned ones and
provides a characterization of market-driven RE from the perspective of
small- and medium sized companies, as well as fairly new ones.

In this survey, fourteen persons from eight different companies
participated in interviews. After seven interviews, a short paper (Paper 8)
was presented at an international workshop. In addition, a focus group
meeting involving RE experts was held halfway through the study to get
feedback on the challenges found so far. Semi-structured interviews were
held with each interviewee. Each interview was recorded and transcribed
for the analysis, which was supported by the qualitative data analysis tool
Atlas.ti (Atlas.ti, 1997).

The paper includes a description of the companies involved, focusing
on company facts, typical projects and development processes. The result
of the study is a set of issues that may increase the understanding of the
challenges faced by market-driven organisations, as well as indicate the
direction of further research. In addition, we discuss our experiences from
using a qualitative research approach.

The remainder of the paper is organised as follows. In Section 2,
related work is presented. The research method is described in Section 3.
Section 4 presents the results of the study and ends with a summary.
Section 5 discusses the results and relates the findings to earlier work. It
also discusses the threats to validity and our research experiences. Section
6 concludes the paper and presents some ideas for further work.

2. Related Work

This section describes some earlier work related to the topics of market-
driven RE and RE surveys. The included references are the ones found
most important to our study, either with regard to the research design or
to the research results.

36

2.1 Market-Driven Requirements Engineering

Although there are many commonalities between market-driven and
customer-specific development, the literature argues that there are also
differences of such kind that these need to be made explicit (Sawyer,
2000b). The major differences include the characteristics of stakeholding
and schedule constraints (Sawyer, 2000a) as well as release planning and
managing the constant flow of new requirements (Carmel and Becker,
1995; Honour, 1995; Potts, 1995).

In market-driven projects, there is no distinct and defined set of users
(Sawyer, 2000a). There are mainly potential users, an imagined group of
people who may fit into the profile of an intended product user. Eliciting
requirements from this group of users and customers is one of the major
distinguishing characteristics between market-driven and customer-
specific RE (Deifel, 1999; Potts, 1995; Sawyer et al., 1999). This is
mainly managed through marketing, technical support, user groups and
trade publication reviewers (Carmel and Becker, 1995).

Often, requirements are invented by the developers (Potts, 1995), e.g.
based on strategic business objectives, domain knowledge and a product
vision. The development organisation is the primary stakeholder, and
hence it decides which requirements to use in the next release.
Nevertheless, in order to keep, or increase, market shares, the
requirements that satisfy most customers need to be selected. This further
emphasises the role of marketing in the market-driven development
situation (Deifel, 1999).

Within market-driven development organisations, time-to-market is
described as a survival attribute (Novorita and Grube, 1996; Sawyer et al.,
1999). If the product is not released to the market on time, there is a risk
of losing market shares to competitors. As a consequence, the release dates
are kept fixed and requirements of a lower priority may hence be excluded
from the current release in case of a delay (Carlshamre, 2001). Release
planning, aiming to select a set of requirements for the next release that
maximises customer value taking into account the available resources
(Carlshamre, 2002), is therefore a major challenge (Sawyer et al., 1999).
However, there is usually a steady stream of new requirements,
improvements suggestions, complaints and bug reports suggested by
existing customers and users of previous releases. Therefore, effective
prioritisation and cost/impact assessment is needed to support the release
planning task (Carlshamre, 2001; Karlsson, 1998; Sawyer et al., 1999).

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 37

Moreover, the RE process needs to include procedures to capture and
preserve this steady stream of requirements (Higgins et al., 2003).

2.2 Requirements Engineering Surveys

There are several surveys that concern or include RE related challenges.
The classical article by Curtis et al. (1988) mainly involves large system
development projects, both customer-specific and market-driven ones.
Although their survey does not focus solely on RE, it identifies three
major challenges which all can be related to RE: the thin spread of
application domain knowledge, fluctuating and conflicting requirements,
and communication and coordination breakdowns. A few years later,
Lubars et al. (1993) published their field study on requirements
modelling. Their study also includes both customer-specific and market-
driven projects, as is also the case in the paper by Curtis et al. (1988). The
challenges found in (Lubars et al., 1993) is well in line with the ones in
(Curtis et al., 1988) and include e.g. vaguely stated requirements, missing
requirements, requirements misunderstandings, the lack of definitive
requirements from outside the development organisation, lack of
customer contact, and frequently changing requirements.

Next, two studies on RE practices are published, which both also
report on experienced problems (Chatzoglou, 1997; El Emam and
Madhavji, 1995). In the paper by El Emam and Madhavji (1995), the
challenges identified are more related to project management issues such
as performing the appropriate activities, deciding when to stop particular
activities, ensuring an adequate level of user participation, and selecting
capable personnel for the key roles in RE. The survey by Chatzoglou
(1997) mainly includes projects of a customer-specific characteristic. The
challenges presented are e.g. lack of enough resources for a successful
completion of the RE process, and not adequate quality of tools and
techniques employed in the RE process.

Later on a study on RE challenges was presented by Kamsties et al.
(1998). Unlike the field study by Curtis et al. (1988), this study includes
small- and medium sized enterprises. However, both customer-specific
and market-driven projects were represented. Kamsties et al. (1998) agree
to some extent with Curtis et al. (1988) and Lubars et al. (1993) and
identify unclear and incomplete requirements as a common challenge.
Other challenges mentioned are: complexity of requirements documents,
lack of documented requirements in market-driven projects, and cases

38

when implementation of new requirements can cause unforeseeable
interaction with requirements already implemented.

Two more recent papers on RE challenges are written by Hofmann and
Lehner (2001) and Hall et al. (2002). The first survey aims at establishing
a clear link between RE practices and performance, and includes both
customer-specific and market-driven projects. Also in this paper,
changing requirements are identified as challenging. They also support
the findings by El Emam and Madhavji (1995), concerning selecting
capable personnel, since they found that there is a lack of involvement of
technically knowledgeable stakeholders when defining the initial
requirements. Other challenges identified in (Hofmann and Lehner,
2001) are unrealistic requirements posed by marketing, and perceived ad
hoc RE processes. Moreover, they have also shown that approximately
15% of the project effort was spent on RE activities. The paper by Hall et
al. (2002) emphasises that most requirements problems are organisational
rather than technical. Hall et al. (2002) also discuss a relation between the
maturity of the companies and requirements problems found.

Finally, there are a number of RE surveys that are not focusing on
challenges (Breitman et al., 1999; Nikula et al., 2000) and others which
investigates certain kinds of challenges, e.g. the survey by Damian and
Zowghi (2003) which describes challenges caused by stakeholders’
geographical distance.

In general, none of the presented RE surveys have a primary focus on
market-driven development, although some includes both market-driven
and customer-specific organisations/projects (Curtis et al., 1988;
Hofmann and Lehner, 2001; Kamsties et al., 1998; Lubars et al., 1993).
Hence, none of these gives an overview of challenges faced specifically by
market-driven development organisation regarding RE issues, despite the
fact that there are pronounced differences between customer-specific and
market-driven RE. Therefore, there is a need for an investigation of the
RE challenges faced by market-driven development organisations.

3. Research Methodology

The study was carried out using a qualitative research approach.
Qualitative research aims to investigate and understand social and cultural
phenomena in the context where they exist. Furthermore, qualitative
research aims to place the studied phenomena in a holistic framework and

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 39

suggests that social and cultural phenomena are best investigated by
studying people’s actions in and verbalised thoughts about the social
context in which they act (Myers, 1997). Qualitative research methods are
useful when the purpose is to explore an area of interest, to obtain an
overview of a complex area, and to discover diversities and variety rather
than similarities (Robson, 2002). It is also preferable to use a qualitative
approach when the aim is to improve the understanding of a
phenomenon where little is known. This is due to the fact that it focuses
on gaining in-depth information (Hoepfl, 1997).

The purpose of the study presented in this paper is to gain in-depth
understanding of the nature of requirements engineering within market-
driven software companies, specifically focusing on exploring the
challenges software development companies in this sector face. The aim is
also to provide a basis for formulating hypotheses for future research. Due
to this explorative nature of the study a qualitative approach has been
considered suitable.

The study is mainly built on semi-structured interviews with a high
degree of discussion between the interviewer and the interviewee,
complemented with a focus group meeting. This approach has enabled
the researchers to gain in-depth understanding e.g. of the concepts/
terminology used by the companies. This proved to substantially facilitate
data analysis. For example, concepts such as requirement, process and
method had different meanings among the companies. An alternative
approach could have been to use a questionnaire. The drawbacks of such
an approach would be that the assumptions of the researchers in that case
govern the questions asked and the terminology used. The explorative
element of the study would, hence, be difficult to achieve. Furthermore, a
questionnaire does not provide the opportunity to discuss what questions
and concepts mean and to explore new views on the area that may appear
during a face-to-face interview.

Quantitative methods are sometimes claimed to be “better” than
qualitative methods with the argument that they provide objective
measurement and enable replication of studies, as opposed to qualitative
methods that build on inherently subjective interpretation. However, we
do not consider debating which type of method is “better” than the other
to contribute constructively to science. Instead we need to take a more
general view of long-term research (Figure 1). The cycle of long-term
research entails 1) discovery of hypotheses/theories and 2) justification/
proof/validation of hypotheses/theories. The discovery phase is followed

40

by justification and then new theories or elements of theories can be
discovered, which need justification, etc.

In the study reported in this paper, we have discovered a number of
challenges to RE in market-driven software development companies.
These challenges can be seen as hypotheses or be the basis on which new
hypothesis, studies and experiments can be formulated and carried out.

The study consists of three steps, which are described in the following.
Each step is divided into three phases: planning, data collection and
analysis (Figure 2).

3.1 Step 1 - Interview study (part 1)

Planning. The first part of the study involved a brainstorming and
planning meeting to identify different areas of interest and to plan the
study. We used a combination of maximum variation sampling and
convenience sampling since we selected companies with as different
characteristics as possible within our industrial collaboration network
(Patton, 2002). We aimed at a variety of companies, with respect to size,
type of process, application domain and type of product. We started with
five companies, in which seven persons were interviewed. Interviewees in
different roles were involved in order to collect different viewpoints and
perspectives on the nature of RE.

The interview instrument was designed with respect to the different
areas of interest and with inspiration from other RE surveys (El Emam

Figure 1. The long-term cycle of research

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 41

and Madhavji, 1995; Lubars et al., 1993). To test the interview
instrument, two pilot interviews were carried out. Some questions were
clarified and the structure of the interview instrument was improved
before interviewing proceeded. A summary of the interview instrument is
available in the appendix, Table A.

Data collection. The study uses a semi-structured interview strategy
(Robson, 2002). All interviews were attended by one interviewee and
three interviewers, one of which was responsible for the interview process.
The other two took extensive notes in order to gather as much
information as possible. All interviews, varying in length from 90 to 150
minutes, were also recorded. Transcripts of all interviews were made in
order to facilitate and improve the analysis process. The transcripts varied
between 7 and 23 pages in size.

Analysis. The content analysis (Patton, 2002) involved marking and
discussing interesting sections in the transcripts. The interviewers
examined the transcripts from different perspectives and searched for
explicitly stated or concealed RE challenges. Another researcher, who did

Figure 2. The research procedure used in the interview study

42

not attend the interviews, also analysed the transcripts to enhance validity.
The results from Step 1 are presented in Paper 8.

3.2 Step 2 - Focus group meeting

Planning. The aim of the focus group meeting was to obtain feedback
from industrial RE experts on the eleven RE challenges found so far, and
to find additional ones. Therefore, we selected two participants who were
interviewed in Step 1, and three new participants that did not attend the
interviews.

Data collection. The meeting started with a brainstorming session where
the five industrial RE experts wrote down challenges from their own
experience on post-it notes. The session was facilitated by one of the five
researchers present. Next, the industrial experts mapped their post-it
notes to the challenges found in Step 1. Some post-it notes could not be
mapped to a challenge and therefore three new challenges were
formulated. All fourteen challenges were prioritised based on a simple
scheme; every participant had ten votes each to distribute among the
challenges they found most important.

Analysis. The five researchers took extensive notes, which were discussed
and composed after the meeting. No particular analysis was made of the
notes at this stage. Instead, the notes were used as input to the analysis of
the third step, the second part of the interview study.

3.3 Step 3 - Interview study (part 2)

Planning. We continued with the sampling strategy developed in the
initial step of the study, and interviewed seven persons at five software
companies. The new companies included both large and small
organisations2. Both very large and very small projects appear in the new

2. Due to lack of organizational information regarding annual turnover our definition of small-,
medium-, and large organizations is approximated. For an elaborated definition, see e.g. http://
ec.europa.eu/enterprise/enterprise_policy/sme_definition/sme_user_guide.pdf

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 43

companies and more attention was also paid to developers of embedded
systems in order to broaden the scope.

The interview instrument was adjusted. Some questions were
enhanced with more detail, while others were given a more open-ended
structure.

Data collection. The semi-structured interview approach was continued.
The interviews varied between 60 and 120 minutes in length. One
interview was attended by two interviewees due to lack of time. All
interviews were conducted by one to three interviewers and were recorded
on tape. Notes were taken in the same manner as during step 1 and each
interview was transcribed before analysis.

Final analysis of all data. Since we sought a comprehensive view of the
complete data set, the data from the first part of the study was re-analysed
together with the data from the focus group meeting and the second part
of the interview study. The analysis was supported by the qualitative data
analysis tool, Atlas.ti. As the data grew rather extensive (more than 160
pages of transcribed text), tool support was necessary in order to maintain
structure, as well as to facilitate cooperation between the researchers, who
worked at different geographical locations.

In the final analysis we used the eleven challenges that emerged in the
first set of interviews together with the additional three that were
discovered during the focus group meeting as predefined categories/codes
(Glaser and Strauss, 1967). In addition, one more category emerged as
our understanding of the data increased through discussing and working
with the data. Thus, a total number of 15 categories were found (Table 1).
Each category was described with quotations and examples, in order to
develop a common understanding of each category. Within each category
we found more detailed challenges, which were further analysed.

With reference to Grounded Theory (Glaser and Strauss, 1967) the
process throughout the three steps of the study reached what can be
described as theoretical saturation. The number of new categories that
emerged from each step became smaller and smaller, from eleven to one.
Apart from one more category, the third step mainly provided more detail
and confirmed previous findings. This is illustrated in Table 1.

The interview transcripts were divided between two researchers for
coding. The transcripts were analysed and interesting quotations were
marked with one or more of the 15 categories. Afterwards, the researchers

44

switched interviews to validate that coding was made in a consistent
manner. It was also possible to add more categories at that point. Each
researcher kept a file in the tool that contained the coding made by that
researcher. When coding was finished, the two individual files were
merged into one within the analysis tool. For the analysis, all related
transcript quotations for each category were compiled and printed in
order to compile the data into a readable format. The results from the
analysis are found in Section 4.

In order to further ensure the quality of the coding process, a third
researcher that did not attend the interviews compared the transcripts
with the results given in this paper. Quotations in the results were traced
to their source in the transcripts to check translation and to ensure that
the interpretations converged. Due to traceability problems, caused
mainly by translation from Swedish, two quotations were not recovered in
the extensive transcript material and were therefore removed from the
results. One quotation was changed to a descriptive explanation, since it
was difficult to translate without losing the essence of what had been said.

Table 1. The 15 categories used during analysis

Challenges that emerged
from the interview study
(part 1)

Challenges that were
added after the focus
group meeting

Challenges that
emerged from the final
analysis of all data

Design in the require-
ments

Requirements for
requirements

Non-functional require-
ments

Simple techniques and
tools

Organisational culture

Requirements repository Tool integration

Requirements bundling

Requirements overload

Requirements changes

Market-driven/Technol-
ogy-driven

Organisational stability

Process

Release planning

Gap between marketing
and developers

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 45

In six quotations, single words were erased or changed to obtain a better
language structure.

4. Results

This section presents the challenges discovered during the analysis of the
interviews and the focus group meeting. The twelve following sub-
sections present and discuss one or several challenges corresponding to
one or several of the categories presented in Table 1. Company and
interviewee characteristics are available in the appendix, Table B. The
challenges are subsequently elaborated and explained using excerpts from
transcripts and interpretations from coding and analysis.

4.1 Simple techniques for basic needs

The Rational Unified Process (RUP) (Jacobson et al., 1999) was
mentioned by several of the interviewees as being the development
process used. For example, the employees at Company F have used RUP
and Rational tools for a few years and they are generally satisfied with
their performance. However, some problems were mentioned, e.g. that
RUP lacks support in the handover between requirements engineers and
designers. Another issue is that RUP is a use case driven approach, while
the company wanted to work in a feature-driven manner. This adds some
workload as the traceability between features and use cases needs to be
maintained.

At Company E, RUP and Rational tools were tested, but the
employees had trouble accepting the process. “It just gets too complex”
was the comment from the managing director. At Company B, RUP was
under consideration but it was difficult to find the necessary time and
effort for it to be introduced in the organisation. The project manager’s
comment was “We do not have time to implement RUP and those tools”.
The product manager at the same company said that they want a simple
tool, “that you do not need a thick manual to understand”. The project
manager requested an RE tool, such as DOORS, to support RE in the
projects. Thus, the need for tool support seems to vary depending on
organisational role. It also seems to be the smaller organisations that have
trouble finding processes and tools that suit their needs. During the focus
group meeting, a lack of tools that support a flexible process was

46

discussed. The difficulty to integrate different tools (e.g. RE tools and
testing tools) was also an issue.

Some companies use the Unified Modelling Language (UML) (Fowler
and Scott, 2000) for specification. The opinions about UML vary among
the interviewees. At Company C, UML is regarded as easy for customers
to understand, while at Company E it is stated that “you cannot take the
models to someone without a masters degree” and therefore it is not a
good means for communicating with customers. The difference in views
regarding UML is probably due to different customer characteristics. The
software developed by Company C is intended for developers and
product managers, while the software developed by Company E is
intended for managers and developers of business processes. Company H
has tried a use case methodology but it was abandoned since they
perceived that it had shortcoming as a feedback instrument in customer
communication. On the other hand, they had positive experiences with
prototyping to get customer feedback. They stated that they need
techniques and methods that are easy to understand in order to get
customer feedback.

4.2 Communication gap between marketing staff and
developers

At the focus group meeting, the lack of co-operation between different
parts of the organisation, especially marketing and development, was
recognised by most participants. One participant stated, “If these two
departments communicated, we would not even have to specify the
requirements. […] If everyone has the same goal and vision, then
everyone works in the right direction.” At Company B, the project
manager suggests that one way to solve the lack of communication
between marketing and developers is for marketing staff to learn UML as
it could function as a common language for communication of
requirements.

In Company A, the communication gap between marketing and
development was also obvious. The marketing department’s view of
specifying requirements was to write down ideas for future functionality,
while the developers expected clear and detailed requirements that could
be used for design. Nobody took responsibility for the specification and
analysis of requirements. At Company F, the problem was managed by a
systems management group, which acts as a “mediator” between

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 47

marketing and developers as well as re-formulates the one-line
requirements from marketing into designable requirements for the
developers. This is a good solution according to the system manager at
Company F, as product management does not have as detailed knowledge
as systems management.

Another communication problem concerns providing the sales
department with sufficient information before customer meetings. At
Company B it had been the case that sales staff promised functionality to
customers before confirming its feasibility. At the focus group meeting
this was mentioned as a challenge and it was suggested to have the sales
department communicate with requirements engineers to solve the
problem.

Another indication of communication gaps between departments is
the different opinions as to what constitutes a “good requirement”. At
Company B, the product manager thinks that a good requirement is one
that yields high revenue with low effort, and that is possible to sell. The
managing director at Company C expresses a similar view. However,
according to the developers in the same organisations, good requirements
are independent, testable, clear, and not conflicting. It seems that the
notion of a “good requirement” vary depending on organisational role.

4.3 Writing understandable requirements

Most of the companies use Natural Language (NL) to document their
requirements. This is sufficient according to most interviewees since it is
the customers’ language and customers need to understand the
requirements. However, one of the interviewees at Company H states that
different stakeholders use different vocabulary, or “they use the same word
but with a different meaning”. This makes NL problematic.

Producing well-formulated requirements is an issue, since many of the
interviewees find it difficult to understand requirements. The head of
developers at Company C considers it as one of the major challenges in
carrying out his daily tasks. However, the managing director at the same
company does not consider this to be a major problem. The difference in
views seems to be related to the role within the organisation. It is possible
that marketing staff do not need the deeper understanding of
requirements, and can therefore cope with less well formulated
requirements. However, developers may need more detail to manage
implementation. Many interviewees put effort into increasing the clarity

48

and understandability of requirements, mainly through group discussions.
The head of developers at Company C said, “It is not possible to write
requirements completely, clear as a bell. You always need to discuss with
others.”

4.4 Managing the constant flow of new requirements

Market-driven product developers need to deal with a constant flow of
new product requirements. It is considered important to collect all these
new and potentially valuable ideas, derived from e.g. customers, users,
developers, and support personnel. However, there needs to be efficient
means to manage them. Several of the companies use a repository or tool
to store incoming requests and these tools are then used to search for
interesting, and valuable requirements to implement in the next release of
the product. In Company B, C, and G, the same repository is used for
requirements and Trouble Reports (TR), since both compete for the same
resources. Even though a repository ensures that no good ideas are lost, it
poses a number of other challenges.

Firstly, Company A, C, and D allow their customers and other
stakeholders to enter requirements and ideas by themselves. However, this
requires various efforts afterwards in order to improve the understanding
of the statements and to identify duplicates amongst the requirements.

Secondly, Company A, which has a mature product, has had severe
problems with overload in the requirements database, since more
requirements are added than could be managed. This has resulted in
difficulties when prioritising the requirements for the next release, since
there were thousands of requirements to consider. The problem was
temporarily solved by creating a list that included requirements
considered the most important for the next release. There is, however, an
apparent risk that some rejected requirements would have been more
important after all.

Thirdly, the project manager at Company D emphasises the
importance of giving feedback to all suggestions from stakeholders.
Otherwise they may feel neglected and “if they knew [their suggestion]
was sent into nowhere, they would stop suggesting”. Thus, it is highly
important that customers know that all suggestions are taken into
consideration. However, giving feedback to the constant flow of new
requirements from a large number of customers requires a large amount
of effort.

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 49

4.5 Requirements volatility

Requirements change for a number of different reasons such as e.g. when
the market fluctuates, problems are found during coding or reviews, and
resource constraints change. Some interviewees fear volatility, while others
welcome it. For example, at Company B the project manager said, “it
takes time before the product is stable, and that is what you want to
reach”. At Company D on the other hand, volatility is accepted as a fact
of software development. The project manager states, “[The customers]
will change their minds when they see it, they change their mind in any
case”. Therefore they use an agile development approach. The project
manager also said that “Code is […] cheap to throw away, […] it’s almost
for free”. Therefore it is possible to build imperfect code and show it to
the customer for feedback. This approach is also used at Company C,
where a function is often developed to 60-90% so that feedback can be
received earlier without having to spend 100% of the planned resources.
The developer said, “it’s not worth finishing a requirement to 100%
because change requests will come […] so we accept it earlier and wait for
comments”. The trade-off between stability and volatility was also
discussed at the focus group meeting where one participant said: “the
environment changes while we want to freeze the specification and strive
for stability in the projects”. Another participant requested requirements
models that are easy to change.

4.6 Requirements traceability and interdependencies

All participants involved in the study acknowledge the existence of
relationships and interdependencies among requirements. However, their
perceptions with regard to its importance and impact on the development
work differ substantially between companies. Influencing factors seem to
be how elaborate and well-defined the RE process is, but more
importantly the size of the project and the complexity of the product.

In six of the companies, relationships and dependencies between
requirements are usually used for bundling related requirements to be
implemented together. Bundles are made in order to increase efficiency
during implementation, e.g. because the requirements relate to the same
part of the system or should be implemented by the same developer.

Company F has a more rigorous way of dealing with requirements
interdependencies. They use a so-called anatomy plan to describe the

50

functional structure of the software. It is a description of how the
functionality of the system is related, i.e. dependencies between functions.
It is mainly used to describe the order in which the functionality of the
system should be implemented. Company F states that even if it is
difficult, functional dependencies can be managed in this way. A major
problem is to deal with what they call dynamic interdependencies, i.e.
quality characteristics or non-functional requirements, which influence a
larger part of the functionality or other characteristics of the system. The
problem is not only to know that the interdependency exists but also to
figure out how the requirements affect each other and how this can be
dealt with.

According to both Company C and D, duplicates amongst
requirements are problematic. Often, the same idea or solution comes up
several times, but takes different shapes. In addition, these could be
mutually exclusive, i.e. they cannot exist at the same time within the
system e.g. since they are alternative solutions to the same idea.

4.7 Requirements are invented rather than discovered

Most of the interviewed companies express a trade-off between their own
innovative requirements and the requirements suggested by customers
and users. At both Company B and C, approximately half of the
requirements are suggested by users and half are internally invented. At
Company B, both interviewees express a wish to be more market-driven.
“That is alpha and omega when creating a product success, to run it from
marketing”, as stated by the project manager, continuing “R & D can
always create cool things, […] and they think of themselves as ordinary
users”. As engineers tend to be early adopters of new technology,
developers may not represent the ordinary market for these high
technology products.

One of the risks acknowledged by Company B is that when a
technology-focused company is founded there is no need to think about
who the customers are; it is enough to have some new piece of technology.
This is a dangerous situation since, eventually, the company needs to find
a customer base and adapt the product to actual customer needs. There is
also a need to find the right distributors and retailers. “A product may be
incredibly good, but in the wrong store it will still not be sold”, is the
comment from the project manager at Company B. The same person also
states that in a new technology-focused company, “the developers are the

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 51

heroes” and therefore marketing has trouble influencing the product
functionality. At the same time it is understandable that customer input is
difficult to obtain when the product is unique and not known by users.
The market simply does not know what to wish for.

At the focus group meeting several participants expressed problems
with getting the necessary market input, “[…] those teams consist of
happy engineers who invent requirements rather than listen to me” as one
of the participants stated. The focus group participants also discussed
non-functional requirements (NFR). One participant stated that NFRs
often are suggested by customers, while functional requirements often are
internal. This could also reflect the fact that many companies are
technology-focused and that functional issues therefore are perceived to
be more important than non-functional issues.

Although the interviewed organisations are all in the market-driven
area, several of them have distributors and retailers who sell the products
and it can therefore be difficult to reach end-users for feedback. Thus,
both retailers and end-users need to be considered during requirements
analysis. In Company A and C, the number of customers is fairly limited,
and some large customers have more influence than others. This is also
acknowledged by the marketing person at Company E, who describes
problems with getting the functionality generic enough to suit several
customers.

4.8 Implementing and improving RE within the
organisation

A major challenge is to get acceptance for new ways of working with RE,
i.e. to implement changes to current practices within an organisation. It
includes changing the behaviour of people. Succeeding with the change
process is, however, crucial in order to improve RE. A focus group
participant stated: “The change process is the most difficult - to change
the way people work. There is a lot of good ideas, tools and methods, but
it is too tedious to start using them.” Both interviewees at Company F
state that the biggest challenge is to make everyone follow the same
process and work in the same manner.

It is important to realise that it takes time to implement a new way of
working, and education of the employees is required. To make a group of
developers embrace a certain way of working requires a high level of
confidence in the person responsible for the implementation of the new

52

approach. Company F has defined a role called process engineer, who is
responsible for implementing process changes and educate employees.
The process engineer works together with the project as a support
function in matters related to how the process should be carried out. The
process engineering also puts effort into pre-phase training of employees
in order to improve their ability to understand and use the defined
process.

Interviewees from both Company A and B state that the project
manager controls how the process is carried out in practice, and therefore
the process may vary between projects. It is necessary to obtain acceptance
for putting effort into RE amongst project managers before implementing
changes in RE practices, i.e. the ideas of improving RE must be well
supported by the actors who control the way of working within the
organisation. Some participants at the focus group meeting highlighted
the issue of transferring knowledge between projects. It is difficult to
make people learn from success stories, and apply this knowledge in other
projects, especially in organisations where the acceptance for putting
effort into RE is low. One focus group participant stated, “All projects
where RE has been used, have been successful. However, it is not certain
that project managers who have used RE in one project use it in the next
one.”

4.9 Resource allocation to RE

One major problem, emphasized during the focus group meeting, is the
lack of resources to conduct RE. Participants asked for example: “How do
you get time and resources to the requirements work?”. The problem was
explained by a lack of understanding for the time and resources needed to
carry out high quality RE, e.g. amongst management. Lack of resources
for RE may cause many of the other problems discussed during the
meeting, e.g. badly formulated requirements.

Both Company A and B have experienced problems with obtaining
enough resources for RE. Often, implementation begins as soon as the
project starts, i.e. it is carried out in parallel with the RE work. As a
consequence, the ability to put effort into RE is very low, especially since
key personnel are caught up in other projects. Interviewees at Company A
and B express a need to start and finish the RE work before
implementation begins.

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 53

Most of the companies estimate that they spend approximately 10-
15% of the total effort on RE, although none of the companies actually
measure it. However, their opinions regarding whether this is enough or
not differ. Company A and B state that too little effort is spent on RE and
that much could be improved in their RE practices, while Company C
and D consider it to be just the right amount of effort.

4.10 Organisational stability

Software engineering is a knowledge intensive activity, and is naturally
dependent on the development staff ’s knowledge about the product, its
usage environment, and their knowledge about the development process.
The competence of involved staff is critical when the process is ad hoc.
The project manager at Company B said: “Everybody knows everybody,
and everybody helps everybody. That is the reason a small company can
survive with an ad hoc process” and “The projects depend on the
individuals. Some projects would have died if some people would have
left”. Of course, it is risky to be too dependent on individuals, a problem
that became apparent when the company downsized and lost part of its
staff. Competence and knowledge was lost. Company C and D also
discussed the knowledge capital in the staff and emphasize that their
success is thanks to the employees.

Other organisational issues such as co-ordination and communication
are key issues within the organisations involved in the study. Company F
describes problems with deciding how to organise projects in order to
make co-ordination and communication as efficient as possible. Larger
projects enhance the overview but complicate co-ordination and they are
difficult to manage. Smaller projects facilitate communication within the
project group, but make it more difficult to create a comprehensive,
overall picture. The systems manager stated, “It is always a matter of how
you choose to divide, so to speak. Either you get problems with
communication or you get problems with getting the overall picture
right”.

4.11 Selecting the right process

Several of the interviewed companies struggle with implementing,
evolving, or adjusting their development process. Company B is about to
develop and implement a development process as the lack of structure in

54

the current way of working is considered to be a major problem. The
project manager said: “Yes, I believe that there is an infinite amount of
drawbacks with our current way [of working].” The process is a way for
project managers to communicate and interact with the different parties
involved in a project. Both interviewees at Company B also emphasised
that, to start with, only the most important elements should be included
in the process. It is easier to evolve the process gradually, rather than
trying to do everything at the same time.

Company A, used to had a very detailed process, but it was slimmed
down when the product became more mature and fewer changes were
made in each release. Unfortunately, it became too slim, which resulted in
problems related to lack of structure and control. Therefore, they are still
struggling with defining a process on a suitable level of detail.

Company C and D were generally pleased with their way of working.
Even though the processes were not rigorous, they had control of their
requirements and use tools to structure and maintain the requirements.
Both these organisations are fairly small and may therefore have less need
for structure and processes.

Company F has put a lot of effort into constructing a specific
development process that everyone involved follow. However, they
emphasised the importance of making the process flexible enough to be
adjustable due to specific situations. Using process engineers is one way of
achieving a good interaction between projects and process, and to
facilitate the evolution of the process within the projects.

When adjusting the development process, other support processes,
such as project management processes need to be adjusted as well.
Company F had experienced some problems with combining the iterative
RUP process with the sequential Toll Gate (TG) (Cooper, 2001) model
demanded by management. Certain business decisions require certain
information, which is not produced until later iterations. The systems
manager said: “the planning of each iteration cannot be finished at TG2
because then the RE work is not iterative”. In order to ensure that these
processes are aligned and support each other, it may be necessary to adjust
them, e.g. by redefining the business decisions stipulated by the TG
process.

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 55

4.12 Release planning based on uncertain estimates

Release planning requires consideration of many different aspects. Most
of the companies had some cost-value approach, and consider aspects
such as e.g. customer or user value, development cost, strategic value, and
marketing positioning in their plan. There are also other aspects, such as
effects on the architecture, implementation risks, interdependencies, and
deadlines. For embedded systems, even more factors are added, such as
component size and availability, as well as sales volumes.

The interviewees at Company F stressed the importance of considering
the hardware and non-functional requirements before applications, as
architectural aspects may change the structure of the system. These
interrelationships are visible in their “anatomy plan”, which means that
interrelated use cases and functionality can be developed in the same
release. The systems manager said: “We want the requirements in one
iteration to be connected so that we don’t have to change the same
documents during the next iteration”.

Requirements prioritisation was discussed by all participants in the
study. Several companies tended to use some sort of numeral assignment
(Karlsson, 1996) to arrange requirements into groups. Requirements are
often divided into high, medium and low priority, or given a number
between 1 and 5. At Company A, the project manager constructed a top-
10 list including the top priority requirements. Another 10 requirements
were regarded as medium priority and were put below in the list. Other
companies, such as Company C, had a more rigorous approach and used
a requirements management tool for prioritisation. At Company B,
requirements prioritisation was more ad hoc, or as the project manager
said when discussing different stakeholders: “the one who shouts the
loudest wins”.

Another release planning issue regards effort estimates. Several of the
interviewees expressed that it is an important task. Yet, none of the
interviewees mentioned any particular method for estimating effort. At
Company C the importance of effort estimates during release planning
was stressed: “It is important that the requirements end up in the right
release and if we estimate incorrectly it will affect the release plan”. At
Company G, interrelated requirements were sometimes grouped and
estimated if they were to be implemented together, because it could be
easier than estimating each requirement separately. The opposite opinion
was expressed by the project manager at Company D who said that

56

smaller requirements are easier to estimate correctly. Company F usually
estimated effort per use case instead of per feature because each feature
could affect several use cases. At Company C, the developer said that it is
necessary to have detailed knowledge of the system in order to know
which parts of the code that is affected by a new requirement.

At Company C and D, effort estimates were discussed between project
members so that contradicting estimates were resolved. The developer at
Company C said: “we know that we have done it correctly when everyone
agrees on the estimate”, and at Company D, the project manager said that
“we get better estimates if people have to explain how they think”. Both
Company C and D had weekly meetings, where requirements were
discussed, effort estimated and release planned. At Company A, meetings
were held with marketing personnel and developers so that those who
suggested requirements, i.e. marketing personnel, can explain the purpose
to the developers. The developers found it easier to estimate the
development effort for requirements when they understood the purpose.
The product manager said, “High-level requirements are difficult for
developers to estimate”.

