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ABSTRACT

Source code analysis is ubiquitous in the development of software tools, for ex-
ample in compilers to detect compile-time errors and possible optimizations, in
IDEs to provide interactive coding assistance, and in stand-alone analysis tools to
detect bugs. There are several techniques that have been developed to help the
analysis developer, including one called Reference Attribute Grammars (RAGs).
With RAGs, the developer specifies functionality for their analysis as a set of high
level equations. The concern of how to apply the equations is abstracted away,
and handled by a RAG evaluation system. This abstraction can enable more con-
cise and efficient implementations, but also calls for adequate debugging tools.
When things break down, being able to see how things execute in terms of these
abstractions helps the developer identify and fix issues.

The aim of this thesis is to provide source code analysis developers with a live,
exploratory view of the inner workings of their analyses. We are particularly inter-
ested in helping developers using the RAG formalism. In this thesis, we introduce
the concept of property probes to support this goal. Property probes enable effi-
cient and robust interaction with computation associated with nodes on abstract
syntax trees (ASTs). The different kinds of probes, and associated algorithms for
creating and applying them, are presented in this thesis. We also present bench-
marks showing that performance scales well for real-world development tasks.

We have implemented property probes in a tool called CODEPROBER. CODE-
PROBER has been integrated into two university courses on compilers and program
analysis, as an aid during lab assignments. We wanted to determine the use- and
user experience of the students that used it, and to this end we performed a mixed-
method user study with students from the program analysis course. The focus of
the study is a set of in