4.13 Summary of findings

This section summarises and discusses the challenging areas presented
above. Table 2 provides a list of the discovered challenges together with a
summary of some of the problematic issues, called key problem areas.
Although the focus is on market-driven organisations, some of the
findings are of more universal relevance. Issues related to communication
and coordination may appear also in customer-specific organisations, as
well as issues regarding requirements traceability and interdependencies.
However, five of the challenges are directly related to the market-driven
characteristics of the participating organisations. Those challenges are
marked in Table 2 and discussed below.

The special stakeholder characteristics, i.e. several potential customers
and users on a large and open market, contribute to some of the
challenges. For example, the constant flow of requirements (Section 4.4)
is caused by the variety of stakeholders who have demands on the product
and like to contribute with their ideas. In relation to the stakeholder
characteristics, it can be mentioned that the issue of writing
understandable requirements (Section 4.3), and understanding the stated
requirements suggestions, is more complex when the stakeholders are

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 57

diverse and express their needs vaguely, which is often the case in the
market-driven situation. Using natural language, one word may have
different meaning to different people. In addition, there is no direct link
between the stakeholders and the developers, typically requiring the

Table 2. Summary of discovered challenges

Challenges Key Problem Areas

Special for
market-driven
organisations

High
importance
areas

4.1 Simple techniques
for basic needs

Tailoring of processes, tool integra-
tion, complex specification languages,
support for customer feedback

*

4.2 Communication gap
between marketing staff
and developers

Goal alignment, organisational coher-
ence, information flow, notion of
“good requirement”

*

4.3 Writing understand-
able requirements

Quality of requirements specification,
tracing from requirement to origin,
capturing rationale

* *

4.4 Managing the con-
stant flow of new
requirements

Trade-off between elaborate elicitation
and information screening, efficient
database management, feedback on
proposals, finding new requirements
among bug reports

*

4.5 Requirements vola-
tility

Trade-off between volatility and stabil-
ity, early feedback on product

4.6 Requirements tracea-
bility and interdepend-
encies

Dependency impact analysis, require-
ments bundling structure, NFR
impact trade-off, reduction of redun-
dancy

*

4.7 Requirements are
invented rather than dis-
covered

Innovation vs. customer needs, bal-
ancing different customers’ impact on
next release

*

4.8 Implementing and
improving RE within the
organisation

Continuous improvement, consistent
process enactment, change implemen-
tation, staff training

4.9 Resource allocation
to RE

Management support, motivating RE
resources, resource competition

4.10 Organisational sta-
bility

Reliance on individuals, co-ordination
and communication

4.11 Selecting the right
process

Suitable level of detail, basic and mini-
mal RE process to evolve from, com-
bining sequential and iterative
development processes

4.12 Release planning
based on uncertain esti-
mates

Managing cost and value drivers,
requirements dependencies, require-
ments prioritisation, effort estimation

* *

58

marketing department to elicit and document requirements. Several of
the interviewees requested more communication between the marketing
department and developers (Section 4.2). This is especially important in
market-driven organisations since the marketing department acts as an
interface to the customers and end-users. Although this important
interface is the main source of user requirements, some organisations
apparently have a more technology-oriented focus where requirements are
invented in-house rather than elicited (Section 4.7). Although innovation
is necessary in technology-intensive organisations, it may turn focus away
from what the users actually need. For example, the focus group
participants discussed that users often suggest non-functional
requirements, while the functional requirements are in focus internally.
Finally, release planning (Section 4.12) is of high importance in the
competitive market-driven situation since it is necessary to release
products with time-to-market in mind. In order to successfully optimise
the user value and development effort for each release, techniques for
requirements prioritisation and effort estimation are needed.

The challenges that are special to market-driven organisations are
evidently in need of more investigation. However, it is not necessarily
those challenges that cause the most problems for the market-driven
organisations. The semi-structured type of interviews that were held did
not reveal if certain challenges are more important or more acute than
others. However, during analysis the code frequency, i.e. the number of
quotations for each category or code, was examined and it indicates some
patterns regarding which challenges that were more discussed than others.
The following challenges were much discussed by all participants: Simple
techniques for basic needs, Writing understandable requirements,
Requirements traceability and interdependencies, and Release planning
based on uncertain estimates. Therefore, they may be of common interest
to market-driven organisations in general. The same four challenges also
received the highest number of quotations in total, confirming that they
are of high importance to all of the participating organisations. However,
they are not necessarily the most important and cost-effective challenges
to deal with in practice. The challenges of high importance are also
marked in Table 2. Some of the challenges were discussed more frequently
by some participants than others. In the analysis, we attempted to relate
those challenges to the organisational characteristics of the particular
companies. The purpose was to discover a pattern between the deviation
of different answers and the characteristics of the organisation, product or

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 59

process. However, no clear pattern was visible and therefore no
conclusions are drawn based on the relation between organisational
characteristics and challenging areas.

5. Discussion

This section is divided in three parts. The first one discusses threats to
validity in qualitative designs and the measures taken in the presented
study to increase validity. The second part presents our experiences from
using a qualitative research approach. Finally, the third part relates our
results to the findings in literature.

5.1 Threats to validity in qualitative designs

The quality of a qualitative study relies on the quality of the investigator
(Robson, 2002). In order to obtain practice and experience in
interviewing, and try out the interview questions, two pilot interviews
were conducted early on. Still there is a risk that quotations become out of
context when divided into separate coded segments (Coffey and
Atkinson, 1996). To deal with this we have used observer triangulation, i.e.
multiple observers and interviewers (Robson, 2002), so that three
different researchers were involved during interviews and analysis. The
coded segments could therefore be discussed so that a common
understanding was gained. We have also used data triangulation (Robson,
2002) shown in the fact that both interviews and focus groups were used
as methods for data collection.

We have chosen to divide the validity issues into the three groups
described in Robson (2002): description, interpretation and theory. The
main threat to providing a valid description of what has been seen or heard
lies in the inaccuracy or incompleteness of the data. This has been met by
audio-taping all interviews and, later on, transcribing them. Furthermore,
each interview was carried out by 2-3 researchers who took extensive
notes and collected drawings and sketches that were made by the
interviewee.

The main threat to providing a valid interpretation is that of imposing
a framework or meaning on what is happening rather than this emerging
from what is learnt during the involvement with the setting. This does
not preclude starting with a set of predefined categories, but these

60

categories must be subjected to checking of their appropriateness, with
possible modification. It requires that the researchers demonstrate how
the interpretation of the end product was reached. In this research, the
threat to interpretation was managed by discussing the interviews and
how the different researchers interpreted the interviewees’ answers. This
was accomplished by having multiple interviewers at all occasions and in
addition, a fourth researcher read and commented on the transcripts.
Furthermore, the transcripts were analysed using the qualitative analysis
tool Atlas.ti. In the tool, the codes, or categories, made it possible to trace
the route by which we have come to a certain interpretation or
conclusion.

The main threat to theory validity is in not considering alternative
explanations or understandings of the phenomena under study. This can
be countered by actively seeking data which are not consonant with the
theory. We have accomplished this by seeking new types of organisations
for our study, where differences in size, age and business type occur.

Validity can also be discussed in terms of reliability. In fixed design
research, reliability is associated with the use of standardized research
instruments, such as formal tests and scales. In qualitative or flexible
designs, formal reliability testing cannot be used. However, there are
common pitfalls in data collection and transcription that need to be
avoided. Among other things, transcription errors are explained in
(Easton et al., 2000). Transcription errors are difficult to avoid due to
misinterpretation and mishearing. Inaccurate punctuation or mistyped
words can change the entire meaning of a sentence and transcripts do not
capture intonation, hesitation, and thought pauses. In this study, the
transcriber had also been present at the interview and had heard the
answers. In most cases the transcriber was also the one in closest contact
with the interviewee and the company, and she/he had thereby a
reasonable amount of knowledge about the company culture and
language.

Another issue regarding validity is the possibility to generalize the
results. Internal generalisability is concerned with conclusions drawn
within the setting studied. This means that the interviewees or observed
situations should not be biased by the researcher. This was managed
during sampling as we selected interviewees and organisations from
different industrial networks and geographical areas. External
generalisability concerns conclusions drawn beyond the setting.
Qualitative studies rarely attempt to generalise beyond the studied setting,

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 61

as it is more concerned with characterising, explaining and understanding
phenomena under study. Statistical generalisation is often not permitted
due to the lack of representative sample. The nature of qualitative designs
also makes it impossible to replicate since identical circumstances cannot
be re-created. However, the development of a theory can help in
understanding other cases and situations. The fact that several of the
discovered challenges are acknowledged by all of the participants increases
the possibility of transferring the results to other situations. All of the
reported challenges are acknowledged by more than two thirds of the
participants. Thus, despite the diversity in organisational characteristics,
the market-driven type of development seems to create some
commonality in challenging areas.

5.2 Experiences from using a qualitative research
approach

Qualitative research is rarely used in the software engineering discipline.
However, software engineering is in many aspects a social activity and is
therefore difficult to understand completely based on quantitative
methods. Qualitative methods can give in-depth understanding of social
or cultural phenomena. However, some issues make qualitative research
difficult in the software engineering discipline. First of all, software is
involved in a variety of domains since it is present in various kinds of
products. Therefore, the differences in organisational characteristics
between the companies involved in the study are large. Thus, it was
difficult to know when to stop searching for additional companies to
represent the market-driven software development area. The software
engineering area is also very fluctuating, which complicates the qualitative
research. In our study, it was difficult to extract facts about some of the
participating companies since staffing changes frequently, project sizes
vary, and documentation is weak. It was also difficult to know whether
the process descriptions given by interviewees were examples of how they
actually work or how they are supposed to work.

We spent quite a long time adjusting the interview instrument before
starting the interviews. While this gave us questions that had been well
thought through, spending more time on actually trying the questions
out on pilot interviews could have saved more time on the whole. The
pilot interviews turned out to be useful, both to adjust the questions and
to gain interviewing experience. Later on, multiple interviewers

62

participated during interviews and additional questions were posed to
complement the interview instrument. This resulted in a more
comprehensive understanding because the different researchers had
different focus.

After seven interviews, the data consisted of approximately 100 pages
of printed transcripts. This was short enough to manage manually by
underlining and marking interesting text segments. However, after the
additional seven interviews, the material grew very large. Therefore, it was
decided to use a data analysis tool to help us be systematic and rigorous in
searching for, and retrieving, data. There is no great conceptual advantage
over marking the transcripts physically with code words, but in practice
the tool can offer many advantages (Coffey and Atkinson, 1996). It was
possible to code at two different sites and then merge the data and the
categories together to one single unit. Other benefits include the
possibility to search for codes, quotations and words, as well as producing
and extracting overlapping codes. These advantages would not have been
present with coding on paper. However, one problem was discovered
when trying to validate the results. As the results in this paper are written
in English and the interviews were carried out in Swedish, the traceability
was inferior due to translation problems. To avoid this, memos could have
been made in the tool regarding the quotations that were used in the
results. In that manner, it would have been easier to search for the memos
instead of manually searching through all quotations, which was necessary
in our case.

One problem, partly resulting from tool-usage, was that we tended to
“over code” the material. The codes, or categories, were too
comprehensive so too many quotations could fit into them. And in fear of
losing interesting information, sometimes less interesting quotations were
marked as well. This resulted in a massive amount of quotations during
analysis; for some categories more than 100 quotations were found. A
more strict definition for each category, and routines for adding new as
well as more delimited categories, could have been helpful to extract the
most interesting quotations and less time could have been spent on
analysis of the massive material. This was not as problematic during
manual coding in the first study, as the amount of quotations was more
apparent in the printouts.

Two researchers with different backgrounds cooperated during coding
and analysis. It resulted in slightly different findings and gave us the
opportunity to double-check and discuss each other’s material from two

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 63

different viewpoints, and thus increase validity. However, as each person
had an in-depth knowledge of a subset of the data it was difficult for one
person to get a comprehensive view of the whole material. It was also
more complex to include new codes or adjust the coding schema.

5.3 Results related to literature findings

Although Curtis et al. (1988) performed their survey several years ago,
focusing on large systems development, the study presented here indicates
that some problems remain. Communication and co-ordination are still
corner stones in software development and project success depends
heavily on the skills of the staff involved.

The survey by Hall et al. (2002) also confirms that organisational
problems, for example lack of skilled personnel and high staff turnover,
have a larger impact than technical problems when it comes to
requirements engineering. This is in agreement with our results with
regard to organisational stability; downsizing negatively affects
organisational knowledge and competence and makes it hard to survive
with an ad hoc process. Another problem identified by Hall et al. (2002)
is that sometimes the sales staff agrees to deliver unrealistic system features
without considering technical and schedule implications. This was also
discussed during our focus group as being a challenge.

Lubars et al. (1993) express that the authors were seldom understood
when asking the interviewees about which process they follow when
writing requirements specifications. This does not seem to be the case in
our study as all interviewees had good knowledge about the different steps
of their development process. Another difference is that in the paper by
Lubars et al. some of the market-driven projects did not produce any
written specifications, while this was not discovered in any of the
companies we interviewed. Possibly the awareness of the process and the
practice to write specifications have been enhanced since the paper by
Lubars et al. was published.

The issue of user participation was stressed by El Emam and Madhavji
(1995). In one case they expressed that, “[Developers] try to force their
ideas on the users”. This was also acknowledged in our study, as there is
simply no discrete set of users to invite for participation. Instead, there is a
tendency in some of the companies towards increased technology focus, as
requirements are invented by developers rather than elicited from
potential users. Similarly to (Hall et al., 2002) and (Lubars et al., 1993),

64

several of the problems encountered in El Emam and Madhavji (1995)
are organisational rather than technical.

Chatzoglou (1997) discusses a lack of resources, i.e. people involved,
time and money, for RE activities. Lack of resources was also discussed in
our focus group meeting, explained by a lack of understanding amongst
managers. Lack of resources was also stated as a reason for badly
formulated requirements. Most of the participants we asked, allocate 10-
15% of their time for RE. This was found to be enough by Company C
and D, while the larger Company A and B find it to be too little.

As a complement to other surveys, the presented study describes a
communication gap between marketing and developers, resulting in
insufficient effort estimates and requirements quality. The balance
between marketing and developers’ requirements decisions is also
recognized as a dilemma, especially since new requirements arrive
constantly. The use of a requirements database rather than a traditional,
monolithic requirements specification is also salient, as well as the need to
group requirements into bundles to ease requirements structuring and
work partitioning.

6. Conclusions

This paper has presented several challenging issues with regard to market-
driven RE, found during 14 interviews and a focus group meeting. We
have not aimed at generalisable results, as the qualitative research
approach is intended to characterise and to find variation rather than
similarity. This has affected the design of the study since the participating
companies had diverse characteristics (see appendix). Most of the
discovered challenges are of an organisational and social nature rather
than a technical one. Among the organisational challenges we find issues
such as organising projects so that co-ordination and communication is
enforced, and obtaining enough resources to carry out RE. Other social
issues focus on how to make marketing and development communicate
regarding requirements, and how to encourage people to change their way
of working, especially when implementing and improving RE in the
organisation. Among the technical issues we find issues regarding release
planning, techniques for requirements prioritisation and effort
estimation, as well as requirements traceability and interdependency
problems.

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 65

The results of the presented interview study are intended to be useful
to researchers in identification of new and industrially relevant research
areas. The results can also be useful to practitioners who want to learn
from empirically observed obstacles in market-driven software
development and base their improvement efforts on such knowledge. In
conclusion, the presented results of this study enhance previous industrial
surveys on requirements engineering by both corroborating previously
found empirical evidence and by adding previously unreported
observations to the understanding of industrial requirements engineering.

In Section 4.13 we identified four high importance challenges, which
were discussed frequently by all participants: Simple techniques for basic
needs, Writing understandable requirements, Requirements traceability
and interdependencies, and Release planning based on uncertain
estimates. Either one of these four challenges can be used as a starting
point for research hypotheses and research agendas because of their high
importance to the investigated companies. However, these four challenges
might not necessarily be the most important and cost-effective ones to
concentrate on in practice. Other research needs to be conducted to find
out which challenging areas that need most attention and support.

The presented study can be investigated further by increasing the
sample of participants with e.g. large- and medium-sized companies,
companies developing embedded products, and companies using an agile
development approach. These types of companies are only represented to
a small extent in the current study and could therefore widen the scope if
included in a future survey. In addition, it would be possible to combine
the conducted survey with a questionnaire, since the knowledge gained in
this study has provided a foundation for constructing closed questions.
Typical questions could regard e.g. which kind of development process
that is used, which RE tool that is used, which kind of specification
language that is used, how requirements traceability is handled, to what
extent requirements are invented in-house as opposed to elicited from the
market, which kind of requirements prioritisation technique that is used,
which kind of cost estimation technique that is used, etc. A questionnaire
of that kind could be sent to numerous companies with a market-driven
focus to get a comprehensive picture of the processes, tools and
techniques that are used in market-driven industry today.

66

Appendix
Table A. Summary of the interview instrument

Characterisation

1.1 Tell us about the company (number of employees, age, business area, etc.)

1.2 Tell us about the company’s product/products (time on the market, typical customer/end-user,
size of product projects, etc.)

1.3 Tell us about your position in the company (role, daily tasks, responsibility, etc.)

Process issues

2.1 What is the procedure when developing a product? (kind of process, activities performed, docu-
mentation developed, special cases, evaluations performed, etc.)

2.2 What is a “requirement” to you?

2.3 In what way are requirements handled? (requirements process, activities, etc.)

2.4 What challenges do you face when working with requirements? What has been successful
regarding requirements engineering?

2.5 How much resources are spent on requirements engineering? Continually or in the beginning?
How much time would be optimal?

2.6 What is a “good requirement” to you? And to the company? Is the quality of the requirements
assessed? How?

2.7 What kinds of decisions are taken during the development of a product? What kind of support
is needed in those decisions?

2.8 Is it possible to make decisions too late? What can be the effect in that case?

2.9 How is it decided what to include in the product? How are the requirements prioritised? What
is difficult when deciding what to include in the product?

Artefact issues

3.1 How are requirements documented? What information and attributes are documented about
the requirements?

3.2 What support and what tools do you use to document your requirements? What pros and cons
do these tools have?

3.3 How many requirements are handled in a typical project? Who suggests the requirements?

3.4 What kinds of dependencies between the requirements have you come across? Are dependencies
documented? Are dependencies actively looked for?

3.5 How do dependencies affect product development? How is it handled?

3.6 Do you group the requirements? How are the requirements groups handled during develop-
ment?

Part I

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 67

Ta
bl

e
B

. C
om

pa
ny

 c
ha

ra
ct

er
is

ti
cs

C
om

pa
ny

 A
C

om
pa

ny
 B

C
om

pa
ny

 C
C

om
pa

ny
 D

To
ta

l n
um

be
r

of
 e

m
pl

oy
ee

s
12

00
65

13
15

A
ge

20
5

5
2

Pr
od

uc
t i

n
fo

cu
s

So
ft

w
ar

e
de

ve
lo

pm
en

t t
oo

l
E

m
be

dd
ed

 s
of

tw
ar

e
w

it
h

fo
cu

s
on

im

ag
e

pr
oc

es
si

ng
. 3

 p
ro

du
ct

 li
ne

s.
So

ft
w

ar
e

de
ve

lo
pm

en
t

su
pp

or
t t

oo
l

fo
cu

s
on

 r
eq

ui
re

m
en

ts
 m

an
ag

em
en

t.
C

om
m

un
ic

at
io

n
to

ol
 fo

r
di

st
ri

bu
te

d
gr

ou
ps

 w
or

ki
ng

 w
it

h
so

ft
w

ar
e

de
ve

lo
p-

m
en

t.

C
us

to
m

er
So

ft
w

ar
e

de
ve

lo
pi

ng
 c

om
pa

ni
es

, m
os

tly

in
 th

e
te

le
co

m
 in

du
st

ry
.

C
on

su
m

er
 e

le
ct

ro
ni

cs
 r

et
ai

le
rs

 a
nd

 d
is

-
tr

ib
ut

or
s.

So
ft

w
ar

e
de

ve
lo

pi
ng

 c
om

pa
ni

es
.

Sa
fe

ty
 c

ri
ti

ca
l s

of
tw

ar
e

de
ve

lo
pi

ng
 c

om
-

pa
ni

es
.

E
nd

 u
se

r
D

ev
el

op
er

s
at

 s
of

tw
ar

e
de

ve
lo

pi
ng

co

m
pa

ni
es

.
B

an
ke

rs
, s

tu
de

nt
s,

 o
ff

ic
e

pe
rs

on
ne

l.
D

ev
el

op
er

s
an

d
m

an
ag

er
s

at
 s

of
tw

ar
e

de
ve

lo
pi

ng
 c

om
pa

ni
es

.
M

an
ag

er
s

an
d

de
ve

lo
pe

rs
 a

t s
af

et
y

cr
it

i-
ca

l s
of

tw
ar

e
de

ve
lo

pi
ng

 c
om

pa
ni

es
.

In
te

rv
ie

w
ee

(s
)*

1.
 R

eq
 e

ng
in

ee
r/

 p
ro

je
ct

 m
an

ag
er

 (
1)

2.
 P

ro
du

ct
 m

an
ag

er
 (

2)
1.

 P
ro

je
ct

 m
an

ag
er

 (
1)

2.
 P

ro
du

ct
 m

an
ag

er
 (

1)
1.

 F
ou

nd
er

 a
nd

 m
an

ag
in

g
di

re
ct

or
 (

1)
2.

 H
ea

d
of

 d
ev

el
op

er
s

(1
)

1.
 P

ro
je

ct
 m

an
ag

er
 (

1)

R
ol

e/
re

sp
on

si
-

bi
lit

y
of

 t
he

in

te
rv

ie
w

ee
(s

)

1.
 C

o-
or

di
na

te
 r

es
ou

rc
es

 a
nd

 c
la

ri
fy

,
de

fin
e

an
d

pr
io

ri
tis

e
re

qu
ir

em
en

ts
.

2.
 C

oo
rd

in
at

e
be

tw
ee

n
m

ar
ke

ti
ng

 a
nd

de

ve
lo

pm
en

t,
 e

lic
it

 r
eq

s
fr

om
 th

e
m

ar
-

ke
t

an
d

de
ci

de
 p

ro
du

ct
 e

vo
lu

tio
n.

1.
 I

nt
ro

du
ce

 p
ro

ce
ss

 a
nd

 b
re

ak
 d

ow
n

th
e

re
qu

ir
em

en
ts

 sp
ec

ifi
ca

ti
on

 in
 se

ve
ra

l
pa

ra
lle

l p
ro

je
ct

s.
2.

 C
oo

rd
in

at
e

be
tw

ee
n

m
ar

ke
ti

ng
,

de
ve

lo
pm

en
t

an
d

pr
od

uc
ti

on
. S

ug
ge

st

an
d

w
ri

te
 r

eq
ui

re
m

en
ts

.

1.
 P

ro
du

ct
 m

an
ag

em
en

t,
re

le
as

e
pl

an
-

ni
ng

, m
ar

ke
ti

ng
, a

nd
 s

al
es

.
2.

 R
eg

ul
ar

 d
ev

el
op

m
en

t t
as

ks
, a

llo
ca

te

w
or

k
be

tw
ee

n
de

ve
lo

pe
rs

, a
nd

 s
ug

ge
st

,
do

cu
m

en
t a

nd
 ti

m
e-

es
tim

at
e

re
qu

ir
e-

m
en

ts
.

1.
 P

ro
ce

ss
 r

es
po

ns
ib

ili
ty

 a
nd

 b
us

in
es

s
an

al
ys

is
, i

nv
ol

ve
d

in
 d

ai
ly

 d
ev

el
op

m
en

t
ta

sk
s.

R
el

ea
se

 s
iz

e
an

d
fr

eq
ue

nc
y

N
ew

 r
el

ea
se

 e
ve

ry
 6

 m
on

th
s

to
 in

cl
ud

e
ne

w
 r

eq
ui

re
m

en
ts

 a
nd

 c
or

re
ct

 d
et

ec
te

d
er

ro
rs

. I
nv

ol
ve

s
30

-6
0

pa
rt

-t
im

e
em

pl
oy

ee
s

in
 th

e
de

ve
lo

pm
en

t o
f t

he

pr
od

uc
t i

n
fo

cu
s.

In
cl

ud
es

 2
5-

30
 e

m
pl

oy
ee

s
fo

r
a

ne
w

pr

od
uc

t
lin

e
an

d
5-

15
 e

m
pl

oy
ee

s
fo

r
a

ne
w

 v
er

si
on

 o
f e

xi
st

in
g

pr
od

uc
t.

In
it

i-
at

ed
 b

ec
au

se
 o

f n
ew

 r
eq

ui
re

m
en

ts
 o

r
w

he
n

m
an

y
er

ro
rs

 a
re

 d
et

ec
te

d.

N
ew

 r
el

ea
se

 a
pp

ro
xi

m
at

el
y

ev
er

y
6

m
on

th
s.

 E
ac

h
re

le
as

e
di

vi
de

d
in

to
 fu

nc
-

ti
on

s,
 w

hi
ch

 in
vo

lv
es

 1
-3

 e
m

pl
oy

ee
s

fo
r

1-
10

 w
ee

ks
.

T
he

 p
ro

du
ct

 in
 fo

cu
s

in
vo

lv
es

 7

em
pl

oy
ee

s
at

 2
 lo

ca
ti

on
s.

 A
t

le
as

t o
ne

re

le
as

e
ev

er
y

m
on

th
.

Pr
oc

es
s

D
ef

in
ed

 b
ut

 n
ot

 d
oc

um
en

te
d,

 fo
llo

w
ed

th

an
ks

 to
 th

e
ex

pe
ri

en
ce

d
st

af
f.

In
tr

od
uc

in
g

pr
oc

es
s.

 T
he

 a
d

ho
c

pr
oc

-
es

s
w

or
ks

 th
an

ks
 t

o
th

e
ex

pe
ri

en
ce

d
st

af
f.

E
la

bo
ra

te
. D

oc
um

en
te

d
an

d
in

te
gr

at
ed

in

 th
e

to
ol

 t
he

y
de

ve
lo

p
an

d
us

e.
 B

as
ed

on

 r
eq

ui
re

m
en

ts
 s

ta
tu

s.
 I

nc
re

m
en

ta
l

de
ve

lo
pm

en
t

w
it

hi
n

ea
ch

 r
el

ea
se

.

E
la

bo
ra

te
. E

xt
re

m
e

Pr
og

ra
m

m
in

g,
 p

ai
r

pr
og

ra
m

m
in

g
ex

cl
ud

ed
. I

nc
re

m
en

ta
l

de
ve

lo
pm

en
t w

it
hi

n
ea

ch
 r

el
ea

se
.

R
eq

ui
re

m
en

ts

do
cu

m
en

ta
-

tio
n

N
at

ur
al

 la
ng

ua
ge

. S
up

po
rt

 s
ys

te
m

 d
at

a-
ba

se
 w

he
re

 c
us

to
m

er
s

an
d

de
ve

lo
pe

rs

ad
d

re
qu

ir
em

en
ts

. A
 w

eb
 s

ite
 w

it
h

th
e

on
es

 fo
r t

he
 c

ur
re

nt
 re

le
as

e
w

ri
tt

en
 o

n
a

hi
gh

 a
bs

tr
ac

ti
on

 le
ve

l.

N
at

ur
al

 la
ng

ua
ge

, s
ta

te
 c

ha
rt

s
an

d
U

M
L

 in
 th

e
re

qu
ir

em
en

ts
 sp

ec
ifi

ca
ti

on
.

C
ha

ng
es

 t
o

th
e

sp
ec

ifi
ca

ti
on

 a
re

 r
ar

el
y

do
cu

m
en

te
d.

N
at

ur
al

 la
ng

ua
ge

. D
at

ab
as

e
in

cl
ud

ed
 in

th

e
to

ol
 w

he
re

 c
us

to
m

er
s a

nd
 e

m
pl

oy
ee

s
ca

n
ad

d
re

qu
ir

em
en

ts
.

N
at

ur
al

 la
ng

ua
ge

. C
us

to
m

er
s’

re
qu

ir
e-

m
en

ts
 s

ug
ge

st
io

ns
 o

n
vi

rt
ua

l s
to

ry

ca
rd

s,
 w

hi
ch

 c
an

 b
e

fo
llo

w
ed

 th
ro

ug
h

th
e

pr
oc

es
s.

Pr
oj

ec
t

or

pr
oc

es
s

ev
al

ua
-

tio
n

N
ot

 r
eg

ul
ar

ly
. H

av
e

do
w

ns
iz

ed
 t

he

pr
oc

es
s

bu
t

im
pr

ov
ed

 r
eq

ui
re

m
en

ts

aw
ar

en
es

s.

Pr
oc

es
s

un
de

r
co

ns
tr

uc
ti

on
. H

av
e

in
cr

ea
se

d
ov

er
al

l s
ys

te
m

 a
nd

 p
ro

du
ct

aw

ar
en

es
s,

 e
.g

. w
it

hi
n

re
qu

ir
em

en
ts

 a
nd

te

st
in

g.
 In

tr
od

uc
in

g
pr

oj
ec

t e
va

lu
at

io
ns

.

In
cl

ud
ed

 in
 th

e
pr

oc
es

s.
 E

va
lu

at
io

n
oc

cu
rs

 a
ft

er
 e

ac
h

re
le

as
e

an
d

ha
s

e.
g.

ad

ju
st

ed
 t

he
 s

ta
tu

s
ra

ng
e.

W
ee

kl
y

m
ee

tin
gs

 to
 s

um
 u

p
th

e
w

ee
k’

s
pr

ob
le

m
s.

 I
nd

iv
id

ua
l t

im
e

su
rv

ei
lla

nc
e.

68

Ta
bl

e
B

. C
om

pa
ny

 c
ha

ra
ct

er
is

ti
cs

C
om

pa
ny

 E
C

om
pa

ny
 F

C
om

pa
ny

 G
C

om
pa

ny
 H

To
ta

l n
um

be
r

of
 e

m
pl

oy
ee

s
12

46
0

30
0-

40
0

26

A
ge

1
2.

5
18

16

Pr
od

uc
t i

n
fo

cu
s

So
ft

w
ar

e
de

ve
lo

pm
en

t
an

d
vi

su
al

iz
a-

tio
n

to
ol

 fo
r

in
te

gr
at

io
n

of
 e

le
ct

ro
ni

c
bu

si
ne

ss
 p

ro
ce

ss
es

.

Sw
itc

h
fo

r
su

pp
or

ti
ng

 m
ob

ile
 te

le
co

m
-

m
un

ic
at

io
n.

N

et
w

or
k

co
m

m
un

ic
at

io
n

so
lu

ti
on

s
fo

r
pr

in
te

rs
.

So
ft

w
ar

e
to

ol
 t

o
su

pp
or

t
sa

le
s

co
nf

ig
u-

ra
ti

on
 fo

r
la

rg
e

pr
od

uc
ts

.

C
us

to
m

er
La

rg
e

co
m

pa
ni

es
 t

ha
t

ne
ed

 im
pr

ov
ed

bu

si
ne

ss
 p

ro
ce

ss
es

.
Te

le
co

m
m

un
ic

at
io

n
op

er
at

or
s.

Sy
st

em
s

ad
m

in
is

tr
at

or
s

at
 c

om
pa

ni
es

th

at
 u

se
 p

ri
nt

er
s.

C
om

pa
ni

es
 w

it
h

la
rg

e
co

nf
ig

ur
ab

le

pr
od

uc
ts

.

E
nd

 u
se

r
D

ev
el

op
er

s
of

 e
le

ct
ro

ni
c

bu
si

ne
ss

 p
ro

c-
es

se
s.

U
se

rs
 o

f m
ob

ile
 p

ho
ne

 t
ec

hn
ol

og
y.

Pr
in

te
r

us
er

s.
Sa

le
s

pe
rs

on
ne

l.

In
te

rv
ie

w
ee

(s
)*

1.
 F

ou
nd

er
 a

nd
 m

an
ag

in
g

di
re

ct
or

 (
1)

2.
 P

ro
du

ct
 m

an
ag

er
 (

2)
1.

 S
ys

te
m

 m
an

ag
er

 (
2)

2.
 P

ro
ce

ss
 e

ng
in

ee
r

(2
)

1.
 S

of
tw

ar
e

de
ve

lo
pe

r
(2

)
1.

 C
us

to
m

er
 r

el
at

io
ns

 (
2)

2.
 P

ro
je

ct
 m

an
ag

er
 (

2)

R
ol

e/
re

sp
on

si
-

bi
lit

y
of

 t
he

in

te
rv

ie
w

ee
(s

)

1.
 M

ar
ke

ti
ng

, c
us

to
m

er
 c

on
ta

ct
s,

 a
nd

re

le
as

e
pl

an
ni

ng
.

2.
 P

ro
du

ct
 a

nd
 t

ec
hn

ol
og

y
re

sp
on

si
bi

l-
ity

. H
ea

d
of

 d
ev

el
op

m
en

t,
co

nt
ro

l t
he

ov

er
al

l d
ev

el
op

m
en

t
pr

oc
es

s.

1.
 C

oo
rd

in
at

e
be

tw
ee

n
pr

od
uc

t m
an

-
ag

em
en

t
an

d
de

ve
lo

pm
en

t.
 R

ef
in

e
th

e
hi

gh
 le

ve
l r

eq
s

in
to

 d
et

ai
le

d
re

qs
.

2.
 D

ef
in

e
an

d
im

pr
ov

e
th

e
R

E
 p

ro
ce

ss
.

Pr
oc

es
s

in
tr

od
uc

ti
on

. S
up

po
rt

 th
e

pr
oj

ec
ts

 w
it

h
m

et
ho

d/
 p

ro
ce

ss
 r

el
at

ed

is
su

es
.

1.
 R

eg
ul

ar
 d

ev
el

op
m

en
t t

as
ks

; p
ar

ti
ci

-
pa

te
 in

 a
na

ly
si

s,
 d

es
ig

n
an

d
im

pl
em

en
t

re
qu

ir
em

en
ts

 (
co

di
ng

),
 e

tc
.

1.
 C

us
to

m
er

 r
es

po
ns

ib
ili

ty
 fo

r
th

ei
r

la
rg

es
t

cu
st

om
er

. E
lic

it
an

d
an

al
ys

e
re

qu
ir

em
en

ts
.

2.
 R

eg
ul

ar
 d

ev
el

op
m

en
t

ta
sk

s,
 s

uc
h

as

an
al

ys
is

 a
nd

 d
es

ig
n,

 c
od

in
g,

 e
tc

. C
on

-
tr

ol
 a

nd
 p

la
n

th
e

pr
oj

ec
t.

R
el

ea
se

 s
iz

e
an

d
fr

eq
ue

nc
y

N
o

re
gu

la
r

re
le

as
es

, p
ut

s
to

ge
th

er
 a

pr

oj
ec

t i
nc

lu
di

ng
 a

ll
em

pl
oy

ee
s

w
he

n
m

an
y

bu
gs

 o
r

re
qu

ir
em

en
ts

 h
av

e
be

en

id
en

ti
fie

d.

R
eg

ul
ar

 r
el

ea
se

s,
 a

pp
ro

xi
m

at
el

y
on

ce
 a

ye

ar
 (

ea
rl

ie
r

ev
er

y
6t

h
m

on
th

).
 In

vo
lv

es

ov
er

 1
00

 d
ev

el
op

er
s,

 d
iv

id
ed

 in
to

te

am
s.

N
o

re
gu

la
r

re
le

as
es

, p
ut

s
to

ge
th

er
 a

pr

oj
ec

t
on

 d
em

an
d.

 I
nv

ol
ve

s
4-

8
pe

r-
so

ns
 a

nd
 la

st
 a

bo
ut

 6
 m

on
th

s.

A
im

s
at

 r
el

ea
si

ng
 tw

o
ne

w
 v

er
si

on
s

pe
r

ye
ar

. I
nv

ol
ve

s
6-

7
pe

rs
on

s.

Pr
oc

es
s

N
ot

 d
oc

um
en

te
d,

 b
ut

 t
he

 e
xp

er
ie

nc
ed

st

af
f k

no
w

s
th

e
ac

tiv
iti

es
 b

y
he

ar
t.

E
la

bo
ra

te
 a

nd
 d

ef
in

ed
. A

 R
U

P
pr

oc
es

s
es

pe
ci

al
ly

 a
dj

us
te

d
to

w
ar

ds
 th

ei
r

ne
ed

s.

In
cr

em
en

ta
l c

om
bi

ne
d

w
it

h
to

llg
at

e-
ba

se
d

pr
oc

es
s.

D
ef

in
ed

 a
nd

 d
oc

um
en

te
d.

 H
av

e
a

de
ve

lo
pm

en
t m

an
ua

l.
D

ef
in

ed
 w

it
h

do
cu

m
en

ta
ti

on
 t

em
-

pl
at

es
.

R
eq

ui
re

m
en

ts

do
cu

m
en

ta
-

ti
on

N
at

ur
al

 la
ng

ua
ge

 in
 t

he
 r

eq
ui

re
m

en
ts

sp

ec
ifi

ca
ti

on
s

an
d

U
M

L
at

 a
 la

te
r

st
ag

e.
N

at
ur

al
 la

ng
ua

ge
 a

nd
 U

M
L,

 e
sp

ec
ia

lly

in
 la

te
r

st
ag

es
. S

ev
er

al
 d

oc
um

en
ts

, f
or

va

ri
ou

s
le

ve
ls

 o
f d

et
ai

l e
.g

. o
ne

 fo
r

U
se

C

as
es

.

N
at

ur
al

 la
ng

ua
ge

. H
av

e
tw

o
do

cu
m

en
ts

fo

r
re

qu
ir

em
en

ts
 o

n
di

ff
er

en
t l

ev
el

s
of

de

ta
il.

N
at

ur
al

 la
ng

ua
ge

 to
ge

th
er

 w
it

h
us

e
ca

se
s,

 a
nd

 o
th

er
 U

M
L

di
ag

ra
m

s
w

he
n

ne
ed

ed
. A

ll
re

qs
 a

re
 d

oc
um

en
te

d
in

E

xc
el

, a
nd

 fo
r

ea
ch

 s
el

ec
te

d
re

qs
 a

 fu
nc

-
ti

on
al

 s
pe

ci
fic

at
io

n
is

 m
ad

e.

Pr
oj

ec
t

or

pr
oc

es
s

ev
al

ua
-

ti
on

N
ot

 r
eg

ul
ar

ly
 b

ut
 im

pr
ov

em
en

ts
 id

ea
s

ar
e

di
sc

us
se

d.
R

eg
ul

ar
 e

va
lu

at
io

ns
. H

av
e

st
af

f e
sp

e-
ci

al
ly

 r
es

po
ns

ib
le

 fo
r

im
pr

ov
in

g
th

e
pr

oc
es

s
(i

nt
er

vi
ew

ee
 2

).

N
ot

 r
eg

ul
ar

ly
. T

he
 p

ro
je

ct
 m

an
ag

er

ad
ap

ts
 th

e
pr

oc
es

s t
o

th
e

pr
oj

ec
t-

sp
ec

ifi
c

ne
ed

s.

N
ot

 r
eg

ul
ar

ly
, a

s
pa

rt
 o

f t
he

 d
ev

el
op

-
m

en
t p

ro
ce

ss
, b

ut
 lo

ts
 o

f i
m

pr
ov

em
en

ts

on
 th

e
w

ay
.

*T
he

 in
te

rv
ie

w
ee

s
ar

e
m

ar
ke

d
w

it
h

a
(1

)
if

pa
rt

ic
ip

at
in

g
in

 t
he

 fi
rs

t p
ar

t
of

 t
he

 s
tu

dy
 a

nd
 a

 (2
) i

f p
ar

ti
ci

pa
ti

ng
 in

 th
e

se
co

nd
 p

ar
t o

f t
he

 s
tu

dy

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 69

PART II: EVALUATION OF REQUIREMENTS PRIORITISATION TECHNIQUES

Paper 2. Pair-wise Comparisons versus Planning Game Partitioning - Experiments on
Requirements Prioritisation Techniques.
Lena Karlsson, Thomas Thelin, Björn Regnell, Patrik Berander, Claes Wohlin
Accepted for publication in Empirical Software Engineering Journal, 2006.

Paper 3. Evaluating the Practical Use of Different Measurement Scales in Requirements
Prioritisation.
Lena Karlsson, Martin Höst, Björn Regnell
Proceedings of the 5th ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE’06), Rio de Janeiro, Brazil, September 2006.

Abstract

The process of selecting the right set of requirements for a product release
is dependent on how well the organisation succeeds in prioritising the
requirements candidates. This part of the thesis is based on two papers
regarding experimentation on requirements prioritisation techniques.

The first paper describes two consecutive controlled experiments
comparing different requirements prioritisation techniques with the
objective of understanding differences in time-consumption, ease of use
and accuracy. Among the three investigated techniques, the Tool-
supported pair-wise comparisons is the fastest, and the Planning game is
the second fastest technique. The techniques do not differ regarding ease
of use. The manual Pair-wise comparison technique is the most time-
consuming and least easy to use. The techniques do not differ
significantly regarding accuracy.

The second paper presents an empirical investigation of differences
between the measurement scales used in requirements prioritisation. The
ratio scale is richer than the ordinal scale as it provides more information,
but ratio scale techniques are often more complex to use. A measure is
presented, describing the characteristics of the ratio scale prioritisation
results. It can be used to compare results from different prioritisation
sessions. In addition, possibilities for using the cost-value approach with
ordinal scale data are evaluated with promising results.

II

70

1. Introduction

In market-driven software development, products are developed in several
consecutive releases intended for an open market. When requirements are
elicited from several stakeholders on an open market, it often yields more
requirements than can be implemented at once. The requirements need
to be prioritised so that the most significant ones are met by the earliest
product releases (Wiegers, 1999; Siddiqi and Shekaran, 1996).

During a project, decision-makers in software development need to
make many different decisions regarding the release plan. Issues such as
available resources, milestones, conflicting stakeholder views, available
market opportunities, risks, product strategies, and costs need to be taken
into consideration when planning future releases. In particular, the cost-
value approach takes both development cost and customer value into
account. As software development companies have limited resources, it is
essential to choose the requirements that give the best return on
investment, in terms of customer satisfaction. Unfortunately, there is a
lack of simple and effective techniques for requirements prioritisation,
which could be used for release planning. If an organisation fails to
determine the most important requirements, it risks that the developed
system does not meet customers’ needs and expectations (Karlsson and
Ryan, 1997).

The software literature includes many sources that state the
importance of prioritising requirements. In the field study by Lubars et al.
(1993), several companies expressed a need for guidance in assigning,
modifying and communicating requirements priorities. Lehtola and
Kauppinen (2004) states that in many companies requirements
prioritisation practices are still mostly informal. Siddiqi and Shekaran
(1996) identified requirements prioritisation as an important, though
disregarded, issue in RE research at that point in time. It seems as
requirements prioritisation still need further attention in research.

There are several different techniques for requirements prioritisation.
Some techniques result in priorities on an ordinal scale, and provide the
ranked order among requirements, e.g. the Numeral assignment
(Karlsson, 1996) and the Planning game (Beck, 2005). Other techniques
provide the result on a ratio scale, and state how much more important
one requirement is than another. Examples of these techniques are the
Pair-wise comparisons (Saaty, 1980), Wiegers’ method (Wiegers, 1999),
and the $100 test (Leffingwell and Widrig, 2000).

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 71

Scales that contain more information than others are called richer
(Fenton and Pfleeger, 1997). Hence, the ratio scale is richer than the
ordinal scale as it provides the relative distance between ordered
requirements in addition to the ranks. Techniques providing the result on
a ratio scale are often more time-consuming and complex to use than
techniques based on an ordinal scale (Lehtola and Kauppinen, 2004).
Therefore it is interesting to investigate whether or not the added
information is valuable to the decision-maker.

Part II aims at investigating differences between different requirements
prioritisation techniques and different scales used in requirements
prioritisation. This is done in two studies: one describing two
experiments comparing three prioritisation techniques3, and one using
archive analysis to investigate results from prioritisation sessions. The two
studies investigates different research questions and have different goals
and therefore the results are discussed and concluded in separate sections,
while the introduction and related work is described in joint sections.

The first study aims at comparing three different requirements
prioritisation techniques: Tool-supported pair-wise comparisons,
Planning game, and manual Pair-wise comparisons. Ratio scale
techniques, such as the Pair-wise comparisons, are more complex to use
than ordinal scale techniques, such as the Planning game. Therefore it
would be easier and more efficient to use prioritisation techniques based
on the ordinal scale, however, they might not be sufficient as a basis for
decision-making. The second study investigates the difference in decision-
support between ordinal scale techniques and ratio scale techniques. The
study suggests an approach to measure the skewness of the ratio scale
distribution and a way to use the cost-value approach on ordinal scale
data. Both studies are based on empirical data.

Part II is divided as follows. This introduction is followed by Section 2,
describing related work on requirements prioritisation, including
different techniques, different measurement scales, and the cost-value
approach. Thereafter, the two studies (Paper 2 and 3) follow in Section 3
and 4. Finally, Section 5 provides some closing remarks on requirements
prioritisation based on the findings in the two studies.

3. Information and design is available at http://serg.telecom.lth.se/research/packages/ReqPrio

72

2. Related Work

This section describes some related work in the areas of requirements
prioritisation techniques, measurement scales for requirements
prioritisation, and the cost-value approach.

2.1 Requirements Prioritisation

There are several different techniques to choose from when prioritising
requirements. Some are based on determining the absolute importance of
the candidate requirements, by e.g., assigning each requirement a certain
priority such as essential, conditional or optional (IEEE, 1998). Other
techniques are relative and require a person to determine which
requirement is more important. Thereby, all requirements get different
priorities, whereas absolute techniques may assign several requirements to
the same priority. Relative approaches tend to be more accurate and
informative than absolute ones (Karlsson, 1996). One relative technique
is the $100-test (Leffingwell and Widrig 2000) and another one is Pair-
wise comparisons (Karlsson and Ryan, 1997), see below. In addition,
there are several techniques aimed at release planning, in particular when
several stakeholders are involved, such as EVOLVE (Greer and Ruhe,
2004) and Quantitative WinWin (Ruhe et al., 2002). Both techniques are
aimed at release planning of incremental software development. A
selection of techniques for requirements prioritisation is described below.
For a thorough review of these and other prioritisation techniques, see
Berander and Andrews (2005), Lehtola and Kauppinen (2004) and
Moisiadis (2002).

2.1.1 Planning Game (PG)

PG is used in planning and deciding what to develop in an Extreme
Programming (XP) project. In PG, requirements (written on so called
story cards) are elicited from the customer. When the requirements have
been elicited, they are prioritised by the customer into three different
piles: (1) those without which the system will not function, (2) those that
are less essential but provide significant business value, and (3) those that
would be nice to have (Beck, 2005).

At the same time, the developers estimate the time required to
implement each requirement and, furthermore, sort the requirements by

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 73

risk into three piles: (1) those that they can estimate precisely, (2) those
that they can estimate reasonably well, and (3) those that they cannot
estimate at all.

Based on the time estimates, or by choosing the cards and then
calculating the release date, the customers prioritise the requirements
within the piles and then decide which requirements that should be
planned for the next release (Newkirk and Martin, 2001). Thus, the
technique uses a sorting algorithm, similar to numeral assignment
(Karlsson, 1996), to partition the requirements into one of three piles.
Then, the requirements within each pile are compared to each other in
order to achieve a sorted list.

The result of the PG technique is an ordered list of requirements. This
means that the requirements are represented as a ranking on an ordinal
scale, without any information about how much more important one
requirement is than another.

In the investigation performed by Karlsson et al. (1998) a similar
technique, called Priority groups, was investigated. In the Priority groups
technique, requirements are put into one of three groups, corresponding
to high, medium and low priority. In groups with more than one
requirement, three new subgroups are created until no group has more
than one requirement. Thereby an ordered list of requirements is
compiled. Priority groups was given the lowest subjective ranking
(regarding ease of use, reliability and fault tolerance) of the six
investigated prioritisation techniques in Karlsson et al. (1998). The
technique was ranked as 4th of the six techniques regarding the objective
measure total time-consumption.

2.1.2 Pair-Wise Comparisons (PWC)

Pair-wise comparisons involves comparing all possible pairs of
requirements, in order to determine which of the two requirements is of
higher priority, and to what extent (Karlsson and Ryan, 1997). If there are
n requirements to prioritise, the total number of comparisons to perform
is n(n-1)/2. For each requirement pair the decision-maker estimates the
relation between the requirements on the scale {9, 7, 5, 3, 1} where 1
represent equal importance and 9 represent one requirement being much
more important than the other.

This relation results in a dramatically increasing number of
comparisons as the number of requirements increases. However, due to

74

redundancy of the pair-wise comparisons, PWC is rather insensitive to
judgement errors. Furthermore, PWC includes a consistency check where
judgement errors can be identified and a consistency ratio can be
calculated.

PWC is used in the Analytic Hierarchy Process (AHP) (Saaty, 1980).
In AHP it is possible to take the system perspective into account, so that a
system structure of related requirements can be abstracted into a hierarchy
that describes requirements on different abstraction levels. Hence, AHP
can take the whole system into account during decision-making since it
prioritises the requirements on each level in the hierarchy (Saaty, 1980).

In the investigation by Karlsson et al. (1998), the authors conclude
that PWC (there called AHP) was the most promising approach because
they found it trustworthy and fault tolerant. It also includes a consistency
check and it is based on a ratio scale, i.e., it includes the priority distance.
PWC was the only technique in the evaluation that satisfied all these
criteria. However, because of the rigour of the technique, it was also the
most time-consuming in the investigation.

In another empirical investigation of prioritisation techniques
performed by Lehtola and Kauppinen (2004), PWC was compared to
Wiegers’ method (Wiegers, 1999). The authors conclude that “users
found it difficult to estimate how much more valuable one requirement is
than another” and that some users found pair-wise comparisons pointless
as they felt it would have been easier for them to just select the most
important requirements (Lehtola and Kauppinen, 2004).

2.1.3 Tool-Supported PWC (TPWC)

Since the major disadvantage of PWC is the time-consumption for large
problems, different investigations have been performed in order to
decrease the number of comparisons, and thus the time needed (Carmone
et al., 1997; Harker, 1987; Karlsson et al., 1997; Shen et al., 1992). The
results of these have been that it is possible to reduce the number of
comparisons with as much as 75%. Techniques for reducing the number
of comparisons are called Incomplete Pair-wise Comparisons (IPC). The
techniques are based on providing stopping rules, indicating when
additional pair-wise comparisons are no longer necessary (Karlsson et al.,
1997). However, when reducing the number of comparisons, the number
of redundant comparisons is also reduced. Thereby, the sensitivity for
judgemental errors increases (Karlsson et al., 1998).

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 75

The PWC technique described in Section 2.1.2 has been built into a
requirements management (RM) tool called Focal Point (Telelogic,
2006). The tool guides the user to apply pair-wise comparisons between
requirements in a similar manner as the PWC technique. The tool
contains an IPC algorithm and stopping rules that indicate to the user
when the necessary number of comparisons has been performed. The
number of required comparisons is reduced to the approximate size 2n,
where n is the number of requirements. Thereby, the time-consumption is
reduced radically in comparison with the manual PWC.

The tool displays one requirement pair at the time to the user, possibly
including descriptions of the requirements. The prioritisation is based on
a ratio scale, and applies pair-wise comparisons between requirements
based on some criteria chosen by the user beforehand. The user selects
one of the nine possible “more than”, “equal” or “less than” symbols
between the two requirements, as illustrated in Figure 1. When the user
clicks “ok”, the next pair of requirements is displayed. In that manner the
focus is retained, since only one task at the time is presented to the user.
As the redundancy is reduced by the IPC algorithm, it affects the quality
of the results. The tool includes a consistency check that identifies
inconsistencies among the requirement priorities. The user may then
revise the inconsistent comparisons until an acceptable consistency is
achieved.

The tool also incorporates solutions for RM and project portfolio
management and can visualise the prioritisation results in various charts
and diagrams.

2.1.4 Numeral Assignment

The Numeral assignment technique is based on the principle that each
requirement is assigned a symbol representing the requirement’s perceived
importance. Several variants based on the Numeral assignment technique
exist, e.g. classifying requirements as mandatory, desirable or inessential
(Karlsson, 1996). Another way to classify requirements is to divide them

Figure 1. Part of the user interface in the tool used for TPWC

76

into essential, conditional or optional requirements, as suggested by the
IEEE (1998). Furthermore, it would be possible to give each requirement
a number e.g. between 1 and 5, where requirements with a 5 are the most
important ones (Karlsson, 1996). Classifying requirements according to
Numeral assignment does not give us information about the relation
between the requirements in each class, thus several requirements may
appear equally valuable.

2.1.5 $100 Test

In the $100 test, each participant is given $100 in fictional money to
distribute between requirements. Each participant is asked to write down
on a sheet how much of this money is to be spent on each requirement.
Then a facilitator tabulates the results and provides an ordered ranking of
requirements (Leffingwell and Widrig, 2000). The total amount of
money spent on each requirement provides us with a relative difference
between the different requirements, i.e. the results are obtained on a ratio
scale. The technique is particularly useful for calculating a cumulative
vote based on several participants’ views.

2.1.6 Wiegers’ Method

According to Wiegers’ method, the priority of a requirement can be
calculated by dividing the value of a requirement with the sum of costs
and technical risks associated with implementing it (Wiegers, 1999).
Typical participants are the project manager, key customer representatives
and development representatives. The resulting priorities are on a ratio
scale.

2.2 Theory of Measurement Scales

In the 50s S.S. Stevens proposed properties of measurement systems and
described four different scale types: Nominal, Ordinal, Interval and Ratio,
each of which possesses different properties of measurement systems
(Fenton and Pfleeger, 1997). The scale types are presented in order of
richness, i.e. the second one is said to be richer than the first one as all
relations in the second one are contained in the first (Fenton and Pfleeger,
1997). This section describes these four different scale types in more
detail.

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 77

2.2.1 Nominal Scale

The nominal scale is the most primitive of the four scale types and
includes some kind of categorisation or classification. All objects are
grouped into subgroups and each subgroup is assigned a certain name or
number. No object is allowed to belong to more than one subgroup and
there is no ordering among the classes and no notion of magnitude
associated with the numbers or symbols (Fenton and Pfleeger, 1997).
Requirements grouped according to which sub systems they concern is an
example of nominal classification.

The only statistics to be gathered on this scale is frequency, i.e. the
number of objects in each group. The mode can be calculated, but
not the median or mean.

2.2.2 Ordinal Scale

The ordinal scale can be used to enhance the nominal scale with
information about the ordering of classes or categories. This is the case in
Numeral assignment, when each requirement is classified according to its
value and assigned to e.g. the mandatory, desirable, or inessential
(Karlsson, 1996) group. Priorities can also be measured using numbers
such as 1, 2, 3, where the requirements with highest priority are assigned a
1. In addition, requirements within the groups can be ranked so that an
ordered list of requirements is received. This scheme is used in the
Planning game.

The numbers associated with the requirements represent ranking only,
so arithmetic operations, such as addition and multiplication, have no
meaning (Fenton and Pfleeger, 1997). Statistics to be used on ordinal
scales are calculation of the median and non-parametric statistics.

2.2.3 Interval Scale

This scale type carries information about the size of the intervals between
the ordered classes, so that we can in some sense understand the jump
from one class to another. An interval scale preserves order, as with an
ordinal scale, and differences – but not ratios. The interval scale does not
have any apparent application in requirements engineering.

78

2.2.4 Ratio Scale

The richest of the four scale types is the ratio scale, as it possesses
ordering, size of intervals and ratios between entities. There is a zero
element, representing a total lack of the attribute and measurement start
at zero. This scale type is used in e.g. the Pair-wise comparisons. The ratio
scale provides not only ordering of requirements, but also the relative
distance between ordered requirements, and states how much more
important one requirement is than another. All arithmetic can be applied
to classes on this scale. Both parametric and non-parametric statistics can
be performed on ratio scale data, and the mean can be calculated.

2.3 Cost-Value Approach

When prioritising requirements, it is often not enough to prioritise only
how much value the requirement has to the customers. Often other
factors such as risk, time, cost and requirements interdependencies should
be considered before deciding if a requirement should be implemented
directly, later, or not at all. For example, if a high-priority requirement
would cost a fortune, it might not be as important for the customer as the
customer first thought (Lauesen, 2002). This means that it is important
to find those requirements that provide much value for the customers at
the same time as they cost as little as possible to develop.

Wiegers (1999) suggests that the value of a requirement is balanced
against not just its cost, but also any implications it has for the
architectural foundation and future evolution of the product. He also
proposes that the value is seen as being dependent both on the value it
provides to the user and the penalty incurred if the requirement is absent.

Karlsson and Ryan (1997) use PWC as an approach for prioritising
regarding both value and cost in order to implement those requirements
that give most value for the money. The cost-value approach can visualise
the value-to-cost ratio between the requirements in a cost-value diagram.

The cost-value diagram is used to determine which requirements have
a high value-to-cost ratio and which do not (Karlsson and Ryan, 1997).
When using the ratio scale there are different ways to determine from the
cost-value diagram the requirements with high contribution to the
product, i.e. with a high value-to-cost ratio. Similarly, it is possible to find
the requirements with a low contribution to the product, i.e. with a low
value-to-cost ratio. The cost-value diagram is often divided into three

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 79

separate areas, marked A, B, and C, below. The two main options to
determine these areas are shown in Figure 2. Option (a) is to draw lines so
that one third of the requirements end up in each area (A, B and C) and
option (b) is to draw lines so that requirements with a value-to-cost ratio
higher than 2 end up in area A, and the ones with a value-to-cost ratio
lower than 0.5 end up in area C. Then area B will include the
requirements in between. Option (a) is utilised in the commercial tool
(Focal Point) used in the experiment assignments described below, and
option (b) is presented in e.g. (Karlsson and Ryan, 1997). In both cases,
the lines start in the origin of the diagram and are drawn diagonally
through the diagram.

Requirements in area A are high contributors and should be
implemented as soon as possible, as they are valuable but not expensive to
implement. Requirements in area C are low contributors and too
expensive to implement regarding their low customer value.
Requirements in area B are medium contributors and have to be analysed
further. When using the ordinal scale, the described procedures are not
natural. Drawing lines from the origin of the diagram is not applicable, as
the zero does not have any meaning in the ordinal scale, i.e. no
requirement can be ranked as zero. As stated before, it is not valid to use
arithmetic such as division and multiplication, and therefore the value-to-
cost ratio is not feasible when using ranks.

A more feasible option for the ordinal scale would be to divide the
graph into a number of squares by drawing vertical and horizontal lines
through the graph. Since common techniques such as the Planning game
and Numeral assignment involve dividing the requirements into three
groups for each criterion, this could also be applied in the cost-value
diagram. It would result in nine equally large squares based on the ranks,

Figure 2. Option (a): One third of the
requirements in each area

Option (b): Lines are drawn
regarding the value-to-cost ratio

80

as shown in Figure 3. We suggest that the requirements in areas denoted A
are the high contributors that should be implemented first due to their
high value and low cost. The requirements in areas denoted C are low
contributors and should be implemented last or perhaps not at all.
Requirements in areas B are medium contributors and need further
investigation.

Figure 3. Ordinal scale cost-value diagram

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 81

3. Pair-wise Comparisons versus Planning
Game Partitioning - Experiments on
Requirements Prioritisation Techniques

This section presents the two experiments described in Paper 2. The first
of the two experiments is also presented in Paper 13.

3.1 Background

Our goal is to analyse and compare requirements prioritisation techniques for
the purpose of gaining increased understanding of the techniques with respect
to their time-consumption, ease of use, and accuracy from the point of view of
the decision-maker. The study describes two consecutive experiments
aimed at comparing the three requirements prioritisation techniques
Planning game, Pair-wise comparisons, and Tool-supported pair-wise
comparisons, see Table 1.

The section is structured as follows. Section 3.2 describes the first of
the two experiments, which compares a rudimentary prioritisation
technique (Planning game) with a more elaborate one (Pair-wise
comparisons). As the Pair-wise comparisons turned out to be very time-
consuming, a majority of the subjects found it less easy to use and most
subjects even found it less accurate, the second experiment was designed
to investigate if the technique would benefit from tool-support. In the
second experiment, prioritisation with a commercial RM tool (Focal
Point) was compared to prioritisation with the manual Planning game,
which is described in Section 3.3. The results from the second experiment
indicate that the Tool-supported pair-wise comparisons is a faster
technique than the Planning game while the ease of use and accuracy are

Table 1. Details about the three techniques compared in the experiments

Technique Abbreviation Prioritisation algorithm

Pair-wise comparisons PWC Exhaustive pair-wise comparisons between
requirements

Planning game PG Sorting algorithm to partition and rank
requirements

Tool-supported pair-wise
comparisons

TPWC Tool-support for PWC, reduced number of
comparisons

82

equally high. Section 3.4 discusses the results and compares the two
experiments. Finally, Section 3.5 includes some conclusions from the
experiments.

3.2 Experiment 1

This section describes the first of the two experiments, the experiment
planning and operation as well as the analysis. Finally, it is concluded with
a discussion of the results.

The motivation for the experiment is that although requirements
prioritisation is recognised as an important area, few research papers aim
at finding superior prioritisation techniques that are accurate and usable.
This experiment aims at comparing two of the available techniques in
order to understand their differences. The PWC was pointed out as a
superior technique in a comparison between prioritisation techniques
(Karlsson et al., 1998), while a technique similar to PG was ranked rather
low. However, the PG technique is of current interest since it is used in
the agile community. Therefore these two techniques are interesting to
investigate.

The experiment design described in this section is to a large extent also
used in the second experiment. Therefore, Section 3.3 is focused on
describing the second experiment and the differences between the two
experiment designs.

3.2.1 Hypotheses and Variables

The goal of the experiment is to compare two prioritisation techniques
and to investigate the following null hypotheses:
H01: The average time to conclude the prioritisations is equal for both
techniques, PG and PWC.
H02: The ease of use is equal for both techniques, PG and PWC.
H03: The accuracy is equal for both techniques, PG and PWC.

The alternative hypotheses are formulated below:
HA1: The average time to conclude the prioritisations is not equal for
both techniques, PG and PWC.
HA2: The ease of use is not equal for both techniques, PG and PWC.
HA3: The accuracy is not equal for both techniques, PG and PWC.

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 83

The independent variables are the techniques PG and PWC. The
objective dependent variable average time to conclude the prioritisations was
captured by each subject by noting their start and stop time for each task.
The subjective dependent variable ease of use was measured by a
questionnaire, which was filled out by all subjects after the experiment.
The subjects were asked “Which technique did you find easiest to use?”
The subjective dependent variable accuracy was measured by conducting a
post-test a few weeks after the experiment. Each subject was sent four
personal lists (two for each criterion), corresponding to the priority order
compiled from the two techniques investigated during the experiment.
The subjects were asked to mark the priority order that corresponded best
to their views. The time-consumption and ease of use are very important
measures since resources are limited and a fast and easy technique is more
likely to be used than a more effort-demanding one. The third and
probably most important variable is the accuracy, i.e., that the technique
is trustworthy and that the resulting priority order reflects the decision-
maker’s opinion. In a recent case study investigating prioritisation
techniques, participants found the resulting priority order incorrect when
using Wiegers’ method. Some participants changed their estimates in
order to get a better priority order, when the results given by the method
seemed wrong (Lehtola and Kauppinen, 2004). This accuracy of the
resulting priority order is interesting to investigate and therefore we
compare the subjective accuracy of the techniques in this experiment.

3.2.2 Experiment Design

The experiment was carried out with a repeated measures design, using
counter-balancing i.e., all subjects used both techniques (Robson, 2002;
Wohlin et al., 2000). The 16 subjects in the convenient sample included
15 Ph.D. students (10 male and 5 female) in their first or second year,
and one professor (male). The experiment was conducted as part of a
research methodology course. Before the experiment, a pre-test was
performed. The experiment was carried out during a one-day session,
which included an introduction to the task, the experiment itself, a post-
test, and finally a concluding discussion of the experiment
implementation. In addition, a few weeks after the experiment a second
post-test was conducted. Figure 4 outlines the activities performed in
Experiment 1.

84

The requirements used in the prioritisation were mobile phone
features, which are requirements on a high level of abstraction and rather
independent. The prioritisation was performed without taking
requirements dependencies into account.

The trade-off between cost and value, often faced by a development
organisation, was difficult to investigate for our subjects, as the cost of
developing a certain requirement is difficult for laymen to estimate.
Therefore the criterion Price was selected instead, as the trade-off faced by
consumers regards the Value of different functions in the phone and the
Price of the phone. The criteria are defined as follows:

• The Value criterion corresponds to how important and valuable the
subject find the requirement.

• The Price criterion corresponds to how much the subject thinks the
requirement adds to the price of the mobile phone.

The Value criterion has probably been regarded by most subjects when
buying or comparing mobile phones. The Price criterion may also be
accounted for since buying or comparing mobile phones gives a clue of
how the price differs depending on the included requirements. Thus,
there is a trade-off between Value and Price when buying a mobile phone.

The two requirements prioritisation techniques described in Section
2.1.1 and 2.1.2 were used as input to the experiment, but were modified
in order to be more comparable. The PWC is conducted using the AHP
for calculating requirements priorities. A flat requirements structure was
used, i.e., the system aspect of AHP was not considered in our PWC

Pilot experiment

Post-test 1

Execution

Pre-test

Analysis

Post-test 2

Experiment 2

Analysis

Figure 4. Activities conducted in Experiment 1

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 85

technique (Saaty, 1980). Neither did we use any of the possible ways of
reducing the number of comparisons, thus the pair-wise comparisons
were exhaustive. PG was modified so that the piles were labelled
according to the Value and Price criteria: (1) Necessary, (2) Adds to the
value and (3) Unnecessary, and (1) Very high price, (2) Reasonable price
and (3) Low price, respectively. Thus, the aspects of implementation cost
and risk, which are emphasised in XP were substituted by Price in our
experiment to make it reasonable for laymen to estimate.

Pilot Experiment. A pilot experiment was performed before the main
study to evaluate the design. Six colleagues participated and they
prioritised ten requirements each, with both techniques. After this pilot
experiment, it was concluded that the experiment should be extended to 8
and 16 requirements in order to capture the difference depending on the
number of factors to prioritise. Another change was to let the subjects use
the techniques and criteria in different orders to eliminate order effects.
Further, changes to the PWC sheets included to remove the scale and
instead use “more than” and “less than” signs so that the participants
would not focus on the numbers, and to arrange the pairs randomly on
each sheet.

Pre-Test. Before the session, the subjects were exposed to a pre-test in
order to get a foundation for sampling. A questionnaire was sent out by e-
mail in order to capture the knowledge about mobile phones and the
subjects’ knowledge and opinions of the two prioritisation techniques.
The pre-test was used to divide the subjects into groups with as similar
characteristics as possible.

Another objective with the pre-test was to investigate how well the
subjects could apprehend the price of mobile phone requirements. A
majority of the subjects stated that they consider buying a new mobile
phone at least every second year, and therefore we believe that their
knowledge of mobile phone prices is fairly good.

Execution. The experiment took place in an ordinary lecture room
during a one-day session. Data were mainly collected through
questionnaires where the subjects filled out the time spent on each task
and their opinions on the techniques.

The domain in this experiment was mobile phones and according to
the pre-test, all subjects were familiar with this context. The factors to

86

prioritise were mobile phone requirements, for example SMS, Games,
WAP, Calendar, etc. (see the appendix, Table C, for complete list).

One intention of the experiment was to investigate if a different
number of requirements would affect the choice of preferred technique.
Therefore, half of the subjects were asked to prioritise 8 requirements,
while the other half prioritised 16 requirements. Another intention was to
investigate if the order in which the techniques were used would affect the
choice of preferred technique. Therefore, half of the subjects started with
PWC and half started with PG. The order of the Value and Price criteria
was also distributed within the groups in order to eliminate order effects.
Thus, the experiment was performed using a counter-balancing design, as
shown in the appendix, Table A.

The experiment was conducted in a classroom with the subjects spread
out. Each subject was given an experiment kit consisting of the PWC
sheets and the PG cards.

For PWC, one sheet per criterion and person had been prepared, with
all possible pair-wise combinations of the requirements to compare. For
the purpose of eliminating order effects, the order of the pairs was
randomly distributed so every subject received a different order of the
comparisons. With 16 requirements to compare, there was 16(16-1)/2 =
120 pair-wise comparisons for Value and Price, respectively. With 8
requirements, there was 8(8-1)/2 = 28 pair-wise comparisons for Value
and Price, respectively. In between each pair in the sheets there was a scale
where the difference of the requirements’ Value or Price was circled, see
Figure 5. To be able to try different scales, no scale numbers were written
on the sheets. Instead, a scale with 9 different “more than”, “equal” and
“less than” symbols was used. The further to the left a symbol was circled,
the more valuable (or expensive) was the left requirement than the right
one. If the requirements were regarded equally valuable (or expensive) the
“equal” symbol was circled.

For PG, the subjects were given two sets of cards (one set for Value and
one for Price) with one mobile phone requirement written on each. The
cards were partitioned into three piles, separately for the Value criterion

Which of the two features is more valuable to you?
Alarm <<<< <<< << < = > >> >>> >>>> Timer
WAP <<<< <<< << < = > >> >>> >>>> SMS
…

Figure 5. Example of PWC sheet

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 87

and the Price criterion, see Figure 6. The piles represent (1) Necessary, (2)
Adds to the value and (3) Unnecessary, for the Value criterion, and (1)
Very high price, (2) Reasonable price and (3) Low price, for the Price
criterion.

Within the piles, the cards were then arranged so that the most
valuable (or expensive) one was at the top of the pile and the less valuable
(or expensive) were put underneath. Then the three piles were put
together and numbered from 1 to 8 and 1 to 16 so that a single list of
prioritised requirements was constructed for each criterion.

The subjects were given approximately 2 hours to conclude the tasks,
which was enough time to avoid time-pressure. During the experiment,
the subjects were instructed to note the time-consumption for each
prioritisation. Further, the subjects had the possibility to ask questions for
clarification.

Post-Test 1. The subjects handed in their experiment kit after finishing
the tasks and were then asked to fill out a post-test. This was made in
order to capture the subjects’ opinions right after the experiment. The test
included the questions below, as well as some optional questions
capturing opinions about the techniques and the experiment as a whole.
The questions were answered by circling one of the symbols “more than”,
“equal” or “less than”.

1. Which technique did you find easiest to use?

2. Which technique do you think gives the most accurate result?

Post-Test 2. After completing the analysis, the subjects were, in a second
post-test, asked to state which technique that, in their opinion, gave the
most accurate result. They were sent two sheets (one for Value and one for

 3 1 2

3 1 2

SM S W AP
Games

W AP Timer
M M S

Figure 6. Example of PG cards

88

Price) with two different lists of requirements, corresponding to the
results from the PG and PWC prioritisations. The post-test was designed
as a blind-test, thus the subjects did not know which list corresponded to
which technique, but were asked to select the list they felt reflected their
opinions the most. In order to get comparable lists, the ratio scale from
PWC was not shown, and neither was the pile distribution from PG.

3.2.3 Threats to Validity

In this section, the threats to validity in the experiment are analysed. The
validity areas considered are conclusion, internal, construct and external,
according to Wohlin et al. (2000).

Conclusion validity concerns the relationship between the treatment
and the outcome. Robust statistical techniques are used, measures and
treatment implementation are considered reliable. The data were plotted
and tested to check if it was normally distributed. In all cases, the data
could not be concluded to be normally distributed and, thus, non-
parametric tests were used. However, a threat is low statistical power, since
only 16 subjects were used.

Furthermore, we have tried to increase the reliability of measures by
conducting a pilot experiment and thereafter adjusting the wording and
instrumentation. Another issue is that objective measures, e.g., time-
consumption, are more reliable than subjective ones, e.g., ease of use and
accuracy. However, the subjective measures are very important in this
experiment and therefore we have chosen to include them. The
experiment took place during one single occasion and therefore the
implementation and setting are not a threat in this case.

Internal validity concerns the relationship between the treatments and
the outcome of the experiment. The internal threats that may have
affected the experiment are the fatigued effect, testing and group pressure.
The subjects could become fatigued during the experiment, which may
affect the concentration. In particular, the subjects who perform the tasks
with 16 requirements may get tired or bored. This has been checked in
the analysis, by calculating the consistency index for PWC. There is no
significant difference in consistency for groups using different numbers of
requirements (see Table 8). Hence, we draw the conclusion that the threat
to the fatigue is low.

The testing threat is that the subjects get practice during the
experiment and unconsciously get an opinion on the context using the

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 89

first technique, which will affect the result for the second technique. At
least when using PG first, it may affect the PWC performance. In Table 9,
the order effect on consistency is analysed. There is no statistical
difference in consistency depending on the order. Hence, this indicates
that learning effects have not affected the experiment.

The third internal threat is the group pressure that may affect the
subjects to rush through the task. In Section 3.2.4, there is an analysis of
the correlation between the time used by the subjects and the consistency.
The data indicates that the time-consumption has not affected the
consistency of the prioritisation.

Construct validity concerns the relation between theory and
observation. One threat in the design has been observed. It would have
been valuable to start the session with an introduction explaining each
requirement in the prioritisation to clarify their meaning. However, the
subjects had their own interpretation of the requirements, which was the
same throughout the experiment and therefore this should not affect the
result.

External validity concerns whether the outcome of the experiment can
be generalized to the population. Threats to external validity limit the
generalisability of the experiment to industrial practice. The subjects are
sampled from software engineering PhD students. Hence, the outcome of
the experiment can be generalized to this group. In addition, for this
experimental context it is likely that this group would perform equally to
the requirements engineers and product managers who are intended to
use the techniques in practice. The subjects are familiar with the
application domain (mobile phone requirements) and several of the
participants had prior working experience. The difference between
industrial professionals and students in their final years has been
considered small in other studies (Höst et al., 2000; Runeson, 2003).
Furthermore, if a student experiment shows that one technique is better
than another it is rather unlikely that professionals would come to the
opposite conclusion (Tichy, 2000).

As most experimental conditions, the time is an important factor. In
order to reduce the time needed for the experiment, the number of
prioritised requirements is rather few. In most real cases, the total number
of requirements is higher and therefore the results found in this study may
be valid if the prioritisation is performed on a subset of the requirements.
This may be the case e.g., if only the newly arrived requirements are
prioritised or only the requirements for a certain sub-system. It is difficult

90

to judge whether extending the number of requirements would lead to
the same result. Therefore, future replications and case studies have to be
made in order to draw conclusions when more requirements are used.

As the requirements used in this experiment are rather independent,
they may have been easier to prioritise than is usually the case in industry.
For example, the time required to perform the prioritisation would
probably be larger in an industrial case due to more difficult trade-offs
and dependencies between requirements. Requirements dependencies can
require a group of requirements to be selected for a release instead of
individual ones. This has not been investigated in the experiment.

A recent study investigated different criteria for selecting requirements
for a certain release (Wohlin and Aurum, 2005). The results indicate that
technical concerns, such as requirements dependencies, are less important
than management-oriented criteria when deciding which requirements to
select for a project or release. Therefore it is likely that requirements
dependencies would have a relatively small effect on the results in an
industrial case. We believe that these results may be used as a pilot for
identifying trends before conducting a study in industry (Berander,
2004).

In summary, the main threats to the validity are that fewer, and more
independent, requirements were used than in most industry cases. Hence,
future replications are needed in order to reduce these threats. We believe
that the other threats are under control. However, one mistake was made
during the experiment. The scales “more than” and “less than” in the
PWC sheets were accidentally switched so that it could be interpreted in
the opposite way than was intended (see Figure 5). This caused some
confusion during the experiment. However, the interpretation was
explained and clarified and therefore this should not be considered as a
threat to validity.

3.2.4 Data Analysis

The analysis of the experiment was divided between two independent
researchers, in order to save time and to perform spot checks so that the
validity could be further improved. The analysis was performed with

Microsoft ExcelTM, the computing tool MATLABTM and the statistical

analysis tool StatViewTM.Two different scales were tried for the PWC
analysis: 1 ~ 5 and 1 ~ 9. According to Zhang and Nishimura (1996) the

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 91

scale 1 ~ 5 is better than 1 ~ 9 at expressing human views and therefore
the scale 1 ~ 5 was used when compiling the prioritisation ranking lists.

Furthermore, Saaty (1980) has calculated random indices (RI) that are
used in the calculation of the consistency ratios. Unfortunately, this
calculation only includes 15 factors while this experiment included as
many as 16 factors, i.e., requirements. Therefore, the RI scale was
extrapolated and the RI for 16 requirements was set to 1.61.

H1: Time-Consumption. The time to conclude the prioritisation is
larger with PWC than with PG, for both criteria. As Table 2 shows, the
difference in time between the two techniques is 6.1 minutes for 8
requirements, which corresponds to an increase of 43%, and 14.7
minutes for 16 requirements, which corresponds to an increase of 55%.
Thus, for 16 requirements, it takes more than twice as much time to use
the PWC compared to the PG, while for 8 requirements, the difference is
a bit smaller.

The time increase in percent from 8 to 16 requirements for PWC is
88%, while the same for PG is only 48%. Thus, a larger number of
objects to prioritise affect the time-consumption for PWC more than for
PG, at least when using 8 and 16 requirements.

This can also be seen in Figure 7, where the median values are higher
for PWC than for PG, and the difference between 8 and 16 requirements
is larger for PWC than for PG. Additionally, the box plot indicates that
the subjects’ time to conclude the prioritisation with PWC are more
dispersed.

Table 2. Average time-consumption for the prioritisation

Nbr of
requirements Criteria PG PWC Difference

8 Value 3.6 min 7.8 min 4.2 min

Price 4.5 min 6.4 min 1.9 min

Total 8.1 min 14.2 min 6.1 min

% 43%

16 Value 6.5 min 12.6 min 6.1 min

Price 5.5 min 14.1 min 8.6 min

Total 12.0 min 26.7 min 14.7 min

% 55%

% increase 48% 88%

92

As Table 3 shows, the subjects have in average used less time per
requirement when they had more requirements to prioritise. It is
particularly interesting to see that it takes less time per requirement to
perform PG partitioning with 16 requirements than with 8. One could
expect that it should be more complex to perform PG with more
requirements but this result show that more requirements tend to speed
up the prioritisation per requirement. However, there might be a
breakpoint when the number of requirements is too great and it becomes
hard to get the valuable overview of the PG cards.

Four hypothesis tests were performed, for 8 and 16 requirements
respectively, and one for each criterion. The frequency distribution was
plotted in histograms to check the distribution. Due to the not normally
distributed sample, we chose a non-parametric test, the Wilcoxon test
(Siegel and Castellan, 1988). The hypothesis tests show that on the 5%-
level there is a significant time difference for three of the four cases. This
is illustrated in Table 4, where the p-value is lower than 5% in three of the
four cases. Thus, the first null hypothesis is rejected for these cases.

0

2

4

6

8

10

12

14

16

18

8 PWC 8 PG 16 PWC 16 PG

T
im

e
(m

in
ut

es
)

Figure 7. Box plots of the time spent on prioritisation

Table 3. Average time-consumption per requirement

Nbr of requirements PG PWC

8 30.5 s/requirement 53.5 s/requirement

16 22.5 s/requirement 50.0 s/requirement

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 93

H2: Ease of Use. Immediately after the experiment, the subjects filled
out the first post-test that, among other things, captured the opinions of
the techniques’ ease of use. Among the 16 subjects, 12 found PG easier or
much easier to use than PWC. Only 3 found them equally easy and 1
stated that PWC was easier to use, see Table 5. Hence, 75% of the
subjects found PG easier to use.

This was tested in a Chi-2 test (Siegel and Castellan, 1988) by
comparing the number of answers in favour of PWC to the number of
answers in favour of PG. It turned out that there is a statistically
significant difference, as p = 0.0023. Thus, the second null hypothesis is
rejected.

It seems as if the subjects prioritising 16 requirements are a bit more
sceptical to PG than those prioritising 8 requirements. This could
indicate that the more requirements the more difficult to keep them all in
mind.

H3: Accuracy. Directly after the experiment, the subjects performed the
first post-test that captured which technique the subjects expected to be
the most accurate. As Table 6 illustrates, a majority of the subjects
expected PG to be better, while less than a fifth expected PWC to be
better.

Table 4. Wilcoxon tests for the time difference

Nbr of requirements Criteria Wilcoxon p-values

8 Value 0.0251

Price 0.1159

16 Value 0.0209

Price 0.0117

Table 5. Results from the first post-test: Ease of use

Nbr of
requirements

PG
Much easier Easier

Equally
easy Easier

PWC
Much easier

8 4 3 1 0 0

16 4 1 2 1 0

Total 8 4 3 1 0

Total % 50% 25% 19% 6% 0%

94

In order to evaluate which technique that gave the most accurate
results, a second post-test was filled out by the subjects. This was done a
few weeks after the experiment was performed, when the analysis was
finished.

The most common opinion among the subjects was that PG reflects
their views more accurately than PWC. This is shown in Table 7 where
47% of the subjects were in favour of PG and only 28% were in favour of
the PWC. This is, however, not statistically significant, p = 0.2200 with a
Chi-2 test, so it cannot be determined if there is a difference between the
techniques’ accuracy. Thus, the null hypothesis is not rejected. Half of the
ones that have stated that both techniques are equally accurate actually
had the same order in the lists.

An interesting observation is that this implies that PG was actually not
as good as the subjects expected even if most subjects preferred PG to
PWC.

Consistency Ratio. The consistency ratio (CR) describes the amount of
judgement errors that is imposed during the pair-wise comparisons. The
CR is described with a value between 0 and 1 and the lower CR value, the
higher consistency. Saaty (1980) has recommended that CR should be

Table 6. Results from the first post-test: Expected accuracy

Nbr of requirements Favour PG Equal Favour PWC

8 4 3 1

16 5 1 2

Total 9 4 3

Total % 56% 25% 19%

Table 7. Results from the second post-test: Perceived accuracy

Nbr of
requirements Criteria Favour PG Equal

Favour
PWC

8 Value 6 2 0

Price 1 3 4

16 Value 4 1 3

Price 4 2 2

Total 15 8 9

Total % 47% 25% 28%

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 95

lower than 0.10 in order for the prioritisation to be considered
trustworthy. However, CR exceeding the limit 0.10 occurs frequently in
practice (Karlsson and Ryan, 1997).

The CR limit above is only valid for the scale 1 ~ 9, and in this
experiment the scale 1 ~ 5 was used instead. Therefore, the limit for
acceptable CR will be lower. The average consistency ratios for scale 1 ~ 5
are presented in Table 8.

The frequency distribution for the consistency was plotted in
histograms to check the distribution. The data were not normally
distributed and therefore we chose a non-parametric test. The Wilcoxon
test resulted in p > 0.30 for both criteria. Therefore, it cannot be proved,
on the 5%-level, to be a significant difference in consistency depending
on the number of requirements prioritised.

In order to investigate if the time spent on each comparison affects the
consistency, the correlation between these parameters was calculated. The
Spearman rank-order correlation coefficients indicate no correlation
between the time and the consistency, as the correlation varies between -
0.40 and 0.20. According to Siegel and Castellan (1988), the absolute
value of the correlation coefficient should be greater than 0.738 in order
for the correlation to be considered significant in this case. Hence, the
consistency is not particularly influenced by the time spent on
prioritisation.

Order Effects. There is a chance that the order in which the two
techniques are used can influence the result. Table 9 shows that the mean
consistency ratio is a bit lower for the subjects who used PG before PWC.
This may indicate that using PG can provide an image of ones preferences
that are not possible to get from using PWC. Therefore it may be easier to
be consistent when PG precedes PWC.

However, the hypothesis tests show that the difference is not
significant on the 5%-level. Due to the not normally distributed sample,

Table 8. Mean consistency ratios

Nbr of requirements Criteria Scale 1 ~ 5

8 Value 0.106

Price 0.101

16 Value 0.082

Price 0.120

96

we chose a non-parametric test, the Mann-Whitney test (Siegel and
Castellan, 1988). The p-values are larger than 0.6, and therefore we
cannot confirm a significant difference depending on the order.

A set of significance tests was also conducted investigating the order
effect on time-consumption. Neither of the cases (with 8 or 16
requirements or with Value or Price criterion) showed a significant
difference in time depending on the order in which the techniques were
used. This finding validates that the experiment analysis has not suffered
from any order effects, neither regarding time nor consistency.

Qualitative Answers. In the post-test performed right after the
experiment, the subjects had the opportunity to answer some optional
questions about their general opinion. Opinions about PWC include
“effort demanding but nice”, “it feels like a blackbox wherein you pour
requirements”, “good but boring”, “it feels like you lose control over the
prioritisation process”, and “straightforward”. Opinions about PG are for
example “fast and easy”, “lets the respondent be creative”, “intuitive”,
“prone to errors”, “good overview”, and “logical and simple”. These
opinions correspond well to the results of the captured subjective
dependent variables: ease of use and expected accuracy, discussed in prior
sections.

3.2.5 Results

The main results are that the PG technique is superior to the PWC
regarding the two variables time-consumption and ease of use, while it
could not be determined which technique that has the highest accuracy.

Two groups prioritised 8 and 16 requirements, respectively, in order to
investigate if there is a breakpoint between 8 and 16 where one of the
methods is more efficient than the other. It was suspected that a greater
number of requirements would eliminate the valuable overview in PG,
since it would be difficult to keep all requirements in mind. However, this
experiment only shows an insignificant tendency of less overview affecting

Table 9. Order effect on consistency

Mean consistency PWC-PG PG-PWC

Value 0.107 0.082

Price 0.119 0.102

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 97

the ease of use when prioritising 16 requirements (see Table 5). Therefore,
it is suspected that the breakpoint is at an even higher number of
requirements.

Another interesting observation in this experiment was that the time-
consumption did not affect the consistency in PWC (see Section 3.2.4).
One could assume that if someone rushes through the comparisons, the
consistency would be poor. However, these are only initial results and
with another set of objects to prioritise, the results might be different.

The objective measure total time-consumption is higher for PWC than
for PG both in our study and in the one by Karlsson et al. (1998). On the
other hand, PWC was given a higher rank than PG regarding the
subjective measures ease of use and fault tolerance in the study by
Karlsson et al. (1998). Our experiment shows that PG is easier to use than
PWC. This difference in result may be due to differences in methodology.
While our study is a controlled experiment with 16 participants, Karlsson
et al. (1998) is based on an evaluation by three individuals who discussed
their opinions. The result regarding time-consumption is considered
reliable, while the difference regarding ease of use indicates that additional
studies need to be performed in order to further understand the strengths
and weaknesses of these techniques.

Karlsson et al. (1998) suggested a combination of the two techniques
Priority groups and PWC, in order to use the PWC with a reasonable
amount of effort. Using PWC on the three priority groups, separately,
would decrease the number of comparisons. Another possibility is to use
PWC only on those requirements that end up in the middle priority pile.
This would imply that PG, or Priority groups, is used first, to divide the
requirements into three groups. The high priority group of requirements
will most certainly be implemented, the low priority group will be
postponed and looked into in a following release, while the ones in the
middle need special treatment to determine the outcome.

This approach agrees with what Davis (2003) has written about the
requirements triage where he recommends requirements engineers to focus
on the difficult requirements and skip the ones that will either be
implemented or rejected anyway. In this manner, PWC can be used on
the requirements that are difficult to estimate and need a more precise
scale for determining its cost and value. The technique’s ratio scale and
fault tolerance would then come to its right.

98

3.3 Experiment 2

This section describes the second of the two experiments, the experiment
planning, operation and analysis. Finally, the section is concluded by a
discussion of the results. Much of the design in the first experiment have
been reused in the second one, therefore several references are made to
Section 3.2.

The motivation for the second experiment is that although the first
experiment indicates that PG is superior to PWC, we suspect that PWC
with tool-support may have certain benefits for practitioners. With tool-
support it is possible to reduce the number of comparisons and to
visualise the priorities. It may also be easier to use, as it guides the
decision-maker during the prioritisation process. We believe that the
PWC would benefit more than PG from tool-support, and therefore we
chose to investigate the tool-supported PWC (TPWC) and compare it
with PG.

3.3.1 Hypotheses and Variables

The goal of the second experiment is to compare two prioritisation
techniques and to investigate the following null hypotheses:
H01: The average time to conclude the prioritisations is equal for both
techniques, PG and TPWC.
H02: The ease of use is equal for both techniques, PG and TPWC.
H03: The accuracy is equal for both techniques, PG and TPWC.

The alternative hypotheses are formulated below:
HA1: The average time to conclude the prioritisations is not equal for
both techniques, PG and TPWC.
HA2: The ease of use is not equal for both techniques, PG and TPWC.
HA3: The accuracy is not equal for both techniques, PG and TPWC.

The independent variables are the techniques PG and TPWC and the
dependent variables are the same as in the first experiment, i.e., average
time to conclude the prioritisations, ease of use and accuracy.

The time-consumption was captured by each subject by noting their
start and stop time for each task, the ease of use was measured by a
questionnaire which was filled out by all subjects after the experiment,
and the accuracy was measured by conducting a post-test a few weeks
after the experiment similarly to Experiment 1.

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 99

3.3.2 Experiment Design

The second experiment was also carried out with a repeated measures
design, using counter-balancing, i.e., all subjects used both techniques. The
subjects were 30 MSc students (25 male and 5 female) in their final year,
taking an optional requirements engineering course. The experiment was
conducted within a compulsory laboratory session in the area of
requirements prioritisation. The session was conducted for teaching
purposes and gave the students an opportunity to try out and compare
two commonly known prioritisation techniques. No pre-test was
performed, so the participants were randomly assigned to perform the
tasks in a certain order.

The experiment was divided into two separate occasions with 20
subjects at the first session and 10 at the second. Both sessions were
guided by two teachers. Before the experiment the participants were given
an introduction to the tool by conducting a comprehensive tutorial.

PG was used in the same manner as in the first experiment. The
TPWC used a RM tool with pair-wise comparisons as prioritisation
technique. The participants conducted the number of comparisons
required by the stopping rules in the tool (approximate size 2n), and
could revise comparisons when inconsistency was indicated by the tool.
Note that the tool was used only as an approach to prioritisation, i.e., the
visualisation possibilities in the tool were not investigated.

Two post-tests, which are described below, were performed similarly to
the first experiment in order to capture the dependent variables. Figure 8
illustrates the activities performed in the second experiment.

Execution. The experiment took place in a computer laboratory room
during a compulsory laboratory session. The manual technique PG was
used in the same room but the students could move to empty desks.

For each subject an experiment kit had been prepared, consisting of
the PG cards and a personal instruction regarding the order to perform
the tasks. Each subject also had a personal login to the prioritisation tool.

Data were mainly collected through post-tests. The PG priority piles
were attached with a paper clip and handed in, while the TPWC lists were
compiled by the researcher after the session by extracting the information
needed from the RM tool. Each subject noted the start and stop time in
the post-test conducted right after the experiment, as well as their opinion
on ease of use. Then, the second post-test captured the accuracy through a

100

blind-test a few weeks later. The subjects were given 2 hours to perform
the tasks, including the introductory tutorial for the tool.

The design of the second experiment is very similar to the first one,
since it was intended to investigate the same hypotheses. Thus, the main
difference was that the PWC was tool-supported in the second
experiment.

Furthermore, since the first experiment showed that the number of
requirements did not affect the outcome of the first experiment, it was
decided to have all participants prioritise between 16 requirements. The
same mobile phone requirements were used, as well as the same criteria
Value and Price. The counter-balancing design is illustrated in the
appendix, Table B.

Post-Test 1. The subjects were asked to fill out the same post-test as in
experiment 1 after they had handed in their experiment kit. This was
made in order to capture the subjects’ opinions right after the experiment.

Post-Test 2. A few weeks after the experiment, the subjects were, in a
second post-test, asked to state which technique they found most
accurate. This was conducted as a blind-test in the same way as for the
first experiment, but the lists corresponded to the results from the two
techniques PG and TPWC.

3.3.3 Threats to Validity

This section discusses the threats to validity for the second experiment.
The same four classes of validity threats as for the first experiment are
considered in this section.

Post-test 1

Execution

Analysis

Post-test 2

Experiment 1

Analysis

Figure 8. Activities conducted in Experiment 2

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 101

Conclusion validity. As in the first experiment, the statistical
techniques, measures and treatment implementation are considered
reliable. Both objective and subjective measures are used. The student
group is a homogeneous group, with similar background and education.

Internal validity. The internal threats in the second experiment is the
fatigue effect, mortality and the instrumentation. The fatigue threat is
present since one of the sessions took place after office hours. However,
there was no disturbance during the performance.

Furthermore, the subjects could be influenced by the first priority list,
and unconsciously prioritise in a similar manner when producing the
second priority list. On the other hand, when conducting the pair-wise
comparisons, it is difficult to use knowledge from another prioritisation,
which reduce the threat. In addition, in the first experiment, the threat
was estimated as low, and there are no indications that it would be higher
in the second experiment.

Another threat is the mortality effect. This is small, but present since
one of the subjects was absent during the second post-test and therefore
one data point is missing.

There is also a potential instrumentation threat. The TPWC technique
was not used to visualise the priority list since we intended to conduct the
second post-test with a comparison of the lists from the two techniques.
However, the PG technique directly results in a priority list and it can
therefore not be hidden. Therefore, some subjects may have remembered
the priority order from the PG and could thereby identify which of the
lists in the second post-test that correspond to which technique. This may
also have been the case in the first experiment, but then the time between
the experiment and the second post-test was longer, which reduces the
risk of remembering. However, we believe that the subjects chose a list
based on perceived accuracy and not based on remembering which list the
priorities come from.

Construct validity. The experiment would need another set of
requirements to perform the prioritisation on in order to be able to
discover if the results are the same, or if the set of requirements have
affected the results. Testing and treatment may interact. When the
subjects know that the time is measured, it is possible that they get more
aware of the time they spend, and thus the time-consumption is affected.
However, they were not aware of the other two measures when
conducting the experiment, so only the time can have been affected.

102

External validity. The subjects in the experiment is a homogenous
group. This improves the conclusion validity, but makes it more difficult
to generalise the result to a broader population. This issue was discussed
in Section 3.2.3 for the subjects in the first experiment and the same
discussion is valid for the subjects in this experiment.

As discussed in Section 3.2.3, the small number of requirements
decreases the possibility to generalise to cases where a higher number of
requirements is prioritised.

In summary, the main threat in this experiment is the instrumentation
threat and that it is difficult to generalise to situations where a larger set of
requirements are prioritised.

3.3.4 Data Analysis

This section presents the analysis and results from the second experiment.

The analysis was performed by two researchers using Microsoft ExcelTM,

the computing tool MATLABTM and the statistical analysis tool

StatViewTM.

H1: Time-Consumption. The first hypothesis regards the time needed
to perform the prioritisation. As can be seen in Table 10 the average time
required is lower for both criteria when using the TPWC. In fact, TPWC
required 17% less time than PG.

As can be seen in the box plots in Figure 9, where the times for both
criteria are added, the median values are higher for PG than for TPWC.
The times for PG are also more dispersed.

Normal probability plots indicated that the data were not normally
distributed. Therefore, it was decided to use non-parametric tests during
analysis. The difference in time is significant on the 5%-level as the
Wilcoxon test results in p-values below 0.04. Therefore we can draw the

Table 10. Average time-consumption (in minutes)

Criteria PG TPWC Difference

Value 5.8 4.8 1.0

Price 5.5 4.6 0.9

Total 11.3 9.4 1.9

% 17%

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 103

conclusion that the TPWC technique is a faster technique than the PG,
i.e., the null hypothesis is rejected.

H2: Ease of Use. After using both techniques, the participants handed in
a post-test answering the question “Which technique did you find easiest
to use?”. In total, 10 of the 30 subjects found the PG easier or much easier
to use, while 16 pointed out TPWC as easier or much easier. As can be
seen in Table 11, this corresponds to that 33% found PG easier, while
53% found TPWC easier. 4 of the subjects, i.e., 13%, found the
techniques equally easy to use.

A Chi-2 test shows that the difference between the number of subjects
that found PG easier and the number of subjects that found TPWC easier
is not significant, p = 0.2393. Thus, the null hypothesis cannot be
rejected.

H3: Accuracy. The first post-test also captured which technique the
participants expected to be the most accurate. As can be seen in Table 12,
77% of the subjects expected the TPWC to be more accurate than the

1

2

3

4

5

6

7

8

9

10

TPWC PG

T
im

e
(m

in
ut

es
)

Figure 9. Box plots for the time spent on prioritisation

Table 11. Results from the first post-test: ease of use

Ease of use
PG
Much easier Easier

Equally
easy Easier

TPWC
Much easier

1 9 4 11 5

% 3% 30% 13% 37% 16%

104

PG. Thus, a majority of the subjects found the tool trustworthy after
using it.

However, the second post-test investigated which of the techniques the
subjects found most accurate by conducting a blind-test where the
subjects were given their priority lists from both techniques. Due to
absence, only 29 of the 30 participants filled out the second post-test. As
can be seen in Table 13, where both criteria are added, 50% found the PG
lists more accurate, while 37% found the TPWC lists more accurate. 12%
found the priority lists equally accurate. This difference is not statistically
significant, as the p-value turned out to be 0.3270 in a Chi-2 test.

Thus, the TPWC did not get as high accuracy as expected, while PG
turned out to be more accurate than expected. The null hypotheses
cannot be rejected.

Order Effects. A set of significance tests was used to investigate whether
or not there was a significant order effect on the time-consumption. The
time-difference depending on the order in which the techniques were
used, was investigated with a Mann-Whitney test. The test did not
indicate a significant time-difference (p > 0.10 for Value and p > 0.90 for
Price) and therefore we cannot show a significant order effect. Another set
of tests investigated the effect on time-consumption depending on the
order in which the criteria were used. In this case, a Wilcoxon test was

Table 12. Results from the first post-test: Expected accuracy

Expected
accuracy

PG
Much more
accurate

More
accurate

Equally
accurate

More
accurate

TPWC
Much more
accurate

0 5 2 14 9

% 0% 17% 7% 47% 30%

Table 13. Results from the second post-test: Perceived accuracy

Perceived
accuracy

PG
Much more
accurate

More
accurate

Equally
accurate

More
accurate

TPWC
Much more
accurate

Value 0 15 1 12 1

Price 1 13 6 8 1

Total 1 28 7 20 2

% 2% 48% 12% 34% 3%

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 105

used and could not show a significant order effect (p > 0.60 for both
TPWC and PWC).

A third significance test was used to investigate if the occasion
(afternoon or evening) affected the time-consumption. The Mann-
Whitney test indicates no significant difference in time-consumption (p >
0.40 for Value and p > 0.10 for Price). Thus, we cannot determine any
significant effect on the time-consumption depending on different orders.

Qualitative Answers. Some personal opinions on the experiment and the
two techniques were also collected. Among the positive views on TPWC
are “TPWC is probably better than PG for larger projects” and “TPWC is
easy to use”. There were also some opinions in favour of the PG, “TPWC
makes it difficult to keep focus with many requirements” and “PG gives a
better overview of the requirements”.

3.3.5 Results

One of the main reasons for conducting the second experiment was that it
was suspected that the manual PWC in the first experiment would benefit
from tool support so that the drawbacks of e.g., high time-consumption
could be reduced. The main result from the second experiment is that the
Tool-supported PWC is a faster technique than the PG. Thus, the first
null hypothesis could be rejected. However, although there are more
subjects finding TPWC easier to use than PG, the difference is not
statistically significant. A difference in accuracy could not be determined
either. Thus, the second and third null hypotheses could not be rejected.

There were no significant order effects depending on e.g., the order in
which the techniques were used. However, using PG first and then
TPWC on the separate piles would still decrease the necessary time-
consumption, although the time reduction would not be as large as in the
case with PG and manual PWC. This is due to the fact that TPWC only
require approximately 2n comparisons.

3.4 Discussion

Prioritisation is a very important activity in requirements engineering
because it lays the foundation for release planning. However, it is also a
difficult task since it requires domain knowledge and estimation skills in
order to be successful. The inability to estimate implementation effort

106

and predict customer value may be one of the reasons why organisations
use ad hoc methods when prioritising requirements. For a prioritisation
technique to be used it has to be fast and easy to manage since projects
often have limited time and budget resources.

The experiments presented in this study have investigated the time-
consumption, ease of use and accuracy for different prioritisation
techniques. But when deciding which prioritisation technique to use in an
organisation there are several other aspects to take into consideration. The
technique has to be supported by the software process and other project
activities. For example, the PG may be successful if the overall
development approach is agile and requirements are already written on
e.g., story cards (Beck, 2005). On the other hand, if a RM tool is used
and requirements are already stored in the tool, it is evidently natural to
use it as a means for prioritisation as well. Thus, it is necessary to consider
methods and tools for requirements prioritisation to be aligned with other
methods and tools used in the organisation.

Another related issue is the necessary analysis effort that must be used
in order to get a priority list from the conducted prioritisation. In PG, the
result is in the form of ranked piles of cards, which need to be
transformed into e.g., a Cost-value diagram in order to sufficiently
visualise the trade-off between cost and value. The manual PWC requires
plenty of analysis and matrix calculations before a priority list can be
extracted and visualised. This analysis is not realistic to perform manually
when the number of requirements grows. The PWC can provide
additional information compared to PG, such as the consistency, and the
data is on a ratio scale. The Tool-supported PWC has several different
visualisation possibilities and the tool takes care of all calculations and
displays the prioritisation in charts and diagrams. Thus, the required
analysis differs between the techniques and it needs to be taken into
consideration before deciding on a prioritisation technique.

Furthermore, minor investments are needed for the manual techniques
since all resources required are pen and paper, while on the other hand
more staff resources are needed to analyse the outcome, as discussed
above. Commercial tools may be expensive and can be risky to rely on
since anything from computer crashes to vendor bankruptcy can occur.
On the other hand, it visualises priorities without any extra effort.

The generalisability of the study is limited due to the rather small
sample and the specific context. Although the subjects may have opinions
similar to decision-makers in industry, the context of mobile phone

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 107

requirements may be a bit too simplistic. The main weakness is that
mobile phone requirements are on a high level and rather independent,
while requirements in a real case often have interdependencies. Industrial
projects also have time and budget pressure to consider, which
complicates the decision-making. It is possible that industrial experience
would affect the results, although we believe that in a relative comparison
between the techniques, it is likely that the results would be similar.

The validity of controlled experiments using students as subjects is
often debated. In Carver et al. (2003) it is acknowledged that the higher
level of control in controlled experiments compared to e.g., case studies
may help researchers ascertain whether a phenomenon of interest has
statistically significant effect. This may not be possible in an industrial
case study, as the environment itself decreases the possibility to generalise
to other companies. Furthermore, hardly any industrial software
developer can afford to use two different technologies to evaluate which
one is more effective. Instead, this kind of study can be carried out in an
empirical study with students (Carver et al., 2003).

The first part of PG is based on numeral assignment as each
requirement is assigned to one of the three piles. This approach is similar
to the manner used in many organisations, i.e., classifying each
requirement as having high, medium or low priority. In an industrial
situation it is common that most requirements are classified as high
(Karlsson, 1996). To avoid that, some constraints might be needed, such
as imposing each classification to include at least 25% of the
requirements. It is, however, rarely sufficient to use only numeral
assignment since the difference in importance of requirements assigned
the same priority can be larger than the difference in importance of
requirements assigned different priorities (Karlsson, 1996).

In practice, it is common that a larger number of requirements need to
be prioritised. The results presented in this study may be valid when a
sub-set of the requirements is prioritised. When the number of
requirements grow, it is hard to get an overview. Therefore, visualisation
becomes very important in order to share information. In a real project, it
may also be more valuable to use the ratio scale in order to, in more detail,
differentiate requirements from each other. Thus, it may not be sufficient
to determine which requirement that is of higher priority, without
knowing to what extent. This would speak in favour of the PWC
techniques.

108

It is interesting to explore a possible extension to PG, providing it with
a ratio scale. When the requirements have been ordered in a priority list
using PG it would be possible to compare each requirement to the one
below it in the list and assign a number to their internal relation. For
example, one requirement can be estimated as being twice as important as
the one below it in the priority list, and thereby their relation is set to two,
and so on. In this manner, it would be possible to, with a reasonable
amount of effort, provide PG with a ratio scale. More research needs to be
conducted in order to determine the validity of this extension.

3.5 Conclusions

The main conclusion that can be drawn from both experiments is that the
TPWC is superior to both PG and PWC regarding time-consumption.
This may be due to the reduced number of comparisons in the tool
compared to in the manual techniques. It can also be an effect of the
increased support for the user as only one pair is displayed and it is
therefore easier to stay focused. It would also be interesting to investigate
how tool-support for PG would affect the results.

PG was regarded as easier to use than the manual PWC in the first
experiment, while it could not be determined if either of the techniques
TPWC or PG is easier to use, although a majority found the TPWC
easier. This may be due to most subjects enjoying to use a tool-based
technique more than a manual one.

A difference in accuracy could not be confirmed in either of the
experiments although PG was preferred by most of the subjects in both
experiments.

Although the generalisation of the presented experiments to industrial
practice is not straightforward, the results are an important basis for the
planning of industrial case studies. When companies want to find a
prioritisation technique that suits their needs they can take the presented
results into account when planning situated trials.

The presented experiment design could also be used on more subjects
to get a larger data set and thereby a stronger basis for conclusions. There
are, as discussed, several other prioritisation techniques that would be
interesting to look into and compare to the presented techniques as well.

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 109

4. Evaluating the Practical Use of Different
Measurement Scales in Requirements
Prioritisation

This section presents the evaluation of measurement scales for
requirements prioritisation, described in Paper 3. Early results from this
study are presented in Paper 17.

4.1 Background

This section presents an empirical investigation, which was performed by
analysing ratio scale prioritisation results gained from four different
experiment assignments. Most of the 36 subjects were students or PhD
students taking a requirements engineering (RE) course or a research
methodology course. The subjects used Pairwise comparisons to prioritise
requirements, so the resulting priorities are presented on a ratio scale. In
two of the cases, the participants were supported by the RM tool Focal
Point (Telelogic, 2006) during prioritisation. The results were analysed
after the experiment assignments.

We would like to determine which situations that require the ratio
scale and in which situations the ordinal scale is sufficient. Therefore we
need a measure that can describe the characteristics of the ratio scale
distribution so that results from different prioritisation sessions can be
compared. The measure is called skewness and is the standard deviation
for the difference between a ratio scale distribution and a baseline
distribution. In addition we want to investigate how the cost-value
approach can be used if prioritisation is performed on an ordinal scale.
Therefore we attempt to answer the research questions below.

RQ1. How can we measure the skewness of a ratio scale prioritisation
distribution?

RQ2. How can the cost-value approach be applied when the priorities are
based on ranks?

This section is outlined as follows. Section 4.2 explains the empirical
investigation and the data analysis. Section 4.3 discusses the results and
the validity of the results. Section 4.4 concludes the study and provides
some ideas for further work.

110

4.2 Methodology

This section presents the method used in our empirical investigation, and
the analysis of the data. In order to investigate the skewness of the ratio
scale distribution (RQ1) we need authentic ratio scale data results from
real prioritisation sessions. These data can be compared to a baseline in
order to get a measure of the skewness for each subject. Similarly, for the
cost-value approach (RQ2), we need to compare ratio scale cost-value
diagrams with ordinal scale cost-value diagrams in order to see if the
requirements selection differs depending on the scale. It was decided to
use the ratio scale data and reduce it to ordinal information to draw the
ordinal cost-value diagrams for each subject. Thereby, we can compare
ratio and ordinal scale diagrams based on the same data set. These data
were obtained from experiments and assignments conducted at the
university.

4.2.1 Data Collection

The research methodology is based on archive analysis as the data were
produced for purposes other than this research (Robson, 2002). Four
different data sets, containing data from 36 subjects, were investigated, see
Table 14. Two of the data sets were obtained in experiment assignments
conducted within a Masters’ course. The other two sets were obtained
from the experiment presented in Section 3.2.

Data set 1: First experiment assignment. The first data set was
extracted from an experiment assignment in an optional RE course for
Master’s students. The purpose of the experiment assignment was to teach

Table 14. Outline of the four data sets

Data
set Setting

Number of
subjects

Number of
requirements

Cooperation/
Individual

1 Experiment
assignment

8 21 Cooperation

2 Experiment
assignment

12 21 Cooperation

3 RE experiment 8 8 Individual

4 RE experiment 8 16 Individual

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 111

the 25 students about the challenges of prioritising requirements and to
allow the students to investigate a commercial RM tool. During the
assignment, 2-3 students cooperated on one computer, as it is a realistic
situation for decision-makers. In total, ten groups of students
participated; thus ten priority results were obtained, hereafter called
subjects. The subjects were asked to prioritise between 21 mobile phone
requirements, such as Chat function, Wireless Application Protocol
(WAP), Predictive text input (T9), etc. (see appendix, Table D). The tool
utilises Pair-wise comparisons as prioritisation technique and has an
algorithm that reduces the number of necessary comparisons, without
jeopardising the consistency. The resulting priorities are presented as
percentages on a ratio scale. The subjects were encouraged to choose two
different criteria, one to maximise and one to minimise. Most subjects
selected one criterion related to value, and one criterion related to cost. In
the analysis after the experiment assignment, two of the ten subjects were
removed, as their criteria were not consistent with either value or cost.
The ratio scale data from the resulting eight subjects were then examined
as described in Section 4.2.2.

Data set 2: Second experiment assignment. The second data set was
obtained in a similar manner as the first one. The same RE course was
given a second semester to 26 students. Two of the students worked alone
and the rest worked in pairs, resulting in 14 priority results, hereafter
called subjects. The same tool was used, as well as the same requirements
in the prioritisation task. The subjects were encouraged to select the
criteria cost and value but as two of the subjects choose other criteria they
were removed from the analysis. As we anticipated the results to be used
for research purposes, we also posed some qualitative questions after the
session. These qualitative results are presented in Section 4.2.2.

Data set 3 and 4: RE experiment. The third and fourth data sets are
based on an experiment conducted to compare two different requirements
prioritisation techniques: Planning game and Pair-wise comparisons. The
experiment tested the difference between the techniques regarding time-
consumption, ease of use, and accuracy, see Section 3.2. In this case, the
Pair-wise comparisons were performed manually, i.e. no tool was allowed.
The 16 subjects worked individually, as the task was performed for
experimental purposes. The experiment yielded two different sets of data
as half of the subjects prioritised between eight requirements and half of

112

the subjects prioritised between 16 requirements, see Table C in the
appendix.

4.2.2 Data Analysis

The priority results from the experiment assignments and the
prioritisation experiment were investigated in two different ways. First,
the results were analysed to investigate the skewness of the ratio scale
priorities. Secondly, the ratio scale data were reduced to ranks, i.e. ordinal
scale data, and investigated in cost-value diagrams. Finally, some
qualitative results from the second experiment assignment are presented.

Evaluation of skewness. The first research question concerns possibilities
of measuring the skewness of the ratio scale distribution. In this section
we define a skewness measure based on the standard deviation for the
difference between a ratio scale distribution and a baseline distribution. A
more skewed distribution indicates that the person performing the
prioritisation has given much larger weights to some of the requirements
than others. A less skewed distribution indicates that the differences in
priorities between requirements are not very large. In that case it could
have been sufficient to use the ordinal scale since the distribution could be
approximated with a linear distribution. Therefore, we use the linear
distribution as a baseline. The measure of skewness can be used to
determine in which situations the ratio scale is needed and when the
ordinal scale is sufficient.

A bar chart illustrates the result of a prioritisation through bars of
different length. The length of each bar represents the ratio for each
requirement, thus the total value of all requirements adds up to 100%.
Unlike the cost-value diagram, the bar chart shows the result for one
criterion at a time.

The left bar chart in Figure 10 illustrates the bar chart from a ratio
scale prioritisation for one of the subjects. The distribution is clearly
skewed and the top requirement accounts for approximately 30% of the
total value. If we want to evaluate how skewed this distribution is, we can
compare it to a baseline bar chart where the difference between adjacent
bars is equal all over the chart. This is shown in the right bar chart in
Figure 10. Note that the requirements have the same ranks in both charts,
but the right one is transformed to the baseline distribution. Imagine if
the right one were the result from using a ratio scale technique. Then it

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 113

would have been more efficient to use an ordinal scale technique with
ranking, as the difference in importance between requirements is the same
all over the chart. Therefore we use the right bar chart in Figure 10 as the
baseline when evaluating the skewness of the ratio scale bar chart.

PROCEDURE. To evaluate the skewness of a ratio scale prioritisation
distribution we want a measure of the characteristics of the ratio scale
distribution. This measure is obtained by comparing the ratio scale bar
chart to the linear one, as shown in Figure 10, in the following manner.
Suppose the value of the lowest ranked requirement in the linear bar chart
account for k% of the total value. The second lowest ranked requirement
would then account for 2*k% of the value. In a similar manner, the
highest ranked requirement account for N*k% of the value, if there are N
requirements in total. Thus, multiplying the constant k with the rank
yields the linear equivalent to the priority. The difference between
adjacent requirements is the same all over the chart, and equal to the
constant k%. In order for the total value of all requirements to add up to
100%, the statement below can be used.

Figure 10. Comparison between skewed and linear bar charts

k 2k 3k … Nk 1=+ + + +

114

Using this equation, it is possible to calculate the constant k:

Eq 1.

From these assumptions, we can calculate the skewness of the ratio scale
data by calculating how much the ratio bar deviates from the constant k
multiplied by its rank. This difference was calculated for each
requirement and then the standard deviation, i.e. the skewness, was
calculated as follows:

Eq 2.

Since the values of the ratio scale prioritisation often are presented in
percentages, we have chosen to use percentages in the calculations.

EXAMPLE. For the example in Figure 10, the highest ranked
requirement accounts for 28.7% of the value according to the ratio scale.
To calculate the value of the highest ranked requirement in the linear
distribution, we need to calculate the constant k with Equation 1, where
N=21.

Thus, the highest ranked requirement accounts for N*k%, i.e.
21*0.00433=9.1%. Consequently, the difference between the ratio scale
distribution and linear distribution is 28.7%–9.1%=19.6% for this
requirement. This difference is summed up for all the requirements and
used in Equation 2 to calculate the skewness. In this example the
skewness is 4.6%.

RESULT. The skewness was calculated for all subjects with Equation 2
and is presented in the tables below.

As seen in Table 15, Subject A4 has the smallest skewness for both criteria
and thus the least skewed distribution.

k
1

1 2 3 … N+ + + +
--=

Skewness
DiffForEachReq()2∑

N 1–
--=

k
1

1 2 3 … 21+ + + +
-- 0 00433,==

Table 15. Skewness for data set 1

A1 A2 A3 A4 A5 A6 A7 A8 Av

Value (%) 4.6 1.3 1.5 1.0 2.0 4.3 1.3 2.7 2.3

Cost (%) 4.0 3.9 2.5 0.5 2.3 4.8 1.1 1.2 2.5

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 115

As Table 16 indicates, subject B11 has a small skewness for both criteria,
while, e.g., subject B2 has a rather large skewness. The average skewness is
smaller for the subjects in the second experiment assignment than in the
first for both criteria.

Among the subjects in Table 17, C5 has the most skewed distribution.

Subject D4 has the lowest skewness among the subjects in Table 18.
ANALYSIS. The average skewness is rather equal for both criteria within

each of the four data sets. Thus, the skewness seems to be independent of
the criteria, at least for these criteria and these data sets. The size of the
average skewness varies between the data sets. This can be explained by
the different numbers of requirements in the different settings, and the
difference in application, i.e. manual as opposed to tool-supported
techniques.

The skewness seems to vary among the subjects. However, most
subjects have rather similar skewness values for both used criteria. In fact,
the correlation between the skewness for value and the skewness for cost is
0.37, p=0.028, see also Figure 11. This could imply that some people

Table 16. Skewness for data set 2

B1 B2 B3 B4 B5 B6

Value (%) 1.1 1.9 1.9 1.9 1.5 1.0

Cost (%) 1.0 4.3 1.2 1.7 0.9 2.4

B7 B8 B9 B10 B11 B12 Av

Value (%) 1.3 1.1 1.2 2.9 1.0 2.8 2.0

Cost (%) 1.6 2.1 1.2 1.1 1.0 1.5 1.6

Table 17. Skewness for data set 3

C1 C2 C3 C4 C5 C6 C7 C8 Av

Value (%) 3.5 2.3 3.6 2.7 6.2 3.2 3.1 2.2 3.4

Cost (%) 2.0 5.5 2.3 2.4 5.8 1.3 3.7 2.0 3.1

Table 18. Skewness for data set 4

D1 D2 D3 D4 D5 D6 D7 D8 Av

Value (%) 1.7 0.9 1.5 0.6 1.9 1.0 3.0 2.1 1.6

Cost (%) 1.2 3.5 1.5 0.3 0.9 1.5 1.0 1.9 1.5

116

tend to use more extreme values during prioritisation regardless of
criterion. Others tend to be more modest and use the smaller values no
matter which criterion. These subjects could perhaps have been satisfied
with an ordinal scale technique.

This section has shown a possible way to calculate the skewness of the
ratio distribution. This was used to investigate if certain subjects use the
ratio scale potential more than others, which is confirmed by a slight
correlation in our empirical data. It was also investigated if certain criteria
tend to get a more skewed distribution. However, the average skewness is
similar for both criteria within each data set.

Evaluation of ordinal scale cost-value diagram. The second research
question regards the possibility to apply the cost-value approach when
priorities are based on ranks. Usually, cost-value diagrams are used to
visualise ratio scale priorities by percentages, see e.g. (Karlsson and Ryan,
1997). It may, however, be possible to draw similar diagrams with ordinal
scale data, based on the ranks instead of the ratios, as described in Section
2.3. The cost-value diagram is used as decision-support when selecting
the most appropriate set of requirements for a release. We want to
investigate whether the same requirements would be selected for

Figure 11. Correlation between skewness for value criterion and cost criterion

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 117

implementation when using ordinal data as when using ratio data in the
cost-value diagram.

PROCEDURE. Two sets of cost-value diagrams were drawn based on our
empirical data, one with ratio scale data and one with ranks. The ratio
scale diagram corresponds to the example in Figure 2, option (a), i.e. the
diagram is divided in three equally large areas. The ordinal scale diagram
corresponds to the example in Figure 3. The ratio scale diagram was used
as a baseline in the investigation. We wanted to see whether the ordinal
scale diagram would point out the same requirements as the ratio scale
diagram did. Therefore, we marked each requirement in the ordinal scale
cost-value diagram with different symbols depending on where in the
ratio diagram it appeared, see Figure 12. Each requirement with high
contribution in the ratio scale diagram was marked with a circle; each
requirement with medium contribution in the ratio scale diagram was
marked with a square; and each requirement with low contribution in the
ratio scale diagram was marked with a triangle. Thereby it was possible to
compare the cost-value diagram based on ranks, with the original ratio
cost-value diagram.

The ordinal scale cost-value diagram was divided into nine equally
large areas, similar to the example in Figure 3. We assume that the three
areas to the upper left, called A in Figure 3, should ideally contain high
contributors according to the ratio scale and should be marked with a

Figure 12. Example of cost-value diagram based on ranks

118

circle, if the ordinal scale was reflecting the ratio scale perfectly. Similarly,
the three areas to the lower right, called C in Figure 3, should ideally
contain low contributors according to the ratio scale and should be
marked with a triangle. The middle areas, called B in Figure 3, should
contain medium contributors, and be marked with a square.

Next we can calculate the level of agreement between the ordinal scale
cost-value diagram and the original ratio scale diagram. The Kappa value
(K) can be used to assess the agreement between a set of raters who have
assigned a set of objects to one of several categories (Siegel and Castellan,
1988). In this case, the objects are the requirements and the categories are
the three areas A, B and C. The two “raters” are the categorisation based
on ranks and the categorisation based on ratios.

The Kappa value is calculated according to the following:

Eq 3.

where P(A) denotes the proportion of the times the raters agree and P(E)
denotes the expected agreement that would be present by chance if all
ratings were made randomly (Siegel and Castellan, 1988). Kappa values
close to 1 represent very high agreement, while Kappa values close to, or
below, 0 represent no agreement. The strength of agreement is classified
by e.g. Landis and Koch (1977) as described in Table 19.

EXAMPLE. The cost-value diagram in Figure 12 is used as an example of
how the requirements are distributed over the diagram when the ordinal
scale is used. From this diagram it is possible to count the number of
“correct” and “incorrect” requirements in each area.

For the example in Figure 12, it is visible that most requirements in
area B are marked with a square, but some requirements have ended up in
the wrong area. In this case, prioritising with an ordinal scale would miss

K
P A() P E()–

1 P E()–
-------------------------------=

Table 19. Landis and Koch’s Kappa statistics (Landis and Koch, 1977)

Kappa statistics Strength of agreement

<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost perfect

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 119

one high priority requirement, and would accidentally discard one
medium priority requirement. However, most requirements actually end
up in the correct area.

RESULTS. The tables below present the number of high (H), medium
(M), and low (L) requirements in each of the three areas A, B, and C for
each subject. The ideal categorisation, corresponding to the one in which
the ranks reflect the ratios, would be that all requirements are in the
correct area, i.e. area A contains high contributors, area B medium
contributors and area C low contributors. The last row in the tables below
presents the Kappa value, i.e. the measure of the agreement between the
priorities based on ranks and the priorities based on ratio scale.

As can be seen in Table 20, subject A3 and A4 have the same Kappa value,
as they have the same number of correctly placed requirements. Subject
A6 and A8 have lower agreement because fewer requirements are correctly
placed. The Kappa values for data set 1 represent moderate to substantial
agreement.

Table 20. Requirements in different areas of the cost-value diagram for data set 1

A1 A2 A3 A4 A5 A6 A7 A8 Av

Area
A

3H 6H

2M

6H

1M

6H 7H

2M

5H

2M

7H

1M

6H

3M

Area
B

4H

7M

3L

1H

4M

1L

1H

5M

1H

6M

1L

2M

1L

2H

3M

2L

3M

1L

1H

2M

2L

Area
C

4L 1M

6L

1M

7L

1M

7L

1M

6L

3M

6L

3M

5L

3M

6L

K 0.50 0.64 0.79 0.79 0.57 0.43 0.64 0.43 0.60

Table 21. Requirements in different areas of the cost-value diagram for data set 2

B1 B2 B3 B4 B5 B6

Area
A

7H
1M

4H
1M

6H 5H
1M

4H 5H
1M

Area
B

6M 3H
5M
3L

1H
6M

2H
6M
5L

3H
6M
5L

2H
4M
3L

Area
C

7L 1M
4L

1M
7L

5L 1M
2L

2M
4L

K 0.93 0.43 0.86 0.64 0.36 0.43

120

As Table 21 indicates, the Kappa values vary for data set 2 between fair
agreement for subject B5 and almost perfect agreement for subject B1.

For data set 3, in Table 22, the Kappa values vary a lot between the
subjects. Subject C1 has only slight agreement, subject C6 has fair
agreement and subjects C3, C5, and C7 have perfect agreement between
the ordinal and ratio scale diagrams.

Table 21. (cont.) Requirements in different areas of the cost-value diagram for data set 2

B7 B8 B9 B10 B11 B12 Av

Area
A

6H

1M

6H

3M

6H 5H 3H

1M

7H

2M

Area
B

1H

5M

2L

1H

4M

1L

1H

6M

2H

7M

1L

4H

6M

2L

3M

Area
C

1M

5L

6L 1M

7L

6L 5L 2M

7L

K 0.64 0.64 0.86 0.79 0.50 0.71 0.65

Table 22. Requirements in different areas of the cost-value diagram for data set 3

C1 C2 C3 C4 C5 C6 C7 C8 Av

Area
A

2H 3H 3H 2H 3H 1H 3H 3H

Area
B

1H

2L

1M 2M 1H

2M

1L

2M 2H

2M

2L

2M 1M

Area
C

2M

1L

1M

3L

3L 2L 3L 1L 3L 1M

3L

K 0.07 0.80 1 0.64 1 0.30 1 0.80 0.72

Table 23. Requirements in different areas of the cost-value diagram for data set 4

D1 D2 D3 D4 D5 D6 D7 D8 Av

Area
A

5H

1M

5H

2M

5H

2M

5H 5H

1M

5H

1M

4H

2M

4H

Area
B

2M

1L

2M

1L

3M 5M 3M 3M

1L

1H

4M

1H

5M

1L

Area
C

3M

4L

2M

4L

1M

5L

1M

5L

2M

5L

2M

4L

5L 1M

4L

K 0.54 0.54 0.72 0.91 0.72 0.63 0.72 0.72 0.69

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 121

For data set 4, in Table 23, the Kappa value varies between 0.54 and 0.91,
which corresponds to moderate, substantial or almost perfect agreement.

ANALYSIS. It seems as the areas A, B, and C are valid to use to
distinguish the high, medium and low priority requirements, at least with
the data sets in this investigation. The Kappa values correspond to, at
least, fair agreement in all cases, except when only eight requirements
were prioritised in data set 3. The small number of requirements makes
each requirement affect the Kappa value more than in cases with a larger
number of requirements. The Kappa values for data set 3 vary more than
for the other data sets.

The average Kappa value for all data sets are 0.67, which reflects
substantial agreement.

The conclusion drawn from this section is that it is possible to achieve
similar decision-support with ordinal scale prioritisation techniques as
with ratio scale prioritisation techniques. For most subjects in the
investigation, only a few requirements are judged differently when basing
the decision on the ordinal scale. Therefore, it would be possible to use
the ordinal scale cost-value diagram as presented here when selecting
requirements for a release. This is valuable as most ordinal prioritisation
techniques are easier and faster to use than techniques with ratio scale
results.

Opinions on scales. After the second experiment assignment, the
fourteen subjects answered some questions regarding how they felt about
the prioritisation technique and the scale. Approximately half of the
subjects found it easy to decide which degree on the ratio scale to select,
and half found it difficult. Motivations for finding it easy included that
the scale was intuitive and the subjects felt sure about the domain.
Subjects finding it difficult motivated it with lack of domain knowledge
and some said that it was easy to choose which requirement that was more
valuable, or expensive, but to decide how much was more difficult. Five of
the subjects also stated that it would have been easier and faster to omit
the ratio scale and only decide “more than” or “less than”. This would
speak in favour of the ordinal scale. However, as some subjects pointed
out, it would be more fault intense and yield less information. When
asking the subjects whether they used the extreme values on the
prioritisation scale, almost half of the subjects said that they did not.
Their motivations include insecurity due to lack of domain knowledge,
and that “you never know if another requirement is even better”. It is

122

possible that when decision-makers are insecure about the domain, it may
be sufficient to use the ordinal scale, since the extreme values of the ratio
scale are not used.

4.3 Discussion

The main validity issue is the generalisability. As we have only investigated
students and PhD students prioritising rather independent mobile phone
requirements it is difficult to generalise to industrial cases. The skewness
measure and the ordinal cost-value diagram need industrial validation in
order to rely on the results with more certainty. The issue of participant
and observer bias is reduced in this study as it is an archive analysis and
neither the students nor the researchers planned to use the results for this
purpose and could hence not affect them.

The data show a slight correlation (r=0.37, p=0.028) between the
skewness for value and the skewness for cost. We need more data in order
to determine whether the skewness for different criteria correlates.
Similarly, it requires more investigation of the cost-value diagram in order
to determine if it is valuable for decision-makers to use the ordinal scale.
For most of our empirical data there appears to be a substantial agreement
between the ratio scale cost-value diagram and the ordinal scale cost-value
diagram. However, it requires use by decision-makers to see whether the
ordinal scale diagram is sufficiently accurate. It shall also be noted that it
is not necessarily the case that using an ordinal scale requirements
prioritisation technique would give the same cost-value diagram as the
one obtained by reducing the ratio scale data to ordinal scale data, which
was done in this study. Further studies need to be made in order to
determine if this transformation of data is an appropriate approximation
of the results from ordinal scale prioritisation. An alternative approach to
obtain comparable data on different scales would be to use data obtained
from different techniques, one based on ordinal scale and one based on
ratio scale. However, the difference in prioritisation techniques would
then influence the result more than the difference in scales, which is the
issue we try to investigate here. A comparison between ratio scale
techniques and an ordinal scale technique is presented earlier in this part
of the thesis.

The skewness may be used to compare different sets of data in order to
determine which one that benefits more from the ratio scale. In our case,
we compared the skewness between different subjects and between the

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 123

criteria cost and value. There are other criteria as well that could be
investigated similarly, such as risk, effort, business opportunity, etc. It
would also be possible to compare prioritisation data from different
domains, or different types of requirements, to see if certain domains
benefit more from the ratio scale than others. The skewness is rather easy
to calculate using a spread sheet, and it determines the skewness for each
criterion separately. Instead of the linear baseline used for calculating the
skewness, it would be possible to create a baseline based on the average
distribution for the investigated subjects. In that manner, the skewness
would then vary positively or negatively from the baseline distribution.

The cost-value diagram based on ranks can be used when the
prioritisation technique results in ranks, which is the case when using e.g.
the Planning game or Numeral assignment. For our investigation we
chose to divide the diagram into nine equally large areas to simulate the
high, medium, and low priority groups often resulting from e.g. Numeral
assignment. However, in a real case, these groups might not be equally
large and thus the nine areas might be of different sizes. Alternative ways
to divide the cost-value diagram could result in other conclusions but this
has not been investigated in this study.

4.4 Conclusions

This study has presented two ways to analyse and compare ordinal and
ratio scale data: (1) Evaluation of skewness, and (2) Evaluation of ordinal
scale cost-value diagram. It is important to be able to compare data from
different scales since there is a trade-off between using a richer, but more
time-consuming, scale and a less rich, but faster, scale when prioritising
requirements.

We have presented a skewness measure that can be used to characterise
the ratio scale data, see RQ1. The skewness can be used to compare the
characteristics of the ratio scale for different subjects, criteria or types of
requirements. Based on our empirical data we conclude that some
subjects are more inclined to use the extreme values of the ratio scale than
others. However, the skewness of the ratio scale does not seem to be
affected by the different criteria, at least not cost and value. The practical
implication of the presented results suggest that decision-makers can use
the skewness measure in a pre-test before prioritisation to determine
whether a ratio scale technique is worth the effort (due to high skewness)
or if it is sufficient with an ordinal scale technique (due to low skewness).

124

If an ordinal scale prioritisation technique is used, it is valuable for
decision-makers to be able to use the cost-value approach. Therefore, we
have suggested how the cost-value diagram can be used to find the most
valuable requirements, when priorities are on an ordinal scale, see RQ2.
The empirical ratio scale data and the ranks of the same data were
compared using cost-value diagrams. The decision regarding which
requirements to select in the data sets used in this study would be rather
similar basing the diagram on ranks instead of ratios.

This study has attempted to answer questions about how the difference
between the scales can be calculated and illustrated. However, we cannot
answer the even more interesting question about when the ratio
information is worth the extra effort and when ranking of requirements
may be enough. Below we have listed a number of ways to investigate this
further:

• Conduct a case study where both ordinal and ratio scale prioritisa-
tion techniques are applied and evaluated by practitioners.

• Set up a controlled experiment where several different criteria are
used, for example value, cost, effort, risk etc., to investigate if some
criteria need the ratio scale more than others. Similarly, different
types of requirements can undergo the same investigation.

• Perform an interview survey where several experienced practitioners
answer questions regarding when the ratio scale is necessary and
which characteristics that can be used to decide if the ratio scale
should be used or not.

• Simulate priorities from different known distributions to compare
with data from real ratio scale prioritisations to see which distribu-
tion that is most similar to the real ones – and to see if there are
some distributions that can benefit more from the ratio scale than
others.

5. Closing Remarks

Part II has presented two separate studies aimed at characterising and
comparing requirements prioritisation techniques. Each study has its own
discussion and conclusion sections since the studies have different
research questions and goals that need to be discussed separately. In this

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 125

final section, some concluding remarks are presented based on both
papers.

The choice of requirements prioritisation technique depends on
several different factors, such as time-consumption, ease of use, and
accuracy. In addition, you need to consider what fits the development
process used in the project. Furthermore, issues such as the cost and effort
required for preparing the prioritisation session need to be regarded, as
well as the cost and effort of introducing a certain prioritisation tool or
technique. The first of the presented studies suggests that the Planning
game seems feasible for requirements prioritisation because it is relatively
fast and easy to use. It is also inexpensive compared to tool-based
techniques, since it only requires paper and pen. Other sources confirm
that the requirements prioritisation practice in many organisations is
based on grouping requirements, rather than using more rigorous
techniques (Lehtola and Kauppinen, 2006). Therefore, introduction of
Planning game might be efficient and successful. Lehtola and Kauppinen
(2006) also discovered that some users of a ratio scale technique found it
difficult to determine how much more important one requirement is than
another. In addition, in the second study in Part II, some subjects did not
use the extreme values on the ratio scale. Such subjects could perhaps have
been satisfied with an ordinal scale technique. The second study also
implies that it is possible to use the cost-value approach on ordinal scale
data obtained using the Planning game. All these issues speak in favour of
the Planning game technique.

However, ratio scale techniques are beneficial when we need to regard
the relative differences between requirements. These differences may be
valuable to consider, since it can turn out to that a few requirements
account for a large part of the total value. Ratio scale techniques also yield
more informative results since the difference in priority between
requirements comes out clearer. The skewness measure presented in the
second study can be used to determine the cases when ratio scale
techniques are beneficial due to the large differences in priority between
requirements. Therefore, the skewness measure is valuable when
determining which technique to choose. The measure can be used in
retrospect to measure the skewness on historical data or it can be used in a
pre-study to find situations when the ratio scale is beneficial.

126

Appendix
Table A. Experiment 1 using counter-balancing design

Subject
Nbr of
Features Tech 1 Tech 2 Criterion 1 Criterion 2

1 8 PWC PG Price Value

2 8 PWC PG Price Value

3 16 PWC PG Price Value

4 16 PWC PG Price Value

5 8 PWC PG Value Price

6 8 PWC PG Value Price

7 16 PWC PG Value Price

8 16 PWC PG Value Price

9 8 PG PWC Price Value

10 8 PG PWC Price Value

11 16 PG PWC Price Value

12 16 PG PWC Price Value

13 8 PG PWC Value Price

14 8 PG PWC Value Price

15 16 PG PWC Value Price

16 16 PG PWC Value Price

Part II

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 127

Table B. Experiment 2 using counter-balancing design

Subject Occasion Tech 1 Tech 2 Criterion 1 Criterion 2
1 PM TPWC PG Value Price

2 PM TPWC PG Value Price

3 PM TPWC PG Value Price

4 PM TPWC PG Value Price

5 EV TPWC PG Value Price

6 EV TPWC PG Value Price

7 EV TPWC PG Value Price

8 PM TPWC PG Price Value

9 PM TPWC PG Price Value

10 PM TPWC PG Price Value

11 PM TPWC PG Price Value

12 PM TPWC PG Price Value

13 EV TPWC PG Price Value

14 EV TPWC PG Price Value

15 PM PG TPWC Value Price

16 PM PG TPWC Value Price

17 PM PG TPWC Value Price

18 PM PG TPWC Value Price

19 EV PG TPWC Value Price

20 EV PG TPWC Value Price

21 EV PG TPWC Value Price

22 PM PG TPWC Price Value

23 PM PG TPWC Price Value

24 PM PG TPWC Price Value

25 PM PG TPWC Price Value

26 PM PG TPWC Price Value

27 PM PG TPWC Price Value

28 PM PG TPWC Price Value

29 EV PG TPWC Price Value

30 EV PG TPWC Price Value

128

Table C. Requirements prioritised in the experiments

Feature Selected for 8 features

Alarm x

Bluetooth

Calculator

Calendar x

Call alert creation

Colorscreen x

Games x

IR

MMS

Notebook x

Phonebook

SMS

Timer x

WAP x

Vibrating call alert x

Voice control

Table D. Requirements prioritised in the laboratory sessions, data set 1 and 2

Requirement

001: WAP 2.0 012: Folders

002: HTML4 013: VoiceToText

003: Bookmarks 014: Attachment

004: JavaScript1.2 015: Filters

005: Cookies 016: Folders

006: CSS2 017: Cropping

007: SSL 018: Zooming

008: MMS 019: Red eye remover

009: E-mail 020: Rotate

010: Chat 021: Slideshow

011: T9

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 129

PART III: RETROSPECTIVE ANALYSIS FOR RELEASE PLANNING DECISIONS

Paper 4. Case Studies in Process Improvement through Retrospective Analysis of Release
Planning Decisions.

Lena Karlsson, Björn Regnell, Thomas Thelin

Accepted for publication in International Journal of Software Engineering and Knowledge
Engineering: Special Issue on Requirements Engineering Decision Support, December 2006.

Paper 5. Retrospective Analysis of Release Planning Decisions in a Product Line Envi-
ronment - A Case Study.

Lena Karlsson, Björn Regnell

Submitted, 2006.

Paper 6. Introducing Tool Support for Retrospective Analysis of Release Planning Deci-
sions.

Lena Karlsson, Björn Regnell

Proceedings of the 7th International Conference on Product Focused Software Process
Improvement (PROFES’06), Amsterdam, the Netherlands, June 2006.

Abstract

The process of selecting requirements for a release of a software product is
challenging as the decision-making is based on uncertain predictions of
customer value and development cost. This part of the thesis presents a
method aimed at supporting software product development organisations
in the identification of process improvement proposals to increase
requirements selection quality. The method is based on an in-depth
analysis of requirements selection decision outcomes after the release has
been launched to the users. The method is validated in three separate case
studies involving real requirements and industrial practitioners. The
conclusions from the case studies include that the method seems valuable
in situations with complex release planning decisions. It appears essential
that participants with different viewpoints attend the root cause
discussion. Requirements interdependencies seem to play a big role in
release planning decision-making. Successful projects can also be a source
of learning. In addition, it is valuable to combine the PARSEQ method
with actual project data collected in e.g. a knowledge management effort.

III

130

1. Introduction

This part of the thesis presents a method for identifying improvement
areas in the release planning process through conducting retrospective
analysis. The method is called PARSEQ (Post-release Analysis of
Requirements SElection Quality). The method is based on retrospective
examination of release planning decision-making, at a time when the
consequences of requirements selection decisions are visible. Release
planning decisions determine in which release of the product different
requirements should be included. These decisions may affect the success
of a product (Carlshamre, 2002). Release planning was discovered to be
an important issue in Paper 1. Interviewees stated for example that the
release plan is dependent on accurate time-estimates since the estimates
affect how many requirements that can be selected for each release.
Therefore, we view release planning as an important but difficult activity,
which need support for improvement.

Given issues such as uncertain estimates of requirements user value and
cost of development, it can be assumed that some requirements selection
decisions are non-optimal. This in turn may lead to software releases with
a set of features that are not competitive or that do not satisfy user
expectations. Only afterwards, when the outcome of the development
effort and user value is apparent, is it possible to tell with more certainty
which decisions were correct and which were not. By looking at the
decision outcomes in retrospect, organisations can gain valuable
knowledge on how to improve the requirements selection process and
increase the chance of product success. Retrospective analysis may help
focus on the most acute and valuable improvements for the release
planning process.

This part of the thesis includes an integrated presentation of results
from three case studies (Paper 4 and 5). The contribution includes
conclusions on the range of applicability of retrospective analysis for
release planning decisions. The PARSEQ method needs to be adaptable
to projects of different size, maturity and level of agility. Each step of the
method can take different shapes, depending on the characteristics of the
project of interest. In particular, a discussion of light-weight versus
advanced versions of components within the methodology is provided.

In the first case study, the method was applied at a company
developing a software product for an open market. The company had
regular releases and used a requirements management (RM) tool called

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 131

Focal Point (Telelogic, 2006) when planning their releases. Several
improvement suggestions for the release planning activity were found
during the case study, e.g. enhancing the overall picture of related
requirements, paying more attention to the elicitation of usability
requirements and improving estimates of implementation costs.

In the second case study we applied the method with a more agile
approach. The investigated case used an agile development process and
the software system was developed in an in-house project, i.e. both users
and developers of the project were from within the company. The agile
application of PARSEQ seems promising and the release planning activity
in the investigated project was found successful. The participants
concluded that the iterative development, with flexible release plans, was
beneficial. The project type may also have influenced the results since
users of in-house projects have similar requirements, and they can express
their requirements to the developers who are located close by.

In the third case study we investigated product line development
(Clements and Northrop, 2002) of an embedded consumer product. In
addition, a prototype tool developed to support the method was
evaluated, see Paper 6. The product line situation entails special
challenges since it requires the products to be adapted for reuse and
several products are alive at the same time. In addition, embedded
products often have more difficult dependencies since both software and
hardware aspects need to be considered. The PARSEQ method resulted in
several process improvement suggestions regarding the process, market
focus, and development issues. The prototype tool was developed based
on the experiences from the first two case studies. It seems to support the
PARSEQ analysis by increasing efficiency and visualisation potential of
release planning problems through charts and diagrams, as well as
decreasing preparation and manual handling of requirements through
import and export possibilities.

The three main issues that differ between the case studies are the
project type, the product type, and the development approach. The first
case study presents a market-driven project using incremental
development for a software product. The second case study presents an
in-house project using an agile development approach for a software
product. The third case study presents a market-driven project using a
product line development approach for an embedded product. The
specific project types make it difficult to generalise to other organisational
settings with different customer-supplier relationships. Qualitative

132

research designs, such as case studies, do not attempt to generalise results
beyond the case under study. Instead, the intent is to focus on the
credibility and trustworthiness of the results (Robson, 2002). In addition,
qualitative research aims to investigate as different cases as possible in
order to reveal possibilities and limitations of the investigated method.
The three reported cases are different and complement each other. The
results were fed back to the participants who found the improvement
proposals relevant. The relevance of the results supports the idea that
retrospective analysis can be a valuable means for process improvement,
although the actual benefit from the process improvement proposals
might not be visible in a short-term perspective.

The investigated research questions are:
RQ1. Do the participants find the PARSEQ analysis valuable?
RQ2. Do the results of the PARSEQ analysis differ depending on the project
type, product type and development approach?
RQ3. What are the lessons learned about the adaptations of the PARSEQ
method to the cases?
RQ4. Can the PARSEQ prototype tool make the PARSEQ analysis more
efficient and illustrative?

Part III is structured as follows. Section 2 presents related work,
including retrospective analysis, release planning, and software product
line engineering. Section 3 describes the PARSEQ method and its five
steps, and Section 4 describes the prototype tool used in the third case
study. Section 5 presents the three case studies and the results from
applying the PARSEQ method. Section 6 discusses the findings in the
case studies and Section 7 concludes with some lessons learned and ideas
for future work.

2. Related Work

This section describes some related work in the areas of retrospective
analysis, release planning, and software product line engineering.

2.1 Retrospective Analysis

In (Kerth, 2001), retrospective analysis is acknowledged as one of the
most important means for software process improvement. This activity
has many different names - process review, post mortem analysis, project

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 133

postmortem, etc., but the idea is the same: by looking back and learning
from the past it is possible to improve the future. Retrospective analysis is
not new, nor is it only applicable to software projects. However, physical
products often have built-in feedback, making it more evident whether or
not you have succeeded. In the world of software development, the
product is more or less invisible and this invisibility heightens the need for
feedback on product and project success (Kerth, 2001).

The project retrospective is considered an excellent method for
Knowledge Management, since it captures experience and improvement
suggestions from completed projects (Birk et al., 2002; Rus and Lindvall,
2002). One of the first papers to present a defined process recommends a
five step approach that includes designing a project survey, collecting
objective project metrics, conducting a debriefing meeting followed by a
“project history day”, and finally publishing the results (Collier et al.,
1996).

Later on, a more lightweight retrospective review was proposed (Birk et
al., 2002). It is based on a focused brainstorm on what happened in the
project and a technique called the “KJ Method”. The participants get
three to five post-it notes and are asked to write down one “issue” on each.
The post-its are attached to a whiteboard and are then grouped, discussed
and prioritised. Then the issues are analysed in a Fishbone diagram to
find the causes for positive and negative experiences.

In (Nolan, 1999), the author states that the most effective way to
improve is by learning from success. Rather than studying the
unsuccessful projects or looking for external answers, you can choose your
most successful projects and learn from them. While traditional
approaches to process improvement often focus strongly on improving
through perpetual refinement, it is suggested that learning from success is
a more effective and efficient scheme. The author states: “If you believe
that failure is no accident, then you must also believe that success is no
accident”.

Retrospective reviews are often discussed in a project management
context (Cleland, 1995; Ulrich and Eppinger, 2000). An evaluation of the
project’s performance after it has been completed is useful both for
personal and organisational improvement and can be conducted as an
open discussion of the strengths and weaknesses of the project plan and
execution. Much can be learned about organisational efficiency and
effectiveness from this kind of evaluation, as it offers an insight into the
success or failure of a project. The lessons learned can be used when

134

planning future projects to improve project performance and to prevent
mistakes.

Continuous process improvement is important in mature software
development. In particular, requirements engineering is pointed out as a
critical improvement area in a maturing organisation (Paulk et al., 1995).
A recent process improvement study based on analysis of defects in
present products is reported in (Lauesen and Vinter, 2001).

As the retrospective analysis has proven to be an effective way of
learning and improving, the practice has also been adopted by the agile
community. Agile methodologies share an iterative and incremental way
of working. This is also reflected in how they recommend performing
retrospective analysis. “People have to develop the habit of looking for
process refactorings just like they look for code refactorings” (Collins and
Miller, 2001). The agile community takes the project retrospective one
step further and suggests retrospectives to be performed after each
iteration. The aim is to reach a more continuous improvement, so that
problems can be found and corrected before the product is released.

2.2 Release Planning

Deciding what to develop, and when, is a complex task. The common
trade-off between customer value and implementation cost must be taken
into consideration but other factors may also be important such as
available resources, benefit for the company, competitors’ product plans,
logical implementation order, and cost if not implemented (Lehtola et al.,
2004). Developing products in an incremental manner provides the
opportunity of releasing the most important functionality first instead of
delivering a monolithic system after a long development time.
Consequently, customers receive part of the system early on and are more
likely to provide feedback on it. It is also easier to estimate the cost and
schedule for each delivery, as each release is smaller. An incremental
approach also allows for a better reaction to changes or additions to
requirements (Greer and Ruhe, 2004).

The incremental agile methodologies have gained interest during the
last years as they provide a flexible alternative to the traditional
development approaches. The most well-known approach may be
Extreme Programming (XP) (Beck, 2005). XP involves twelve practices
such as Pair programming, Continuous integration, Refactoring, and the
Planning game. The Planning game is a procedure used to determine the

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 135

scope of the next release by combining business priorities, e.g. value to the
user or customer, and technical estimates, e.g. time, risk, and resource
estimates.

Delivering software incrementally necessitates a process of analysing
requirements and assigning them to increments. The release planning task
is normally preceded by requirements prioritisation and resource
estimation (Carlshamre, 2002). Several different techniques for
requirements prioritisation exist, see e.g. (Berander and Andrews, 2005;
Karlsson et al., 1998). However, at the time of prioritisation it is difficult
to be fully aware of the context and circumstances present when the
release is launched. The issue of resource estimation has been debated
within software engineering since its origin and is described in e.g. the
COCOMO model (Fenton and Pfleeger, 1997). Furthermore,
requirements are often subject to interdependencies pertinent to release
planning, which radically increases the complexity of the selection task. In
(Carlshamre et al., 2001), it is discovered that customer-specific
development tends to include more functionality-related dependencies,
whereas market-driven product development have an emphasis on value-
related dependencies.

One technique for release planning is the Planning game described
above. Another one is the EVOLVE approach (Greer and Ruhe, 2004),
which takes multiple aspects into consideration when assigning
requirements to increments, e.g. different stakeholder perspectives, effort
constraints, requirements interdependencies and changing requirements.
The approach uses a genetic algorithm to derive potential release plans
within pre-defined constraints.

2.3 Software Product Line Engineering for Embedded
Products

According to (Clements and Northrop, 2002) a software product line
(SPL), or a software product family, is “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs
of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way”. The core assets from
which the different products are developed can also be called a product
platform and include the architecture, reusable components, domain
models, requirements statements, documentation, schedules, test plans,
process descriptions, etc.

136

The concept of product platforms is not new but has been used in,
e.g., the automotive industry for decades. In that case, the platform is a
piece of hardware on top of which other hardware and software is built.
This kind of embedded software appears in an increasing number of
products in addition to cars: machine tools, home appliances and even
toys. Production costs can be lowered significantly by using the same
mechanical configuration for various models of a product line but
shipping them with different controlling software. Embedded software is
rapidly becoming a key differentiator between competitive products
(Miller, 1998).

Embedded systems have additional aspects to consider, not apparent in
traditional software development, e.g., performance, cost, emissions,
power consumption, and weight (Sangiovanni-Vincentelli and Martin,
2001). Embedded systems have more difficult trade-offs than traditional
software development, which is discussed by Graaf et al. (2003) in their
interview study of embedded software state-of-the-practice. They found
that hardware development primarily dominated system development
because of longer lead times and logistical dependencies on external
suppliers. Consequently, software development started when hardware
development was already at a stage where changes would be expensive.
Hardware properties then narrowed the solution space for software
development. In some cases software acted as an integrator, i.e., problems
that should have been solved in the hardware domain were solved in the
software domain (Graaf et al., 2003).

The product platform is required to be adapted for reuse, which puts
special demands on nonfunctional requirements, such as real-time
aspects, performance and reliability (Graaf et al., 2003). In addition,
release planning is more complex since we need to consider releases at
several different levels. Each product in the product line have different
releases, and the platform itself is also subject to release planning. Thus,
several products in the product line are active at the same time as opposed
to the ordinary release planning situation where a product update means
that the prior release does not need further consideration.

3. The PARSEQ Method

Retrospective evaluation of software release planning may give valuable
input to the identification of process improvement proposals. In

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 137

particular, post-release analysis of the consequences of previous decision-
making may be a valuable source of information when finding ways to
improve the requirements selection process.

The PARSEQ method is based on a systematic analysis of candidate
requirements from previous releases. By identifying and analysing a set of
root causes to suspected incorrect requirements selection decisions, it may
be possible to find relevant improvements that are important when trying
to increase the specific organisation’s ability to plan successful software
releases.

In order to use the PARSEQ method, the following foundation
practices are required:

• Multiple releases of the product and requirements from earlier
releases are saved in a repository.

• Data for each requirement stating in which release it is imple-
mented, or if the requirement has been postponed or excluded.

• Methods for estimating each requirements’ cost and value.

• Employees who have decision-making experience from prior
releases.

• A facilitator with experience in performing retrospective analysis.

PARSEQ is divided into five steps: requirements sampling, re-
estimation of cost and value, root cause analysis, elicitation of
improvements, and prioritisation of improvements, as shown in Figure 1.
Each of the steps can be adapted to the particulars of a case study. For
example, there are different approaches to requirements sampling that can
be selected for the first step. There are also several different techniques for
requirements prioritisation that can be used in the second step.

The method uses a requirements repository as input and assumes that
information is available regarding when a requirement is issued and in
which release a requirement is implemented. The output of the method is
a list of prioritised process improvement proposals and a plan for
improvement implementation. Each step in PARSEQ is subsequently
described in more detail.
Step 1: Requirements sampling.
The main input to the retrospective analysis is a list of requirements that
were candidates for previous releases of the investigated product. The

138

product should have been in operation long enough to allow for an
assessment of the current user value of its implemented requirements.

The purpose of the sampling is to compose a reasonably small but
representative sub-set of requirements, since the complete repository may
include several hundreds of requirements. Requirements sampling makes
the retrospective analysis more time-efficient so that it can take place
during a workshop. The sample should include requirements that were
selected for implementation in one of the releases as well as postponed or
excluded requirements. The requirement set is thereby useful for the
analysis as it consists of typical examples of release planning decisions.

Requirements
sampling

Re-estimation of
cost and value

Root cause
analysis

Root
causes

Elicitation of
improvements

Process
improvement
proposals

Sub-set of
previous
candidates

Post-
release
priority
list

Requirements
repository

Prioritisation of
improvements

Plan for
improvement
implementation

Figure 1. An outline of the activities and products of the PARSEQ method

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 139

The requirements sampling can be performed with different focus,
such as concentrating on a special market segment or on a difficult part of
the product or on particularly difficult decisions. However, if the sample
is supposed to represent the whole product and its users, the sample
should be as comprehensive as possible. If a random sample is used, the
following types of requirements may be excluded:

• Very similar requirements, since they do not extend the sample.

• Requirements dated several releases ago, as they may have evolved
out of scope.

• Requirements dated recently, since they might not yet be analysed.

• Requirements estimated to have a very long or very short imple-
mentation time, as they are atypical and likely to be split or joined.

The output from the requirements sampling is a reasonable amount of
requirements, large enough to be representative, yet small enough to allow
the following steps of PARSEQ to be completed within a reasonable time.
Step 2: Re-estimation of cost and value
The requirement sample is input to the next step of PARSEQ, where a re-
estimation of current user value and actual development cost is made in
order to find suspected inappropriate decisions that can be further
analysed. Since the investigated product releases have been in operation
for a while, a new assessment can be made, which applies the knowledge
gained after the releases were launched. Presumably this results in more
accurate priorities. The re-estimation determines how the organisation
would have decided, i.e. which requirements would have been selected, if
it knew then what it knows now. With today’s knowledge about user
expectations and development costs, a different set of requirements may
have been selected for implementation in the different releases. If this is
not the case, either the organisation has not learned more about release
planning since the releases were launched, or the release planning
decisions were accurate.

The implemented requirements have a known development cost
(assuming that actual implementation effort is measured for each
requirement), but postponed or rejected requirements need to be re-
estimated based on architectural decisions and the knowledge gained from
the actual design of the subsequent releases.

By using, for example, a cost-value prioritisation approach, it is
possible to see the trade-off between the value to the users and the cost of

140

development in a so called cost-value diagram (Karlsson and Ryan, 1997),
or in a bar chart (Telelogic, 2006). These illustrations point out the
requirements with high value and low cost (they should be implemented
early), as well as the requirements with low value and high cost (they
should be implemented late or perhaps not at all).

The purpose of the re-estimation is to apply the knowledge that has
been gained since the product was released to discover decisions that
would be made differently today. The discrepancies between the decisions
made during release planning and during post-release prioritisation are
noted and used in the root cause analysis. The output of this step is thus a
list of requirements that were given a high post-release priority but were
implemented late or not at all, as well as requirements that were given a
low post-release priority but were implemented in an early release.
Step 3: Root cause analysis.
The purpose of the root cause analysis is to understand on what grounds
release-planning decisions were made. By discussing prior release
planning decisions, and determining root causes of problematic ones, it
may be possible to determine what went wrong and recommend how to
do it better next time.

The output of the re-estimation, i.e. the discrepancies between the
post-release prioritisation and what was actually selected for
implementation in the different releases, is analysed in order to find root
causes to the suspected inappropriate decisions. This analysis is based on a
discussion with persons involved in the requirements selection process.
Questions such as the following can be used to stimulate the discussion
and provoke insights into the reasons behind the decisions:

• Why was the decision made?

• Based on what facts was the decision made?

• What has changed since the decision was made?

• When was the decision made?

• Was it a correct or incorrect decision?

Guided by these questions, categories of decision root causes are
developed. Each requirement found to be implemented either too early or
too late is mapped to one or several of these categories. This mapping of
requirements to root cause categories is the main output of this step
together with the insights gained from retrospective reflection.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 141

Step 4: Elicitation of improvements.
The outcome of the root cause analysis is used to facilitate the elicitation
of improvement proposals. The objective of this step of PARSEQ is to
arrive at a relevant list of high-priority areas of improvement. The
intention is to base the discussion on strengths and weaknesses of the
requirements selection process and to identify changes to current practice
that can be realised. The following questions can assist to keep focus on
improvement possibilities:

• How could we have improved the decision-making?

• What would have been needed to make better decisions?

• Which changes to the current practices can be made to improve
requirements selection decisions in the future?

If this step results in multiple improvement proposals, it may be necessary
to prioritise between improvement suggestions.
Step 5: Prioritisation of improvements.
The input to the fifth and last step of the PARSEQ method is a list of
process improvement proposals for the release planning process. In order
to decide which improvements to implement, it may be necessary to
prioritise between the suggested improvements so that the most cost-
effective and important ones can be dealt with first. The prioritisation can
be performed in a similar manner as in step 2, i.e. based on cost and value.
The results of PARSEQ can then be used in a process improvement
programme where process changes are designed, introduced and
evaluated. These activities are, however, beyond the scope of the PARSEQ
method.

4. The PARSEQ Tool-Support

In order to support the retrospective analysis method a prototype tool was
developed (Paper 6). The experiences from conducting the two first
PARSEQ case studies (see Section 5.1 and 5.2) were used when
developing the tool, which handles all steps from the import of a sample
of requirements to the export of process improvement proposals. The tool
consists of a number of different windows guiding the user through the
PARSEQ process.

142

Step 1: Requirements sampling.

The tool can import a list of requirements from MS ExcelTM. It requires
the imported list to be in a certain format with columns representing
requirement number, requirement description and release number.
Therefore, the original requirements repository may need to be altered
before importing it. The tool supports manual entering of requirements
as well as editing of imported requirements. The tool cannot manage
random sampling, only manual selection of requirements from the
imported list. Therefore, it is more efficient to conduct the sampling prior
to the PARSEQ session, so that manual selection does not have to be
performed.

Step 2: Re-estimation of cost and value.

When requirements have been imported into the tool along with each
requirement’s release number and description, the second step can be
performed. The re-estimation of cost and value is performed by using one
of the three available requirements prioritisation techniques. We chose to
include the two techniques that were used effectively in the first two case
studies, i.e. the Pair-wise comparisons (Saaty, 1980) and the Planning
game (Beck, 2005), and in addition we included the $100 technique
(Leffingwell and Widrig, 2000), as it has been used successfully by the
researchers before (Regnell et al., 2001).

At this step it is also necessary to select the criteria on which to base the
prioritisation. Pre-defined criteria include cost, value, and risk. It is also
possible to enter two criteria of your own choice. It is essential to choose
one criteria to maximise, e.g. value, and one to minimise, e.g. costs.

The PWC requires the user to perform pair-wise comparisons between
all possible pairs of requirements. As the number of comparisons increases
drastically with the number of requirements, this is very time-consuming
for large amounts of requirements. However, there are different
algorithms to reduce the number of comparisons, for example the
Incomplete Pair-wise Comparisons (IPC) (Harker, 1987). The tool
implementation of the PWC prioritisation technique was inspired by the
IPC. In the tool, it is possible to stop before all pairs are compared and
receive an approximate value. This reduces the necessary comparison
effort, but also the trustworthiness of the result. The same process is
performed for both selected criteria.

The Planning game helps the decision-maker to rank requirements by
first assigning each requirement to the high, medium or low box, and

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 143

then arrange them in falling order within each box. This is performed for
both selected criteria, for example cost and value, before continuing.

The $100 technique prioritises the requirements by providing each
requirement with a share of a total budget of 100 dollars. This gives each
requirement a percentage of significance according to the currently used
criteria. A cell at the bottom keeps track of the total amount spent so far.
Step 3: Root cause analysis.
In the root cause analysis, the requirements identified as implemented too
early or too late are analysed. The support provided by the tool for this
step is divided into two windows, the Graph window and the Root cause
matrix. In the Graph window, the results from the re-prioritisation are
displayed in a cost-value diagram. Each requirement’s position is shown
with an icon: a “+” or one or more circles, to tell releases apart. The
requirements with a “+”-sign have no release number assigned,
representing that the requirements are not yet developed. The number of
circles are decided in alphabetical or numerical order, for instance if you
have releases 1, 2 and 3 they would have one, two and three circles
respectively.

After discussing the root causes of making incorrect release planning
decisions for a certain requirement, the requirement can be added to the
Root cause matrix. In the matrix, selected requirements end up in
columns, and root causes can be entered in each row. By marking an “X”
in the appropriate cell, it is possible to assign root causes to requirements.

In the cost-value diagram it is possible to mark requirements
dependencies by drawing a line between related requirements and writing
a note about the relation.
Step 4: Elicitation of improvements.
At this point it is desirable to discuss the root causes and reasons for
making incorrect decisions. Possible improvements to manage the
incorrect decisions in the future can be entered next to the root causes in
the root cause matrix. This is evidently a very important step of the
method and it requires intense discussion between decision-makers.

When improvement proposals have been extracted, it is possible to
export the results back to MS ExcelTM. Both the root cause matrix and
the cost-value diagrams can be exported and used for presentation
purposes in an improvement programme.
Step 5: Prioritisation of improvements.
Finally, it is possible to prioritise the improvement proposals based on e.g.
the importance of putting the improvement in operation and the cost of

144

doing so. In this manner the cost-value approach is used again. This is
achieved by performing the first steps of PARSEQ again: importing the
improvement proposals in the same manner as when requirements were
imported, and then re-prioritising the improvements using one of the
prioritisation techniques. The resulting cost-value diagram can indicate
the most important, yet cost-effective, improvements to implement first.
The root cause matrix can be used to enter reasons for implementing a
certain improvement and plans on how this can be done. It would also be
possible to add notes about dependencies between improvement
proposals if, for example, conflicting proposals are found. The
improvements, the cost-value diagram and the root cause matrix can
again be exported to MS ExcelTM.

5. The PARSEQ Method in Case Studies

Three consecutive case studies have been conducted to examine the
PARSEQ method in practice. The first case study took place at a small
software product developer. The development followed an incremental
approach with regular releases every 6 months. Users and customers were
external as the product was sold on an open market. We used a
commercial RM tool in the second step of the method. The second case
was an internal project at a medium-sized company developing embedded
software products. The project used an agile development approach, and
as we wanted to look at a more agile alternative to the RM tool, the
Planning game was selected for re-estimation of cost and value. The third
case study took place at a large company developing embedded consumer
products. They use a product line approach to development and have
several sub-contractors. We used the Planning game for re-estimation of
cost and value. The characteristics of the case study organisations are
described in Table 1.

Due to lack of time and the fact that the cases did not result in
numerous process improvement suggestions, it was decided to omit the
fifth and final step of the method: Prioritisation of improvements.
Therefore, this final step has not yet been evaluated empirically.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 145

5.1 Case Study A: Market-Driven Software Product

PARSEQ was tried out in a first case study to investigate its feasibility and
gain more knowledge for future research on retrospective analysis of
requirements selection as a vehicle for process improvement. In the first
section, the case study site and context is described as well as the RM tool
used in the study. Next, the realisation of the PARSEQ method is
described, i.e. how each step of the method was carried out in the case
study. Finally, the results from the case study are reported, including a
number of improvement proposals.

5.1.1 Background

The case study site is a small organisation developing stand alone software
packages. The organisation stores the requirements for the software
package in a database that contains already implemented requirements as
well as suggestions for new requirements. Each requirement is tagged with
its level of refinement. Examples of states include New, Accepted for
prioritisation, Accepted for implementation and Done, see Figure 2.
When a requirement for some reason is not appropriate for the package,
its state is set to Rejected.

To analyse the requirements in the database a commercial tool for
product management and requirements management, called Focal Point

Table 1. Comparison between the three studied cases

Case A Case B Case C

Project type
Market-driven
development

In-house Market-driven
development

Product type Software Software Embedded

User base
Multiple, diverse
views

Few, similar
views

Multiple, diverse
views

User location
Outside organi-
sation

Within organisa-
tion

Outside organi-
sation

Development
approach

Incremental Agile Product-line

Organisation size Small Medium Large

146

(Telelogic, 2006), was applied. The tool has capabilities for eliciting,
reviewing, structuring, and prioritising requirements as well as for
planning optimal releases that maximise the value for the most important
customers in relation to development time and available resources. One
prioritisation method in Focal Point is pair-wise comparisons, which
results in priorities on a ratio scale (Fenton and Pfleeger, 1997). The tool
provides solutions for reducing the number of comparisons and
motivating the priorities. The tool aids in visualising the decisions in a
number of different chart types. Due to redundancy of the pair-wise
comparisons, the tool also includes a consistency check (Karlsson and
Ryan, 1997) that describes the amount of judgement errors that are made
during the prioritisation.

5.1.2 Conduct of Study

The participating organisation was given the opportunity to use PARSEQ
to reflect on a set of decisions made during prior releases. The case study
was executed during a one-day session, with approximately 5 hours of
efficient work. Two researchers acted as facilitators during the session.
Step 1: Requirements sampling.
We analysed a release that was launched 12 months earlier, as it was of
special interest to the company. Subsequently that release is called the
reference release. Since then, another release had been launched and yet
another one was planned to be released in the near future.

The requirements database contained more than 1000 requirements
that were issued before the reference release and implemented in either
that release or postponed to one of the following ones. Of these

Accepted for
implementation

Accepted for
prioritisation

New

Done

Rejected

Figure 2. A simplified version of the requirement state model in the database

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 147

requirements, 45 was considered a reasonable number to extract. The
requirements were equally allocated over the three releases: A, B and C,
i.e. 15 were implemented in reference release A, 15 in release B and
another 15 were planned for release C.

Note that the releases were not equally large in terms of number of
requirements, i.e. the samples are not representative. The 15 requirements
from release A were selected from 137 requirements, while the releases B
and C only consisted of 28 and 26 requirements, respectively, as shown in
Figure 3.

The requirements were selected randomly from a range where the ones
estimated as having a very high, or very low, development effort had been
removed, since they are not considered as representative. Very similar
requirements had also been excluded to get the broadest possible sample.

All market changes, architectural decisions and new knowledge gained
during the 12 months between the reference release A and release C were
considered. The selected requirements were all in the states Done or
Accepted for implementation; no rejected or postponed requirements
were considered in the analysis. The requirements sampling took
approximately one hour and was performed by a developer before the
session.
Step 2: Re-estimation of cost and value.
The re-estimation was performed to find out which requirements the
decision-makers would have selected for release A if they knew then what
they know now. With the knowledge gained since the reference release
was planned, it is possible that a different set of requirements would have
been selected. However, it is important to note that one additional

0
15
30
45
60
75
90

105
120
135
150

A B C

Figure 3. Number of implemented requirements (dark grey) in each release compared to
the sample (light grey)

148

requirement in the release would imply that another one has to be
removed, in order to keep the budget and deadline.

The market value was estimated using pair wise comparisons and the
cost was estimated in number of hours, based on expert judgement. The
following question was used in the pair-wise comparison of the candidate
requirements of the reference release: “Which of the requirements would,
from a market perspective, have been the best choice for release A?”. This
question focused on the retrospective nature of the estimation. Thus, the
assessment concerned the market value given what is known today about
the reference release.

The 45 requirements were re-estimated by using the Focal Point tool
and pair-wise comparisons to prioritise them based on the selected
question. The prioritisation was performed by a marketing person, who
has good knowledge of customer demands, guided by a developer, and
was attended by two researchers. Both the marketing person and
developer had performed the original estimations, otherwise the results
may be biased by differences in personal opinions rather than a desired
effect of changes in priorities over time. When uncertainties or
disagreements of a comparison occurred, the issue was briefly discussed to
come to an agreement. The consistency check showed that the
prioritisation was carefully performed and only two comparisons had to
be revised and changed.

The total time for prioritisation was just over one hour, during which
70 comparisons were made. The short time is due to the tool, which
reduces the number of comparisons to less than 2n and points out
inconsistencies among comparisons (Karlsson an Ryan, 1997; Harker,
1987). Otherwise, the number of comparisons would have been n(n-1)/2,
which in this case equals 990.

The development cost of the requirements that were actually
implemented was known, while the development cost of the requirements
that are planned for a coming release had to be re-estimated. However, it
was decided to use the available cost estimations, since they had recently
been reviewed and updated.

A bar chart was created in the Focal Point tool to visualise and facilitate
analysis of the decisions, see Figure 4. The grey bars illustrate the
requirements implemented in release A, and the white bars represent
requirements implemented in release B or planned for release C. The area
to the right represents the re-estimated relative value, and the area to the
left represents the re-estimated relative cost.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 149

The prioritisation in the tool is performed on a ratio scale, using a
process similar to the Analytical Hierarchy Process (AHP) (Karlsson et al.,
1997; Saaty, 1980). Therefore, it is possible to subtract the cost from the
value, getting a resulting priority, which is marked by the black arrows in
the bar chart. The bars are sorted based on their resulting priority from
top down. Thus, the bar chart shows the ideal order in which
requirements should be implemented if only customer value and
development costs were to be considered. In an ideal case, the
requirements at the top of the bar chart would have consisted of
requirements from release A. The requirements at the top of the bar chart
are estimated as having the highest value and the lowest cost and should
therefore be implemented as early as possible. The requirements at the
bottom are estimated as having the lowest value and the highest cost and
should therefore be implemented in a later release, or perhaps not at all.

The bar chart illustrates the discrepancies between the two estimation
occasions and points out the requirements to discuss. Some of the
requirements were not identified in release A, but turned out to be
important when they later were identified. Furthermore, requirements
interdependencies, release themes and architectural choices complicate
the situation and thus this ideal order might not be the most suitable in
reality.
Step 3: Root cause analysis.
The bar chart is used in the Root cause analysis, to find out the rationale
for the release-planning decisions. The discussion was attended by three
representatives from the organisation: one marketing person and two
developers, as well as two researchers.

The top 15 requirements were scanned to find the ones that were
estimated differently in the re-estimation, i.e. the ones that originate from
release B or C. These were discussed to answer the main question “Why
was this requirement not implemented earlier?” and motivations to the
decision was stated by the participants. In a similar manner, the 15
requirements at the bottom of the bar chart were investigated, to find the
ones that originate from release A and B. These requirements were
discussed concerning the question “Why was this requirement
implemented so early?”. Notes were taken of the stated answers for later
categorisation of the release-planning decision root causes.

After the meeting, the researchers classified the stated decision root-
causes into a total of 19 different categories, inspired by the notes from
the meeting. A sheet with the requirements that had been discussed

150

Figure 4. Bar chart from the post-release analysis of the requirements in the database using
the Focal Point tool.

Why were some of the
requirements
implemented so early?
Their priorities are
apparently very low.

Specially ordered by
customer.

Why were not some of
the requirements imple-
mented earlier? Their pri-
orities are apparently very
high.

Implemented in the reference release

Postponed to later releases

Resulting priority (value minus cost)

Legend:

Re-estimated relative cost Re-estimated relative value

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 151

during the root cause analysis was compiled, which the organisation
representatives used to map the requirements to the found root causes.
The result from the classification is displayed in Table 2 and Table 3. Four
of the categories were removed as they were not used, leaving 15 root
causes.

Step 4: Elicitation of improvements.

The main purpose of the case study was to capture improvement
proposals by encouraging the participants to, in connection with each
requirement, state some weak areas in need of improvement. This
appeared to be difficult since each decision was dependent on the specific
context or situation. Therefore, no list of improvement proposals was
compiled at this stage. Instead, more generic improvement proposal areas
were elicited by investigating Table 2 and Table 3 and the notes taken
from the root cause analysis discussion. This is described below.

5.1.3 Results

The case study showed that it was possible to use the PARSEQ method in
practice. The release-planning decisions that were made in prior releases
could be categorised and analysed and process improvement areas could
be identified. The results indicate that the organisation has gained a lot of
knowledge since the planning of the reference release, which is a
promising sign of evolution and progress.

The causes for implementing requirements earlier than necessary are
shown in Table 2. Most of the root causes originate from wishing to
satisfy customer demands, either one specific customer or the whole
market. However, the evaluation showed that the customer value was not
as high as expected. On the other hand, it is difficult to measure “good-
will” in terms of money, and therefore these decisions may not be
essentially wrong. Other root causes for implementing requirements
earlier than necessary concern implementation issues, such as incorrect
effort estimations, which lead us to believe that estimations ought to be
more firmly grounded. Another reason concerns release themes which is a
kind of requirements interdependency that is necessary to take into
account. Developing and releasing small increments of requirements, in
order for customers to give feedback early, is a good way of finding out
more exactly what customers want, while assigning a low development
effort.

152

Table 2. “Why was this requirement implemented so early?”

Root Causes R
eq

 1
92

R
eq

 3
82

R
eq

 1
5

R
eq

 2
71

R
eq

 2
25

R
eq

 3
49

R
eq

 3
72

R
eq

 4
1

Im
pl

em
.

is
su

es

RC1: Under-estimation of development effort

RC2: Part of release theme

RC3: A quick fix to provide customers oppor-
tunity to give feedback

C
us

to
m

er

is
su

es

RC4: Requirement ordered by a specific cus-
tomer

RC5: Requirement specifically important for a
key customer

RC6: Over-estimation of customer value

RC7: Impressive on a demo

RC8: Competitors have it, therefore we must
also have it

RC9: Competitors do not have it; gives com-
petitive advantage

Table 3. “Why was this requirement not implemented earlier?”

Root Causes R
eq

 1
43

R
eq

 7
33

R
eq

 1
07

0

R
eq

 7
61

R
eq

 1
05

2

R
eq

 9
80

R
eq

 1
14

6

R
eq

 1
04

5

R
eq

 8
13

R
eq

 6
74

R
eq

 8
66

R
eq

 8
67

Im
pl

em
en

ta
ti

on

is
su

es

RC10: Over-estimation of develop-
ment effort

RC11: Insufficient understanding
of scale-up effects

RC12: No good design solution
available

RC13: Sub-optimal decision based
on requirements partitioning

RC14: Only partial implementa-
tion in a first increment

C
us

.
is

su
es RC15: Requirement ordered by a

specific customer

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 153

As Table 3 shows, the reasons for implementing requirements later
than optimal mainly apply to implementation issues. The category
complying with the most requirements regards partial implementation in
a first increment, which means that it was implemented earlier, but only
partially and therefore the requirement remains.

The root cause tables and the material from the discussion were used
in the investigation of possible improvement areas. Five areas were found,
which could be linked to the root causes. The improvement areas are
described below.

Trim the division of large requirements into smaller increments.
The manner in which large requirements, affecting several components or
having a large implementation effort, are divided into smaller increments
can be more thoroughly investigated. The division can be done for several
reasons: to get customer feedback at an early stage, to investigate
alternative design solutions or to make small incremental improvements
of the functionality. Root causes number 3 and 14 deal with requirements
developed in increments and the discussions resulted in the idea that the
organisation would benefit from an improved increment planning.

Enhance the overall picture of related requirements.
Some requirements were acknowledged as being related to other
requirements due to involving the same feature. These would probably
have benefited from creating an overall picture of the release so that all
aspects of the specific feature were accounted for. In some cases a feature
involved several requirements and after implementing some of them the
developers felt content. The related requirements could instead have been
designed concurrently in one larger action to avoid sub-optimal solutions.
It would also have helped in identifying the most important requirements
for that feature. These requirements relations could be taken into
consideration more carefully as root cause number 13 describes.

Additional elicitation effort for usability requirements.
It was recognised that the requirements dealing with the user interface did
not fulfil some special customer needs, as described by root cause number
11. The problem concerned scale-up effects and could have been
discovered through a more thorough requirements elicitation. Actions to
take include building prototypes and consulting customers with special
user interface needs.

154

Improve estimations of market-value of features in competing prod-
ucts.
It seems that many requirements were implemented with the objective of
outperforming competitors, as reflected in root cause number 7, 8 and 9.
However, looking too much at what competitors have or what may look
nice on a prototype or demo may bring less value to the product than
expected. The value estimations of the competitors’ products may need to
be improved.

Improve estimations of development effort.
Root causes number 1 and 10 concern over- and underestimations of the
development effort. Results from an earlier study indicate that the release
plan is very dependent on accurate time estimates, since the estimates
affect how many of the requirements that are selected (Paper 1). Under-
estimation may result in an exceeded deadline and over-estimation may
exclude valuable requirements. Improving this area may enhance release-
planning and requirements selection quality.

The case study participants found the one-day exercise interesting and
instructive. They all agreed that it was valuable to reassess previous
releases and reflect on the decisions made. It was during the root cause
analysis the most learning occurred since the discussions between the
participants were very fruitful. A set of improvement issues to bear in
mind during requirements selection was assessed as valuable for future
releases.

Despite the fact that 20 out of 45 requirements were assessed as
belonging to the wrong release, only a few of the 20 requirements
decisions were essentially wrong. Keeping in mind the knowledge
available at the time of the reference release, most release-planning
decisions were correct, i.e. market opportunities and risks have to be
taken, incremental development is applied and only a limited amount of
time can be assigned to requirements elicitation and evaluation.

5.1.4 Threats to Validity

There are a number of validity issues to consider in the case study. First of
all, data were not extracted from a representative sample as 15
requirements were selected from each release although the releases varied
in size. Therefore it might not be possible to generalise the improvements

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 155

found to the whole requirements repository. Since the data only included
requirements that were implemented, and no rejected requirements, there
would be more decisions to consider in a more thorough evaluation.
Furthermore, a different set of requirements would possibly generate a
different set of root causes, and therefore these shall not be used by
themselves. Other improvements could be found if a larger sample was
used, including postponed requirements.

The criterion that was used to capture the true value of the
requirements appeared to be somewhat difficult to use. Since the
development cost was known in most cases, it was difficult for the
participants to concentrate on the customer value only, without implicitly
taking the cost into account. It was also difficult to, in retrospect, consider
the reference release and the value at that particular time without regard
of the situation today. This might have had a slight effect on the resulting
priority of requirements and in the future the criteria could be simplified
to improve concentration.

The prioritisation itself is also a source of uncertainty; when not
performed thoroughly, the bar chart may not show the appropriate
requirements priorities. Since the prioritisation is based on subjective
assessments, it is highly dependent on the persons involved. Nevertheless,
the consistency check proved that the prioritisation was performed
carefully and few judgment errors were made.

Finally, the presented improvement areas are specific to the particular
case study organisation and need to be examined in further detail to point
out the exact measures to take. However, the participants state that the
exercise itself, imposing thought and reflection, may be more fruitful than
the particular improvement proposals.

5.2 Case Study B: In-house Project for Software Product

The PARSEQ method was tried out in a second case study where other
techniques for sampling and re-estimation were used. Random sampling
from the whole requirements repository was used as we did not select a
certain set of releases for the investigation, but instead had the whole
system in mind. The re-estimation technique used in this study was more
agile than in the prior study, and could be used manually. The intention
was to try the PARSEQ method out without commercial tool-support,
and therefore a simpler sampling technique was used as well as a manual
re-estimation technique.

156

Below, the case study background is described, along with the
operation at the case study site. Finally, the results from the case study are
presented and analysed.

5.2.1 Background

The case study organisation develops embedded software products for a
global market. The case in focus is an in-house project aimed at
improving the IT support for the production system, and its connection
to the business system and production database. The production system is
divided in three main steps. First, items are provided with software and
are tested, then items are labelled and placed in a suitable box, and finally
items are bundled into multipacks that should be shipped to a certain
retailer. The main project goal was to improve production efficiency,
flexibility, maintainability and product traceability.

The project decided to use an incremental development method, with
frequent releases, inspired by Extreme Programming (XP) (Beck, 2005).
The company had never tried working in an agile manner before, but
some co-workers had theoretical experience in agile methodologies.

A repository of requirements was developed early on in the project by
interviewing a large number of stakeholder representatives and
documenting their wishes for the new system. One of the researchers was
involved as assistant in the elicitation of requirements for the system. The
project was divided into several releases of the product, and each release
was divided into several shorter iterations. In the beginning of each
iteration, a Planning game activity was performed in order to decide the
iteration content. The requirements repository was used as input to the
planning and prioritisation, although the requirements had to be broken
down to a more detailed level when planning the iterations.

5.2.2 Conduct of Study

The case study was divided into two separate occasions since the users
were unable to attend the first session. The Project manager and the
System architect participated during the first session, as they were
involved in decision-making throughout the development of the system.
The second session was attended by the Production manager and the
Production test manager who are key users of the production system.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 157

They also acted as customers of the project and suggested many of the
requirements in the repository.

One of the researchers acted as facilitator and took notes during both
occasions. The Requirements sampling step took about one hour and was
performed by the facilitator before the first session. The sessions on site
lasted for approximately two hours each.
Step 1: Requirements sampling.
The requirements repository originally consisted of about 140
requirements. Approximately 20 requirements were removed due to being
very similar to other requirements, having evolved out of scope of the
project, or being on a too high level.

In order to get a reasonable sample, every fourth requirement was
selected, i.e. the sample consisted of 30 requirements. As the system
consisted of three main releases that had been launched so far, it was
decided to take the whole requirements repository into consideration.
Thus the sample included requirements suggested all through the
elicitation phase. The sample included both requirements that were
implemented in one of the three main releases in the project and
requirements that were postponed or excluded.

We intended to use the Planning game (Beck, 2005; Paper 2) as re-
estimation technique, since it is possible to perform manually and the
participants already had experience in using it. Therefore, each
requirement was printed on two separate cards, one for the user value and
one for the implementation cost.
Step 2: Re-estimation of value and cost.
The requirements sample was re-estimated based on cost and value. The
intention was to let the Project manager and System architect estimate the
implementation cost as they represent the developers of the system, and
the Production managers estimate the user value as they represent the
users of the system. However, the Production managers were unable to
attend the first session so the developers had to play both roles.

In this study, the Planning game technique was used for prioritisation
of both cost and value. We used the technique to divide the requirements
into three groups corresponding to (1) Requirements that are absolutely
essential, (2) Requirements that provide added value, and (3)
Requirements that are nice to have, for the Value criterion. Similarly the
requirements were grouped according to having (1) Essentially higher cost
than medium, (2) Medium cost, (3) Essentially lower cost than medium,
for the Cost criterion.

158

The participants were instructed to start with the value criterion,
representing the value to the users. They were asked to create three rather
evenly large groups, i.e. none of the groups should be almost empty. The
three groups were divided as shown in Table 4. The developers only
prioritised 29 of 30 requirements, since they classified one requirement as
out of scope.

The participants were then asked to rank the cards within each group,
in order to get a list of prioritised cards on an ordinal scale. Without
instructions, they used a sorting technique based on comparing each card
to the others in the list to see where to insert it. They spent a bit more
time prioritising the cost criterion than the value criterion, see Table 5.
This may indicate that the cost was more difficult for them to estimate
than the user value.

In the second session, the users prioritised the requirements based on
both value and cost for the purpose of comparing their priorities to the
developers’. The users found it easier than expected to prioritise based on
value but as can be suspected, the implementation cost was more difficult
for the users to estimate. They spent less time on the cost criterion than
on the value criterion, probably because the cost was estimated by
guessing. The users applied another sorting technique when the three
groups had been formed, and divided each group into three new groups
until they had reached a complete ranking.

Table 4. Number of requirements in each priority group.

Value groups Developers Users Cost groups Developers Users

Absolutely
essential

16 15 High 9 9

Provide added
value

6 8 Medium 11 10

Nice to have 7 7 Low 9 11

Table 5. Time spent on prioritisation.

Time (minutes) Developers Users

Value Divide into groups 15 13

Within groups 15 11

Cost Divide into groups 20 7

Within groups 20 9

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 159

As the users worked rather fast, they were given a chance to use tail-
head comparison (Karlsson et al., 1998). The lowest ranked requirement
in the top value group was exchanged for the highest ranked requirement
in the medium value group before they were satisfied. During
prioritisation of implementation cost, they did not change any of the
requirements in the tail-head comparison.

The result from the Planning game was illustrated in a cost-value
diagram. Figure 5 shows an example of a cost-value diagram drawn based
on ranks. The requirements in the upper left field are the ones that should
be implemented first as they have a combination of high value and low
cost. The requirements in the lower right field are the ones that should be
implemented last or not at all, as they have a combination of low value
and high cost. The cost-value diagrams were used in the next step, the
root cause analysis.

Analysis of agreement. The Kappa value (K) can be used to assess the
agreement between a set of raters who assign a set of objects into a set of
categories (Siegel and Castellan, 1988). As all participants had to play
both the developer and the user role, it was possible to investigate how
well the developers’ estimates of value correlated with the users’ estimates
of value, and similarly how well the users’ estimates of cost correlated with
the developers’ estimates of cost.

This was made by comparing the cost-value diagrams created in the
two sessions. The three white and grey fields in Figure 5 were used as
categories into which objects, i.e. requirements, were assigned. The two
sets of raters were the users and the developers. The Kappa values are
presented in Table 6. Different suggestions have been presented regarding
the interpretation of the Kappa value. In (El Emam, 1999), one

Figure 5. Example of cost-value diagram based on ranks

160

suggestion is that 0.21<K<0.40 can be regarded as a fair agreement, which
would be the case for the agreement between the users’ and the
developers’ estimates of value. Kappa values close to, or below, zero
suggest no agreement, and therefore there would be no agreement
between the users’ and developers’ estimates of cost.

Cost-value approach. As the cost estimates made by the users were
too unreliable, we have chosen not to include their cost-value diagram
here. The value estimates made by the developers turned out to be rather
similar to the value estimates made by the users, as the Kappa value
indicates. Figure 6 shows the cost-value diagram made from the
developers’ estimates.

The facilitator drew a diagram on the whiteboard, with the y-axis
representing the ranked order of user value and the x-axis representing the
ranked order of implementation cost. Then the value cards were used to
place the requirements in the correct order based on value, i.e. vertically
on the cost-value diagram. The cost cards were used to place them in the
correct order based on implementation cost, i.e. horizontally. The
facilitator also drew lines representing the three groups, resulting in nine
sections (A-I) on the whiteboard, as shown in Figure 6.
Step 3: Root cause analysis.
The root cause analysis consisted of a discussion about the different fields
in the cost-value diagram. The project included three main releases,
which consisted of several iterations. We agreed that if release planning
decision-making were perfect, sections A, B and D would contain
requirements from the first release and sections F, H and I requirements
implemented in the third release or not at all.

In the cost-value diagram made by the developers, eleven of the twelve
requirements that appeared in sections A, B or D were implemented in
the system, although five were not implemented in the first release. The
discussion showed that those requirements could not be implemented in
an earlier release since other requirements were needed as foundation
(RC1). They were not needed urgently, but they were very important to

Table 6. Kappa value for a comparison between users’ and developers’ estimate of
cost and value

Criterion Kappa value

Cost -0.08

Value 0.32

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 161

include sometime. Therefore they could be postponed to a later release
when it was better suited to implement them. Only one of the twelve
requirements was excluded. However, the developers stated that the basic
problem behind the requirement was solved in another way (RC2).

Sections F, H and I contained eight requirements of which seven had
not been implemented. One of the requirements had been implemented
in the first release. It was a usability requirement regarding the user
interface. It was expected to have a higher user value during development
than it actually had when the system was put into operation (RC3).
Therefore, it was implemented although it should probably not have been
included in the system, with regard to today’s knowledge. Table 7 maps
the root causes to the requirements.

It was difficult to draw any conclusions from the root cause analysis
performed in the second session, i.e. with the users. The cost-value
diagram pointed out some requirements to investigate, but since there
were no developers to answer questions about if and why requirements
were implemented in a certain release, it was difficult to find any root

Figure 6. Cost-value diagram from session 1, with nine sections (A-I) representing the
Planning game groups with requirements from different releases.

162

causes. It was also difficult to trust the indications from the cost-value
diagram, since the users knew their cost estimates were unreliable.
Therefore it was decided to only use the users’ estimates as comparison
with the developers’ estimates, which was presented earlier.
Step 4: Elicitation of improvements.
The PARSEQ analysis indicated that the release planning decision-
making in this project was successful. The developers concluded that one
reason for the successful release planning was the iterative development.
During the project, the Planning game was used to evaluate and prioritise
the requirements regularly, and the release plan was flexible enough to
adapt to changes in the requirement priorities and in the project
resources.

Thus, the most important insight was that regular prioritisation yields
better release plans and this lesson learned will be brought into other
projects at the company. More prototyping activities during release
planning was also mentioned as a possible improvement in other projects.
The participants were pleased with the result, as it was a confirmation that
they had prioritised and decided correctly and that iterative development
is a successful way of working.

Although the users’ root cause analysis did not bring any particular
conclusions, the users were surprised with the extent to which they were
actually given the most important functionality. Since the scope of the
project was cut down during development due to lack of resources, the
users were worried that some important functionality had been excluded.
The retrospective analysis showed that this was not the case, which of
course is encouraging for all stakeholders.

Table 7. Root causes for the in-house project.

R4 R6 R7 R9 R11 R13 R15

RC1: Foundation in the archi-
tecture did not exist yet

RC2: Other functionality
solved the problem

RC3: Over-estimation of user
value

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 163

5.2.3 Results

The results from the PARSEQ analysis in this case study indicate that the
release planning decision-making in the investigated project has been
successful. Two main reasons for the successful release planning have been
discussed. First of all, as suggested by the developers, the iterative
development and continual re-prioritisation provided a flexible release
plan that could be revised and adapted to changes in the requirement
priorities and in the project resources. Prototyping activities were also
mentioned to have improved release planning as user feedback could be
taken into consideration.

A second possible reason is the type of project that was investigated. In
the previous case study, a market-driven product was investigated in the
retrospective, while in this case study an in-house project was put under
investigation. The users in an in-house project are few and more tangible,
and have more similar requirements for the system. Users of a commercial
product can use the system in many different ways, sometimes in ways
unknown to the developer. The users’ requirements are therefore more
scattered and diverse for a market-driven product. This may be one of the
reasons for release planning appearing successful - the users’ needs were
easier to find early on and the developers understood the users’ opinions
as they are all within the same company.

One goal of this case study was to investigate a more agile approach to
the PARSEQ method, in comparison to the previous case study. Since
most projects do not have requirements stored in a commercial tool, it is
interesting to investigate how a manual prioritisation technique works for
the second step of the PARSEQ method. According to the participants it
was easy to use the Planning game procedure to rank the requirements.
However, the Planning game only presents the requirements on an
ordered list, while the RM tool, used in the previous case study, also
presents the ratio between requirements priorities. This difference may
affect the results so that another set of requirements is pointed out in the
cost-value diagram. This is because in this case the cost-value diagram is
based on ranks, while in the previous case it is based on ratios, so some
requirements might end up in another root cause area. The ratio scale
provides more information that can be valuable for decision-making.
However, it seems as the Planning game may be sufficient for our
purpose.

164

5.2.4 Threats to Validity

Ideally, the cost-value diagram should be designed using developers’ cost
estimates and users’ value estimates and the retrospective session should
be attended by representatives from both roles. As the analysis was divided
in two sessions in the case study, it may have affected the results. The
developers’ estimates of value agreed rather well with the users’ estimates,
but if the users’ estimates had been available, a slightly different set of
requirements would possibly have been pointed out in the root cause
analysis. As this kind of analysis depend on subjective views, it is
important to select the right participants. In the future, both users and
developers should be present to enforce an interesting discussion between
the parties. The threat was reduced by letting two user representatives and
two developer representatives co-operate and negotiate on the priorities.

The sample was selected from a list of requirements arranged by date
of arrival. Therefore, no consideration was made regarding which release
the requirements belong to. Only a few were implemented in the second
and third releases, while many were implemented in the first release.
Requirements more evenly distributed between the releases can improve
the possibility to generalise the results to the whole requirements
repository. Similarly, the analysis could have been improved if less
requirements were postponed.

The requirements repository that was used as input to the study
contained high-level user requirements and therefore it was sometimes
difficult for the participants to judge whether or not a requirement had
been implemented - some were implemented partially and some were
implemented over a long period of time. Therefore, the mapping between
requirements and release number is approximated. It would possibly have
been easier to do the mapping if more detailed requirements were used
instead of user requirements. However, it is desired to get the users’ view
of the system, which may be difficult if analysing too detailed
requirements.

Some issues regard the method rather than the particular case, and
need further attention in future case studies. Several of the requirements
in the analysis were subject to interdependencies. Some requirements
affected the system architecture and had to be implemented before others.
This complicated the re-evaluation. The developers tended to give the
more fundamental requirements a higher priority, as they needed to be
implemented early on. Thus, the value to the users had to stand back.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 165

This may be one explanation to the difference between users’ and
developers’ estimates of value.

5.3 Case Study C: Product Line Development for an
Embedded Product

The third case study was performed at a company developing embedded
software products, using a product line approach. The first in a series of
products in a product line was selected as reference release (called release
A). 42 high-level requirements that had been candidates for the product
were selected for analysis in a series of workshops. The PARSEQ
prototype tool was used to support the method. The analysis resulted in a
set of root causes and improvement proposals.

5.3.1 Background

The case study organisation develops embedded software products sold
on an open consumer market. New products in the product family are
released several times a year, all based on the same product platform, see
Figure 7. A release is called a heartbeat because of its regular frequency.
Different products may target different market segments and types of
users. Therefore, the products are different from the users’ point of view
although they belong to the same product family. For each product, one
Maintenance Release (MR) is released at the same time as a new product
is released based on the same platform. The maintenance releases may
include additional requirements but are mainly used for error correction.

Requirements are elicited from several different customers, user
groups, and sub-contractors. Decisions regarding which features to

Figure 7. Relation between product platform and individual products. One or more
Maintenance Releases (MR) are released at the same time as a new product
release.

166

include in the products are made in several steps. In the investigated case,
the product scope was set too large in the beginning so that it had to be
de-scoped later on in the development process. The de-scoping was
performed by product planners, product managers and project managers a
number of times during development in order to reduce and change the
product scope. The requirements subject to de-scoping represent difficult
release planning decisions especially when resources are scarce and need to
be used for the most important requirements.

The release planning in this case differs from the one investigated in
earlier case studies. A new “release” in the product line case is in fact a new
product, and several products in the product line can be available at the
market place in parallel. In earlier cases we have investigated release
planning for one product which is updated in several consecutive releases.
Then earlier releases are replaced and need no further attention.

5.3.2 Conduct of Study

The case study was divided into a set of meetings and workshops and was
also followed up by e-mailing and telephone calls. First, two information
meetings were held in order to explain to relevant personnel the purpose
of the PARSEQ analysis and to identify appropriate personnel for the
following workshops. At the first meeting, the requirements engineer for
the product in focus was chosen to conduct the requirements sampling so
that the first step of PARSEQ could be started. At the second meeting the
first version of the requirements sample was discussed and some
suggestions for additional requirements were posed. The cost- and value
criteria were also discussed. The participants agreed that the cost should
be defined as development effort, and the value as business value to the
company. In addition, two persons were selected for the re-estimation
step: a product manager for re-estimating the business value of the
requirements, and a technical project manager for re-estimating the
development effort. Thereafter, the re-estimation step was conducted in
two separate sessions and the root cause analysis and elicitation of
improvement steps were conducted in one workshop. The first author
acted as facilitator at all workshops.

Step 1: Requirements sampling.

The sampling step was conducted by the requirements engineer for the
product in focus. The product had been in the markets for about 8

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 167

months. Since then, another product based on the same platform had
been released and a third one was planned for release in the near future.

Notes from the de-scoping meetings held during development were
used as basis when hand picking the requirements for the sample.
Thereby, the selected requirements had all been candidates for the
product and each requirement had been subject to the difficult decision to
remove it or include it in the product. Therefore, the sample was
interesting from the point of view of release planning decision-making.

In total, 42 requirements were selected for the sample, among which
25 were implemented in the reference product A, 9 were implemented in
the consecutive product B, and 8 were excluded, but might be
implemented in future products. The requirements were all high-level
features, described as one-liners.
Step 2: Re-estimation of cost and value.
The re-estimation of cost and value was performed during two separate
sessions. During the first one, the product manager estimated the business
value for the product requirements, and during the second one two
technical project managers estimated the development effort. The
PARSEQ tool was used on both occasions and the prioritisation
technique Planning game was used for the re-estimations.

Re-estimation of business value: The product manager had prepared
for the exercise by dividing most of the requirements into three groups
regarding their business value. The criterion business value was defined as
a mix of strategic, internal, and external value from the company’s point
of view. The Planning game involves dividing the requirements into three
groups: High, Medium, and Low. The product manager defined the High
group to include requirements that are essential or “must-haves”, i.e.,
without which the product would not have a clear focus and be possible
to sell. The requirements in the Medium group support the product
proposition and definition but are not as sensitive to the product topic
and not as visible to the customers. The requirements in the Low group
are features that do not provide much added value but are nice to have.

The product manager found the task of arranging the requirements
into the three groups rather easy. However, when ranking requirements
within the groups, several adjustments were done, e.g. one requirement
was moved from High to Medium, two requirements were moved from
Medium to High, and one requirement was moved from Medium to Low.
In addition, when performing a tail-head comparison (Karlsson et al.,
1998) between the lowest ranked High requirements and the highest

168

ranked Medium requirements, four requirements were moved from High
to Medium, and another five were moved from Medium to High. No
changes were made during tail-head comparison between the Medium
and Low groups. The High, Medium, and Low group division is shown
in Table 8. In addition, when presented with the complete ranking list,
the product manager changed the order within the High and Low groups
between a handful of requirements. The product manager also stated that
it was much more difficult to rank the requirements than to put them
into different groups.

Re-estimation of development effort: The project managers
estimated the development effort for the requirements. The effort
criterion defined by the project managers included both analysis and
implementation effort, measured in person-days. Before the meeting they
had prepared by looking up the development effort for 11 of the 42
requirements in the sample. It was difficult to find exact effort data for
several of the requirements since they involve several different
development units. However, since we only aimed at ranking the
requirements, the effort data were mainly used for understanding the
approximate effort in the High-, Medium-, and Low groups. The
development effort of the requirements in the sample varied from 5 to
400 person-days, as can be seen in Table 9.

The project managers found it rather easy to group and rank the
requirements by development effort. Table 10 presents the number of
requirements in each Planning game group. The effort estimates are
somewhat more objective than the value estimates since it is possible to

Table 8. Division into groups from re-estimation of Business value

Business value groups Nbr of requirements

High 17

Medium 12

Low 13

Table 9. Approximate development effort in the three Planning game groups

Development effort groups Development effort

High 50-400 person-days

Medium 20-50 person-days

Low 5-20 person-days

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 169

estimate effort in person-days. This may be one of the reasons for the
project managers to require less time for the estimation exercise, see
presentation of time-consumption in Table 11. The project managers
were also more certain about their estimates as they did not change their
minds during the exercise, not even when given the possibility to perform
a tail-head comparison.

The requirements ranked by business value and development effort
were used to create a cost-value diagram (Karlsson and Ryan, 1997) where
the x-axis represents the requirements ranked by development effort and
the y-axis represent the requirements ranked by business value.
Step 3 and 4: Root cause analysis and Elicitation of improvements.
The third and fourth steps, root cause analysis and elicitation of
improvements, were conducted in one single workshop. Five people
participated: two researchers, one department manager, the product
manager, who had estimated business value, and one of the technical
project managers, who had estimated development effort. The second
project manager was unable to attend the meeting. The researchers had
prepared the cost-value diagram to be analysed in the root cause analysis,
see Figure 8. The researchers had also prepared a root cause matrix with
the requirements that correspond to incorrect decisions. The
requirements that were de-scoped or implemented in release B among the
requirements in the high contributor areas (see upper striped area in
Figure 8) were examined. Similarly, the requirements that were
implemented in release A or B among the requirements in the low

Table 10. Division into groups from re-estimation of Development effort

Development effort groups Nbr of requirements

High 10

Medium 14

Low 18

Table 11. Time consumption for re-estimation

Product
manager

Project
managers

Time to put in boxes 30 min 15 min

Time to rank within boxes 25 min 10 min

Total time incl. discussion 90 min 60 min

170

contributor areas (see lower striped area in Figure 8) were examined.
However, due to time limitations we focused mainly on the de-scoped
ones in the high contributor areas and the requirements from release A in
the low contributor areas since they represent the most interesting
decisions-making challenges.

Three requirements (Req Id 1, 4, and 24) in the analysis were de-
scoped although they in retrospect were found to be high contributors,
and should, therefore, have been included in release A if decision-making
were perfect. Similarly, three of the requirements (Req Id 8, 10, and 35)
were implemented in release A, although, they were found to be low

Figure 8. Cost-value diagram based on ranks

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 171

contributors in retrospect. These six requirements were analysed and the
following questions were used to guide the discussion:

• Why was the decision made, when in retrospect it was incorrect?

• When was the decision made? Could it have been discovered ear-
lier?

• How can you prevent similar incorrect decisions in the future?

The questions helped to find root causes for incorrect decisions and
improvements for future decision-making.

The facilitator used the root cause matrix to note the root causes and
improvement suggestions for each requirement. Table 12 and 13 shows
the notes taken during the workshop in root cause matrices for the de-
scoped requirements and for the requirements from release A, respectively.

5.3.3 Results

The result from the workshops show that the PARSEQ method was
possible to use for the purpose of finding root causes for incorrect release
planning decisions, and improvement suggestions for the process. The
main results are the cost-value diagram in Figure 8 and the root cause
matrices in Table 12 and 13. The results indicate that although the
participants judge the product as a market success, there is room for
improvement. Even when analysing successful projects it is possible to
find lessons learned based on the participants’ experiences. The root
causes for making inappropriate release planning decisions can be
summarised in five areas based on the root cause matrix:

• Dependencies between requirements

• Lack of resources

• Reliance on customers’ judgment

• Dependency on subcontractors

• Architecture and performance enhancements

Some of the root causes are difficult to address. For example, the lack of
resources is an issue in almost every development organisation. Especially
when several development projects are run in parallel, resources need to
be allocated wisely. Similarly, the root cause regarding development of an

172

in-house solution instead of the subcontractor one is a necessary action to
take in that particular situation. However, it can always be discussed how
these issues could be prevented or discovered earlier on in the
development.

The improvements that were suggested are summarised and discussed
below. To structure the improvements they are assembled in three groups
regarding the development process, market issues and development issues.

Table 12. Root cause matrix for de-scoped requirements

Req Id Root causes Elicited improvement proposals

8 -Performance issue, lack of memory.

-Dependent on requirement 33 that was
de-scoped late.

-Resource allocation problem.

-N/A (considered unavoidable)

10 -Dependent on requirement 4, which
was included late and was not stable and
therefore risky.

-Manage architecture upgrade.

-Split milestone in two parts: one for
architecture and one for dependent func-
tionality.

35 -Resources cut down as they were needed
elsewhere.

-Earlier de-scoping to use the limited
resources for the most important func-
tionality.

-Increase process flexibility.

-Dedicated release themes.

-Improve cost-estimation accuracy

Table 13. Root cause matrix for requirements implemented in the reference release

Req Id Root causes Elicited improvement proposals

1 -Based on customers’ judgment, difficult
trade-off between user experience and
value proposition.

-Business agreement with subcontractor
went out, needed in-house solution.

-Consider user opinions, not only cus-
tomers’ opinions.

-Focus on the product position.

-Early analysis of end user perspective
on e.g. user experience, usability and
usage frequency.

4 -Needed from architecture design view-
point, long-term improvement.

-Balance between long term and short
term business value.

-Increase efficiency and productivity
during development.

24 -Technical dependency on requirement
16, which was developed in release A.

-Needed improved performance.

-Figure out dependencies from a mar-
keting perspective in de-scoping meet-
ings.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 173

Improvement of the development process:

• Split milestone in two parts: one for architecture and one for dependent
functionality. This was suggested by the project manager in order to
retain focus on architecture improvements. This would however
require major rework of the process and might not be realistic to
implement at this point.

• Earlier de-scoping was discussed as a means for focusing resources on
the most important functionality that will definitely not be de-
scoped. The limited resources are needed for e.g. stability issues in
the end of the project and cannot be allocated solely to features.
Earlier de-scoping would provide better planning, but there is a
general resistance to de-scoping as people fear losing valuable
requirements.

• Increase process flexibility in order to cope with changes in function-
ality or resources. The development schedules are too tight when
unforeseen changes occur. However, due to deadlines and competi-
tion, it is difficult to motivate this type of process relaxation.

• Increase efficiency and productivity during development so that
resources are available for architecture improvements. However, no
suggestions were stated regarding how to achieve increased develop-
ment efficiency.

Improvement of market issues:

• Consider user opinions, not only customers’ opinions. The difficult
trade-off between user experience and customer value proposition
was discussed by the product manager. It is difficult to get user
opinions at an early stage of development and therefore the organi-
sation relies on the customers’ demands and wishes.

• Focus on the product proposition and how the product is marketed in
order to use the resources in the best way possible. The product
proposition should be in focus when allocating the scarce resources.

• Early analysis of end user perspective, e.g. user experience, usability and
usage frequency. It is, however, difficult to get user opinions at an
early stage of development and if it comes too late it is difficult to
take into consideration.

174

• Figure out dependencies from a marketing perspective already in the de-
scoping meetings. Several requirements dependencies were discovered
in the analysis and these would have been valuable to discover dur-
ing planning so that development resources could be optimised.
However, there is a need for techniques to identify dependencies,
and it is difficult to find them early on in the process.

Improvement of development issues:

• Architecture upgrade is needed to cope with e.g. stability issues in
dependent requirements. Difficult trade-offs between architecture
improvement and development of functionality that gives visible
value to the users was discussed several times.

• Dedicated release themes with the same product proposition in all
included products would make development more efficient. This is,
however, difficult since the market require each heartbeat to have
innovation and a differentiated proposition line-up. It requires
good planning and timing. It is further complicated by the fact that
there may be 2 years between planning and product release, which
is a long time since changes in the markets need to be managed.

• Improve cost-estimation accuracy so that resource usage is optimised.
It may require introducing cost-estimation techniques since it is
mainly done in an ad hoc manner today.

• Balance between long term and short term business value. Although
architecture improvements are not as visible to the users, it is
important to include those requirements so that the foundation for
features is available when needed.

Other experiences were also discovered during the analysis. When the
cost-value diagram was presented, the participants agreed that a similar
approach would be useful also in planning and de-scoping discussions in
order to consider and visualise the trade-offs between costs and value.
One participant stated that if a high value feature is extremely expensive,
it should reduce the overall priority. An interesting correlation was
discovered during the root cause analysis. The cost-value diagram (see
Figure 8) illustrates that most requirements that have a high value also
have a high development effort and very few functions are both
inexpensive and valuable. Dependencies between requirements were
discovered during the workshops. For example, two pairs of requirements

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 175

were duplicates from the value point of view since they end up in the
same feature. However, they had different development effort since one
requirement is required for the other one to function. This kind of
dependency is called REQUIRES (Carlshamre et al., 2001) and regards
the implementation order of requirements. It is common in platform
development that platform requirements are needed before it is possible
to add application requirements.

5.3.4 Threats to Validity

The estimates of effort and value are to some extent subjective. In
addition, different persons were involved in planning the release and the
retrospective re-estimation of effort and value. However, as described in
Section 5.3.2, available effort estimates were used for more than a quarter
of the requirements, which improves the validity of the effort ranking.
The value estimates are even more subjective than the effort estimates as it
is difficult to measure value in numbers. However, a marketing report was
used to validate the value ranks. The top five features in the ranking list
were also found in the marketing report, judged as “must-haves” by the
user representatives. There is not a perfect mapping between the features
in the sample and the features in the marketing report, since the features
in the marketing report also involve hardware, which is not in focus in
this study. Otherwise, we would possibly have found additional
concurring features.

For some of the requirements it was difficult to state whether or not it
was developed; because of the high abstraction level some requirements
were developed partly or developed over a long period of time. However,
the requirements engineer involved in sampling used his best estimates.
The judgment was confirmed by the project managers during the re-
estimation session.

There might be some bias due to the fact that the product manager
knows that the product was a market success and knows which
requirements that were providing added value and not. Therefore, some
of the postponed requirements might get a lower value because the
product manager knows that the product managed without them. This
bias is difficult to avoid because the participants cannot avoid using the
information they have about the release plan.

As can be seen in Table 9, the distribution of effort numbers is not
linear. If effort numbers were available for all the requirements, it would

176

have been possible to prioritise using the ratio scale instead of the ordinal
scale. Then the cost-value diagram could have looked differently and
perhaps another set of requirements would have been selected for analysis
in the PARSEQ workshop. However, other research has shown that the
cost-value diagram based on the ordinal scale is substantially similar to the
one based on the ratio scale, see Part II of the thesis. Therefore, the cost-
value diagram based on ranks is assumed to be sufficient as decision-
support in the PARSEQ method.

The improvements found in the retrospective analysis are specific to
the investigated case. Some improvements are related to the product line
approach used in the organisation and could possibly be useful to other
projects in the organisation working in the same manner.

6. Discussion

The PARSEQ method is relevant to decision-making on two different
levels. First of all, the method aims at finding incorrect release planning
decisions so that more successful release planning can be conducted in the
future. Secondly, decision-making is involved when deciding on how to
change the current way of working, based on the improvement proposals
that are found in the analysis. The three case studies presented in Part III
are examples of the first kind of decision-making. The second kind of
decision-making has not been studied in the presented cases since it
requires a more long-term investigation to implement and evaluate the
suggested improvements.

In this part of the thesis we have presented three consecutive case
studies investigating the PARSEQ method. In the first case study, a
commercial RM tool was used for the first steps of PARSEQ. As many
organisations manage their requirements using simple spread sheets
instead of commercial tools we wanted to investigate how the method
would work without tool support. Therefore the second and third case
study were designed to investigate the method with a more agile and
manual technique during the first steps. For the second case study an agile
in-house project was selected at a medium-sized organisation. The third
case study investigates a large organisation developing embedded
consumer products. The differences and similarities of the results are
summarised in Table 14 and discussed below.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 177

Note that not all of the requirements pointed out in the root cause
analysis are necessarily incorrect. This is discovered in the root cause
analysis when discussions are held regarding each possible incorrect
decision. Different kinds of interdependencies between requirements,
such as logical implementation order and bundling of requirements may
affect the release planning decisions in addition to user value and
development cost. These interdependencies are found in the retrospective
analysis.

The outcome of the research questions stated in the Introduction is:
RQ1. Do the participants find the PARSEQ analysis valuable?

The participants in all case studies were asked to describe their
opinions and experiences from attending the PARSEQ workshops. All
participants stated that the exercise was valuable and several lessons
learned were found. In the first case, the PARSEQ method was used
successfully as the findings included several improvements to the release
planning process found during the root cause analysis. The company
discovered that they needed to enhance both the overall picture of related
requirements and the division of large requirements into smaller
increments. They also found out that usability requirements need more
attention in the elicitation phase. The company also tended to estimate
the market-value of features in competing products too high, while effort
estimates were found to be both too high and too low. The participants
found the exercise interesting and instructive.

In the second case, few specific improvements were found during root
cause analysis. However, it was possible to draw conclusions regarding the
successful release planning and the positive experiences can be used in
other projects at the company. Examples of positive experiences are
iterative development and continual re-prioritisation, which provides a
flexible release plan that can be revised and adapted to changes in the

Table 14. Comparison between case study results.

Case A Case B Case C

Number of requirements sus-
pected to be in wrong release

20 of 45=44% 7 of 29= 24% 6 of 42=14%

Number of root causes 15 3 10

Number of improvement pro-
posals

5 Lessons learned from
good experiences

12

Subjective views Satisfied par-
ticipants

Satisfied partici-
pants

Satisfied par-
ticipants

178

requirement priorities and in the project resources. Prototyping activities
were also mentioned to have improved release planning as user feedback
could be taken into consideration. The participants found the exercise
valuable since it was a confirmation that their releases and iterations were
planned with a high degree of certainty.

In the third case, several root causes and improvement suggestions
were found for the participating organisation to consider when planning
future releases. For example, improvements of the development process
include making earlier de-scoping decisions, and increasing the flexibility
of the process. Improvements regarding market issues include focusing
more on users’ requirements and on the product proposition, analysing
usability earlier, and analysing dependencies during de-scoping.
Improvements regarding development issues involve upgrading the
architecture, creating dedicated release themes, improving cost-estimation
accuracy, and improving the balance between long-term and short-term
business value of requirements. Other experiences discovered during the
analysis include using a cost-value diagram to visualise the trade-off
between cost and value during planning and development. Several
dependencies between requirements were also discovered during the root
cause analysis.

The participants concluded the final session with some comments on
the method. The project manager stated that it was worth the effort of re-
estimation and root cause analysis when the improvement suggestions
were discovered. The product manager were satisfied with the result as it
confirmed that release planning worked reasonably well, although some
outliers, i.e. incorrect decisions, were found.
RQ2. Do the results of the PARSEQ analysis differ depending on the project
type, product type and development approach?

The reported studies have different characteristics. Two different
project types, market-driven product development and in-house
development, are investigated. The cases also represent both pure software
products and embedded products. In addition, different development
approaches appear: incremental, agile, and product line development.
Among the two project types it seems as the PARSEQ method is more
applicable to the market-driven situations, although the in-house project
participants also found several lessons learned. In the market-driven cases
a larger number of root causes and improvement suggestions were found,
see Table 14. The results also differ regarding the type of root causes
found in the analysis. In the market-driven cases, many root causes for

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 179

making incorrect release planning decisions involved customer
satisfaction issues such as making a demo impressive, keeping up with the
competitors, and relying on customers for feedback. In the in-house case,
the root causes for most incorrect release planning decisions involved
implementation issues, such as providing the foundation in the
architecture before implementing certain features. These differences may
depend on the project type, as release planning in the market-driven cases
is critical in order to be competitive on the market, while the in-house
project can focus on releases that fit the development organisation. In
addition, the embedded product development using a product line
approach entails challenges due to the reliance on sub-contractors and
interdependencies between functionality in the platform and in the
different applications. It was also more difficult to analyse the product
line development since the different releases are actually different
products with different focus. Therefore, it is not only a question of
timing, and considering the market and the competitors; it is also a
question of product proposition and market segmentation.

The differences in characteristics affect the outcome of the PARSEQ
analysis. The characteristics need to be considered when planning the
retrospective analysis so that the method can be adapted to the particulars
of each case.
RQ3. What are the lessons learned about the adaptations of the PARSEQ
method to the different cases?

When investigating cases that have different characteristics, it may be
necessary to adapt the PARSEQ method to the characteristics of the
particular company and product. The lessons learned regarding the
adaptation of the PARSEQ method to the three investigated cases are
described below. Other adaptations might be needed for other cases.

Sampling may be performed in different ways depending on the
repository size and the age of the requirements. As the product in the first
case had been on the market for several years, we selected a reference
release that consisted of many requirements and was of special interest to
the company. In the second case, the sample was taken from the whole
repository as it only consisted of 120 requirements. In the third case, the
sampling was focused on requirements that had been subject to de-
scoping decisions. Therefore, the requirements were interesting to analyse
from a release planning viewpoint.

Our adaptations include taking into consideration the prioritisation
and release planning tools that the project is used to. In the first case, an

180

RM tool was already used to store requirements and plan releases and
therefore it could be used during the PARSEQ analysis. In the second
case, the Planning game was used for release planning and therefore we
chose to use a similar approach to the PARSEQ analysis. Since it turned
out useful and efficient, the Planning game was also used in the third case,
but then with tool-support. The choice of re-estimation technique affects
the root cause analysis since the techniques use different scales. The ratio
scale provides information regarding the relative distance in priorities
while the ordinal scale only provides ranks. This needs to be considered as
some situations might benefit more from the ratio scale techniques for
example if actual numbers are available on e.g. implementation cost.

It is also possible to imagine variations of the aspects cost and value in
the re-prioritisation. In the first and third case, the value concerned
business value to the organisation and issues such as new market
possibilities, competitors and present customers were taken into
consideration. In the second case, the value aspect was purely the users’
opinions on which functionality they requested. Thus, different variations
of the aspects can be regarded, as long as this is clarified in the beginning
of the re-estimation.

RQ4. Can the PARSEQ prototype tool make the PARSEQ analysis more
efficient and illustrative?

The tool was a valuable support for the PARSEQ method. Especially
during the re-estimation step, it was helpful to be able to choose
prioritisation method and criteria for the imported sample. Manual re-
prioritisation would probably have been more time-consuming. It was
also helpful to have the cost-value diagram automatically generated based
on the effort and value estimates. It increased visualization in the root
cause analysis step. However, some drawbacks were found during the
analysis. The tool lacks support for distributed work since it is not
possible to save the results between the re-estimation sessions. The tool
need to be improved to support multi-site collaboration since many
companies are distributed geographically. In the case study, the facilitator
had to insert the ranks manually when creating the cost-value diagram,
which evidently required some extra effort. Another disadvantage was
found in the root cause matrix. Since only the requirement number was
visible and not the feature itself, using the matrix would have required a
lot of switching between windows. Instead a matrix was prepared in MS
ExcelTM with rows representing the requirements and columns open for
root causes and improvement suggestions.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 181

Despite these drawbacks, the tool conformed to its purpose of
speeding up the analysis and visualising the results.

7. Conclusions

The presented method for retrospective analysis of requirements selection
quality, called PARSEQ, was tested in three case studies where candidate
requirements for previous releases were evaluated in retrospect. The case
studies demonstrate the feasibility of the method in the contexts of the
specific cases and the results from the case studies encourage further
studies of the method.

The lessons learned from these case studies include:

• Among the investigated types of development, the PARSEQ
method seems applicable in the improvement of industrial proc-
esses for market-driven requirements engineering, while it seems
less suitable for in-house projects.

• Product line development turned out to be more difficult to analyse
than software systems since it is not evident that one requirement
can be implemented earlier or later, since the different releases are
actually different products with different focus. Therefore, it is not
only a question of timing, and considering the market and the com-
petitors; it is also a question of product proposition and market seg-
mentation.

• Both developers and users should attend the same session, in order
to bring more interesting conclusions from the root cause analysis.
This was the case in the first and third case study, but not the sec-
ond.

• Several of the requirements pointed out in the root cause analysis
may actually be implemented in a correct release. This is due to
requirements dependencies that force some requirements to be
implemented before others, which was particularly visible in the
second case study.

182

• If the retrospective analysis indicates that the release planning has
been successful, it is still possible to learn from the analysis. In the
second case, prototyping and iterative development appears to have
worked well. These are examples of learning from success as
described in Section 2.1 (Nolan, 1999).

• Using pre-defined questions in the root cause analysis helps to keep
focus. In the third case study, the questions presented in Section
5.3.2 were followed to a large extent but not completely for all
requirements as the time was limited. A list of questions for each
requirement would have increased the completeness of the data.

• In the third case study, the effort estimates were validated against
actual effort numbers provided by the project managers. Similarly,
the features with highest value estimates could be validated against
the user opinions in a marketing report. This confirms that it is val-
uable to combine the PARSEQ method with actual project data
collected in e.g. a knowledge management effort.

• It could be valuable to use a cost-value diagram during planning,
since it provides a possibility to use the original cost-value diagram
as a baseline for comparison during the retrospective analysis.

The following areas are interesting to investigate in future case studies of
PARSEQ:

• Process improvement implementation. Since the investigated projects
can not change the process, the discovered process improvements
will have to be implemented later on. Therefore, it is not possible to
investigate the process improvement introduction within the time
frame for these studies. However, it would be valuable to investigate
process improvement implementation based on the PARSEQ
method in practice in the future.

• Prioritisation of improvements. The fifth and final step of the
PARSEQ method, i.e. the prioritisation of process improvement
proposals has not yet been applied in a case study. Either the cases
did not yield that many improvement suggestions or the limited
time in the workshops restricted the activities. In the future it
would be valuable to investigate improvement prioritisation.

Part III

Requirements Prioritisation and Retrospective Analysis for Release Planning Process Improvement 183

• PARSEQ prototype tool improvements. The prototype tool that was
used in the third case study needs improvements. The tool was
developed based on the needs of the prior case studies in which the
re-estimation step, the root cause analysis and the elicitation of
improvements steps were performed at the same session. However,
in order to perform the analysis in a distributed manner it is needed
to save intermediate results between the sessions. This change,
among others, would increase the value of the tool.

• Selection quality metrics. Given that the requirements sample is rep-
resentative to the distribution of correct and incorrect decisions, it
may be possible to use PARSEQ to provide numerical estimations
of the selection quality in terms of fractions of “good” and “bad”
decisions. Numerical estimates of selection quality could be used in
an analytical model such as the one in Paper 10.

• Criteria for release planning. There may be other criteria than cost
and value that determines how the releases should be planned, as
many different aspects affect the priority in practice. Criteria such
as effort, resources, and logical implementation order could be used
instead of cost. Further, importance to key customers, importance
to users, product strategy, and company profit could be used
instead of value. This could be investigated further as the most
appropriate criteria may vary depending on situation, product or
company in focus.

184

Requirements Prioritisation and Retrospective Analysis for Release Planning Improvement 185

References

Al-Rawas, A. and Easterbrook, S. (1996) “Communication Problems in Requirements
Engineering: A Field Study”, Proceedings of the 1st Westminster Conference on Profes-
sional Awareness in Software Engineering, Royal Society, London.

Atlas.ti (1997) http://www.atlasti.de (visited September 2006)

Basili, V., Caldiera, G. and Rombach, H.D. (1994) “The Experience Factory,” Encyclope-
dia of Software Engineering, pp. 469-476, John Wiley & Sons, Inc.

Beck, K. (2005) Extreme Programming Explained, Addison-Wesley, Boston, MA.

Berander, P. (2004) “Using Students as Subjects in Requirements Prioritization”, Proceed-
ings of the 3rd International Symposium of Empirical Software Engineering, Redondo
Beach, CA, USA, pp. 167-176.

Berander, P. and Andrews, A. (2005) “Requirements Prioritization”, in: Aurum, A. and
Wohlin, C., (eds.), Engineering and Managing Software Requirements, Springer-Verlag,
Berlin, Germany.

Birk, A., Dingsoyr, T. and Stålhane, T. (2002) “Postmortem: Never Leave a Project with-
out It”, IEEE Software, Vol. 19, pp.43-45.

Breitman, K.K., do Prado Leite, J.C.S. and Finkelstein, A. (1999) “The world’s a stage: a
survey on requirements engineering using a real-life case study”, Journal of the Brazil-
ian Computer Society, Vol. 6, pp. 13-37.

Carlshamre, P. (2001) A Usability Perspective on Requirements Engineering - From Method-
ology to Product Development, Dissertation No. 726, Department of Computer and
Information Science, Linköping Studies in Science and Technology, Linköping Uni-
versity, Sweden.

V

186

Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B. and Natt och Dag, J. (2001) “An
Industrial Survey of Requirements Interdependencies in Software Release Planning”,
Proceedings of the 5th International Conference on Requirements Engineering, Toronto,
Canada, pp. 84-91.

Carlshamre, P. (2002) “Release Planning in Market-Driven Software Product Develop-
ment: Provoking an Understanding”, Requirements Engineering, Vol. 7, pp. 139-151.

Carmel, E. and Becker, S. (1995) “A Process Model for Packaged Software Develop-
ment”, IEEE Transactions on Engineering Management, Vol. 42, pp. 50-60.

Carmone, F.J., Kara, A. and Zanakis, S.H. (1997) “A Monte Carlo Investigation of
Incomplete Pairwise Comparison Matrices in AHP”, European Journal of Operational
Research, Vol. 102, pp. 538-553.

Carver, J., Jaccheri, L., Morasca, S. and Shull, F. (2003) “Issues in Using Students in
Empirical Studies in Software Engineering Education”, Proceedings of the 9th Interna-
tional Software Metrics Symposium, Sydney, Australia, pp. 239-249.

Chatzoglou, P.D. (1997) “Factors Affecting Completion of the Requirements Capture
Stage of Projects with Different Characteristics”, Information and Software Technology,
Vol. 39, pp. 627-640.

Cleland, D.I. (1995) Project Management, McGraw-Hill, New York.

Coffey, A. and Atkinson, P. (1996) Making Sense of Qualitative Data, Sage Publications,
Thousand Oaks, California, USA.

Collier, B., DeMarco, T. and Feary, P. (1996) “A Defined Process for Project Postmortem
Review”, IEEE Software, Vol. 13, pp. 65-72.

Collins, C.T. and Miller, R.W. (2001) “Adaptation: XP Style”, Proceedings of the 2nd
International Conference on eXtreme Programming and Flexible Processes in Software
Engineering, Sardinia, Italy, pp. 54-57.

Cooper, R.G. (2001) Winning at New Products: Accelerating the Process from Idea to
Launch, Cambridge, Perseus.

Curtis, B., Krasner, H. and Iscoe, N. (1998) “A Field Study of the Software Design Proc-
ess for Large Systems”, Communications of the ACM, Vol. 31, pp. 1268-1287.

Damian, D.E. and Zowghi, D. (2003) “RE Challenges in Multi-Site Software Develop-
ment Organisations”, Requirements Engineering, Vol. 8, pp. 149-160.

Davis, A.M. (2003) “The Art of Requirements Triage”, IEEE Computer, Vol. 36, pp. 42-
49.

References

Requirements Prioritisation and Retrospective Analysis for Release Planning Improvement 187

Deifel, B. (1999) “A Process Model for Requirements Engineering of CCOTS”, Proceed-
ings of the Workshop on Requirements Engineering Process, Florence, Italy, pp. 316-320.

Desouza, K.C., Dingsoyr, T. and Awazu, Y. (2005) “Experiences with Conducting
Project Postmortems: Reports versus Stories”, Software Process Improvement and Prac-
tice, Vol. 10, pp. 203-215.

Dingsoyr, T. (2005) “Postmortem Reviews: Purpose and Approaches in Software Engi-
neering”, Information and Software Technology, Vol. 47, pp. 293-303.

Easton, K.L., McComish, J.F. and Greenberg, R. (2000) “Avoiding Common Pitfalls in
Qualitative Data Collection and Transcription”, Qualitative Health Research, Vol. 10,
pp. 703-708.

El Emam, K. and Madhavji, N.H. (1995) “A Field Study of Requirements Engineering
Practices in Information Systems Development”, Proceedings of the 2nd IEEE Interna-
tional Symposium on Requirements Engineering, York, UK, pp 68-80.

El Emam, K. (1999) “Benchmarking Kappa: Interrater Agreement in Software Process
Assessments”, Empirical Software Engineering, Vol. 4, pp. 113-133.

Fenton, N.E. and Pfleeger, S.L. (1997) Software Metrics - A Rigorous and Practical
Approach, PWS Publishing Company, London, UK.

Fowler, M. and Scott, K. (2000) UML Distilled. A Brief Guide to the Standard Object
Modeling Language, Addison-Wesley, Reading, Massachusetts, USA.

Glaser, B.G. and Strauss, A.L. (1967) The Discovery of Grounded Theory: Strategies for
Qualitative Research, Weidenfeld and Nicolson, London, UK.

Graaf, B., Lormans, M. and Toetenel, H. (2003) “Embedded Software Engineering: The
State of the Practice”, IEEE Software, Vol. 20, pp. 61-69.

Greer, D. and Ruhe, G. (2004) “Software Release Planning: an Evolutionary and Itera-
tive Approach”, Information and Software Technology, Vol. 46, pp. 243-253.

Hall, T., Beecham, S. and Rainer, A. (2002) “Requirements Problems in Twelve Software
Companies: An Empirical Analysis”, Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering, Keele, UK, pp. 1-17.

Harker, P.T. (1987) “Incomplete Pairwise Comparisons in the Analytic Hierarchy Proc-
ess”, Mathematical Modelling, Vol. 9, pp. 837-848.

Herbsleb, J., and Goldenson, D. (1996) “A Systematic Survey of CMM Experience and
Results”, Proceedings of the 17th International Conference on Software Engineering, Seat-
tle, WA, USA, pp. 25-30.

188

Higgins, S.A., de Laat, M., Gieles, P.M.C. and Geurts, E.M. (2003) “Managing Require-
ments for Medical IT Products”, IEEE Software, Vol. 20, pp. 26-33.

Hoepfl, M.C. (1997) “Choosing Qualitative Research: A Primer for Technology Educa-
tion Researchers”, Journal of Technology Education, Vol. 9.

Hofmann, H.F. and Lehner, F. (2001) “Requirements Engineering as a Success Factor in
Software Projects”, IEEE Software, Vol. 18, pp. 58-66.

Honour, E. (1995) “Principles of Commercial Systems Engineering”, Proceedings from
the 5th Annual International Symposium of the National Council on Systems Engineering,
St. Louis, MO, USA.

Höst, M., Regnell, B. and Wohlin, C. (2000) “Using Students as Subjects - a Compara-
tive Study of Students and Professionals in Lead-Time Impact Assessment”, Empirical
Software Engineering, Vol. 5, pp. 201-214.

IEEE Std 610.12-1990 (1990) “IEEE Standard Glossary of Software Engineering Termi-
nology”, Institute of Electrical and Electronics Engineers.

IEEE Std. 830-1998 (1998) “IEEE Recommended Practice for Software Requirements
Specifications”, Institute of Electrical and Electronics Engineers.

ISO 9000, http://www.iso.org/ (visited September 2006)

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development
Process, Addison-Wesley, Reading, Massachusetts, USA.

Kamsties, E., Hörmann, K. and Schlich, M. (1998) “Requirements Engineering in Small
and Medium Enterprises: State-of-the-Practice, Problems, Solutions and Technology
Transfer”, Proceedings of the Conference on European Industrial Requirements Engineer-
ing, Hammersmith, UK.

Karlsson, J. (1996) “Software Requirements Prioritising”, Proceedings of 2nd Interna-
tional Conference on Requirements Engineering, Colorado Springs, Colorado, USA, pp.
110-116.

Karlsson, J. and Ryan, K. (1997) “A Cost-Value Approach for Prioritising Require-
ments”, IEEE Software, Vol. 14, pp. 67-74.

Karlsson, J., Olsson, S. and Ryan, K. (1997) “Improved Practical Support for Large-
Scale Requirements Prioritising”, Requirements Engineering, Vol. 2, pp. 51-60.

Karlsson, J. (1998) A Systematic Approach for Prioritizing Software Requirements, Docto-
rial Dissertation, Department of Computer and Information Science, Linköping Stud-
ies in Science and Technology, Linköping University, Sweden.

References

Requirements Prioritisation and Retrospective Analysis for Release Planning Improvement 189

Karlsson, J., Wohlin, C. and Regnell, B. (1998) “An Evaluation of Methods for Prioritis-
ing Software Requirements”, Information and Software Technology, Vol. 39, pp. 939-
947.

Kauppinen, M., Kujala, S., Aaltio, T. and Lehtola, L. (2002) “Introducing Requirements
Engineering: How to Make a Cultural Change Happen in Practice”, Proceedings of the
10th International Conference on Requirements Engineering, Essen, Germany, pp. 43-
51.

Kerth, N.L. (2001) Project Retrospectives: A Handbook for Team Reviews, Dorset House
Publishing, New York.

Landis, J.R. and Koch, G.G. (1977) “The Measurement of Observer Agreement for Cat-
egorical Data”, Biometrics, Vol. 33, pp. 159-174.

Lauesen, S. (2002) Software Requirements - Styles and Techniques, Addison-Wesley, Har-
low.

Lauesen, S. and Vinter, O. (2001) “Preventing Requirements Defects: An Experiment in
Process Improvement”, Requirements Engineering, Vol. 6, pp. 37-50.

Leffingwell, D. and Widrig, D. (2000) Managing Software Requirements - A Unified
Approach, Addison-Wesley, Reading, Massachusetts, USA.

Lehtola, L., Kauppinen, M. and Kujala, S. (2004) “Requirements Prioritisation Chal-
lenges in Practice”, Proceedings of the 5th International Conference on Product Focused
Software Process Improvement, Kansai Science City, Japan, pp. 497-508.

Lehtola, L. and Kauppinen, M. (2004) “Empirical Evaluation of Two Requirements Pri-
oritization Methods in Product Development Projects”, Proceedings of European Soft-
ware Process Improvement Conference, Trondheim, Norway, pp 161-170.

Lehtola, L. and Kauppinen, M. (2006) “Suitability of Requirements Prioritization Meth-
ods for Market-Driven Software Product Development”, Software Process Improvement
and Practice, Vol. 11, pp. 7-19.

Lubars, M., Potts, C. and Richter, C. (1993) “A Review of the State of the Practice in
Requirements Modelling”, Proceedings of the 1st International Symposium on Require-
ments Engineering, San Diego, California, USA, pp. 2-14.

Miller, E. (1998) “Managing Embedded Software”, Computer-Aided Engineering, Vol.
17, pp. 58.

Moisiadis, F. (2002) “The Fundamentals of Prioritising Requirements”, Proceedings of the
Systems Engineering, Test and Evaluation Conference, Sydney, Australia, pp. 108-119.

190

Myers, M.D. (1997) “Qualitative Research in Information Systems”, MIS Quarterly,
MISQ Discovery, Vol. 21, pp. 241-242.

Newkirk, J.W. and Martin R.C. (2001) Extreme Programming in Practice, Addison-Wes-
ley, Harlow.

Nikula, U., Sajaniemi, J. and Kälviäinen, H. (2000) “A State-of-the-Practice Survey on
Requirements Engineering in Small- and Medium-Sized Enterprises”, TBRC Research
Report 1, Telecom Business Research Center Lappeenranta, Lappeenranta University
of Technology, Finland.

Nolan, A.J. (1999) “Learning from Success”, IEEE Software, Vol. 16, pp. 97-105.

Novorita, R. and Grube, G. (1996) “Benefits of Structured Requirements Methods for
Market-Based Enterprises”, Proceedings of the International Council on Systems Engi-
neering (INCOSE) 6th Annual International Symposium on Systems Engineering: Prac-
tices and Tools, Boston, Massachusetts, USA.

Patton, M.Q. (2002) Qualitative Research and Evaluation Methods, Sage Publications,
California, USA.

Paulk, M.C, Curtis, B., Chrissis, M. and Weber, C. (1993) “Capability Maturity Model
for Software (Version 1.1)”, Technical Report CMU/SEI-93-TR-024, Carnegie Mellon,
Software Engineering Institute.

Paulk, M.C., Weber, C.V. and Curtis, B. (1995) The Capability Maturity Model: Guide-
lines for Improving the Software Process, Addison Wesley, Reading, Massachusetts, USA.

Potts, C. (1995) “Invented Requirements and Imagined Customers: Requirements Engi-
neering for Off-the-Shelf Software”, Proceedings of the 1st International Symposium on
Requirements Engineering, York, UK, pp. 128-130.

Regnell, B. Beremark, P. and Eklund, O. (1998) “A Market-Driven Requirements Engi-
neering Process - Results from an Industrial Process Improvement Programme”,
Requirements Engineering, Vol. 3, pp. 121-129.

Regnell, B., Höst, M., Natt och Dag, J., Beremark, P. and Hjelm, T. (2001) “An Indus-
trial Case Study on Distributed Prioritization in Market-Driven Requirements Engi-
neering for Packaged Software”, Requirements Engineering, Vol. 6, pp. 51-62.

Regnell, B., Karlsson, L. and Höst, M. (2003) “An Analytical Model for Requirements
Selection Quality Evaluation in Product Software Development”, Proceedings of the
11th International Requirements Engineering Conference, Monterey Bay, California,
USA, pp. 254-263.

Robson, C. (2002) Real World Research, Blackwell, Oxford.

References

Requirements Prioritisation and Retrospective Analysis for Release Planning Improvement 191

Royce, W.W. (1970) “Managing the Development of Large Software Systems: Concepts
and Techniques”, Proceedings of IEEE WESTCON, pp. 1-9.

Ruhe, G., Eberlein, A. and Pfal, D. (2002) “Quantitative WinWin: a New Method for
Decision Support in Requirements Negotiation”, Proceedings of the 4th International
Conference on Software Engineering and Knowledge Engineering, pp 159-166.

Runeson, P. (2003) “Using Students as Experiment Subjects - an Analysis on Graduate
and Freshmen Student Data”, Proceedings of the 7th International Conference on Empir-
ical Assessment and Evaluation in Software Engineering, Keele, UK, pp 95-102.

Rus, I. and Lindvall, M. (2002) “Knowledge Management in Software Engineering”,
IEEE Software, Vol. 19, pp. 26-38.

Saaty, T.L. (1980) The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allo-
cation, McGraw-Hill, New York.

Sangiovanni-Vincentelli, A. and Martin, G. (2001) “Platform-Based Design and Soft-
ware Design Methodology for Embedded Systems”, IEEE Design & Test of Computers,
Vol. 18, pp. 23-33.

Sawyer, P., Sommerville, I. and Kotonya, G. (1999) “Improving Market-Driven RE
Processes”, Proceedings of the International Conference on Product Focused Software Proc-
ess Improvement, Oulu, Finland, pp. 222-236.

Sawyer, P. (2000a) “Packaged Software: Challenges for RE”, Proceedings of the 6th Inter-
national Workshop on Requirements Engineering: Foundation for Software Quality, Stock-
holm, Sweden, pp. 137-142.

Sawyer, P. (2000b) “Packaged software: implications of the differences from custom
approaches to software development”, European Journal of Information Systems, Vol. 9,
pp. 47-58.

Schalken, J., Brinkkemper, S. and van Vliet, H. (2006) “A Method to Draw Lessons
from Project Postmortem Databases”, Software Process Improvement and Practice, Vol.
11, pp. 35-46.

Shen, Y., Hoerl, A.E. and McConnell, W. (1992) “An Incomplete Design in the Analytic
Hierarchy Process”, Mathematical Computer Modelling, Vol. 16, pp. 121-129.

Siddiqi, J. and Shekaran, M.C. (1996) “Requirements Engineering: the Emerging Wis-
dom”, IEEE Software, Vol. 13, pp. 15-19.

Siegel, S. and Castellan, J.N. (1988) Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York.

Sommerville, I. (2001) Software Engineering, Addison-Wesley, Harlow.

192

The Standish Group International Inc. (2001) “Extreme CHAOS”, http://www.standish-
group.com/sample_research/PDFpages/extreme_chaos.pdf (visited July 2006)

SWEBOK (2004), http://www.swebok.org (visited July 2006)

Telelogic (2006) http://www.telelogic.com/corp/products/focalpoint/index.cfm (visited
July 2006)

Tichy, W.F. (2000) “Hints for Reviewing Empirical Work in Software Engineering”,
Empirical Software Engineering, Vol. 5, pp. 309-312.

Ulrich, K.T. and Eppinger, S.D. (2000) Product Design and Development, McGraw-Hill,
Boston.

Wiegers, K. (1999) Software Requirements, Microsoft Press, Redmond, WA.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wesslén, A. (2000)
Experimentation in Software Engineering - An Introduction, Kluwer Academic Publish-
ers, Boston.

Wohlin, C. and Aurum, A. (2005) “What is Important when Deciding to Include a
Software Requirement in a Project or Release?”, Proceedings of the 4th International
Symposium on Empirical Software Engineering, Noosa Heads, Australia, pp. 237-246.

Zhang, Q. and Nishimura, T. (1996) “A Method of Evaluation for Scaling in the Ana-
lytic Hierarchy Process”, Proceedings of the International Conference on Systems, Man
and Cybernetics, Beijing, China, pp. 1888-1893.

Reports on Communication Systems

101 On Overload Control of SPC-systems
Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.

102 Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.

103 Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.

104 Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.

105 Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.

106 Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.

107 Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.

108 Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.

109 On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.

110 Enhancements of Communication Resources
Johan M. Karlsson, Ph.D. thesis, 1992.

111 On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.

112 Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.

113 Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.

114 End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.

115 An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.

116 Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.

117 Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.

118 On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.

119 Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.

120 Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.

121 Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.

122 On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.

123 Network Oriented Load Control in Intelligent Networks Based on Optimal Deci-
sions
Stefan Pettersson, Lic. thesis, October 1996.

124 Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.

125 Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.

126 Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, Ph.D. thesis, January 1998.

127 Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.

128 Switch Performance and Mobility Aspects in ATM Networks
Daniel Søbirk, Lic. thesis, June 1998.

129 VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.

130 On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.

131 Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.

132 Requirements Engineering with Use Cases – a Basis for Software Development
Björn Regnell, Ph.D. thesis, April 1999.

133 Utilisation of Historical Data for Controlling and Improving Software Development
Magnus C. Ohlsson, Lic. thesis, May 1999.

134 Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.

135 Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.

136 Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.

137 Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000

138 On Fault Content Estimations Applied to Software Inspections and Testing
Håkan Petersson, Lic. thesis, May 2000.

139 Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.

140 Dynamic traffic Control in Multiservice Networks – Applications of Decision Models
Ulf Ahlfors, Ph.D. thesis, October 2000.

141 ATM Networks Performance – Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.

142 Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.

143 Controlling Fault-Prone Components for Software Evalution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.

144 Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.

145 Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.

146 Elicitation and Management of User Requirements in Market-Driven Software
Development
Johan Natt och Dag, Lic. thesis, June 2002.

147 Supporting Software Inspections through Fault Content Estimation and Effective-
ness Analysis
Håkan Petersson, Ph.D. thesis, September 2002.

148 Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for
Software Inspections
Thomas Thelin, Ph.D. thesis, September 2002.

149 Software Information Management in Requirements and Test Documentation
Thomas Olsson, Lic. thesis, October 2002.

150 Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlström, Lic. thesis, November 2002.

151 Changes to Processes and Architectures; Suggested, Implemented and Analyzed from
a Project Viewpoint
Josef Nedstam, Lic. thesis, November 2002.

152 Resource Management in Cellular Networks -Handover Prioritization and Load Bal-
ancing Procedures
Roland Zander, Lic. thesis, March 2003.

153 On Optimisation of Fair and Robust Backbone Networks
Pål Nilsson, Lic. thesis, October 2003.

154 Exploring the Software Verification and Validation Process with Focus on Efficient
Fault Detection
Carina Andersson, Lic. thesis, November 2003.

155 Improving Requirements Selection Quality in Market-Driven Software Development
Lena Karlsson, Lic. thesis, November 2003.

156 Fair Scheduling and Resource Allocation in Packet Based Radio Access Networks
Torgny Holmberg, Ph.D. thesis, November 2003

157 Increasing Product Quality by Verification and Validation Improvements in an
Industrial Setting
Tomas Berling, Ph.D. thesis, December 2003.

158 Some Topics in Web Performance Analysis
Jianhua Cao, Lic. thesis, June 2004.

159 Overload Control and Performance Evaluation in a Parlay/OSA Environment
Jens K. Andersson, Lic. thesis, August 2004.

160 Performance Modeling and Control of Web Servers
Mikael Andersson, Lic. thesis, September 2004.

161 Integrating Management and Engineering Processes in Software Product Develop-
ment
Daniel Karlström, Ph.D. thesis, December 2004.

162 Managing Natural Language Requirements in Large-Scale Software Development
Johan Natt och Dag, Ph.D. thesis, February 2005.

163 Designing Resilient and Fair Multi-layer Telecommunication Networks
Eligijus Kubilinskas, Lic. thesis, February 2005.

164 Internet Access and Performance in Ad hoc Networks
Anders Nilsson, Lic. thesis, April 2005.

165 Active Resource Management in Middleware and Self-oriented Architectures
Niklas Widell, Ph.D. thesis, May 2005.

166 Quality Improvement with Focus on Performance in Software Platform Development
Enrico Johansson, Ph.D. thesis, June 2005.

167 On Inter-System Handover in a Wireless Hierarchical Structure
Henrik Persson, Lic. thesis, September 2005.

168 Prioritization Procedures for Resource Management in Cellular Networks
Roland Zander, Ph.D. thesis, November 2005.

169 Strategies for Management of Architectural Change and Evolution
Josef Nedstam, Ph.D. thesis, December 2005.

170 Internet Access and QoS in Ad Hoc Networks
Ali Hamidian, Lic. thesis, April 2006.

171 Managing Software Quality through Empirical Analysis of Fault Detection
Carina Andersson, Ph.D. thesis, May 2006.

172 Fairness in Communication and Computer Network Design
Pål Nilsson, Ph.D. thesis, September 2006.

173 Requirements Prioritisation and Retrospective Analysis of Release Planning Process
Improvement
Lena Karlsson, Ph.D. thesis, October 2006.

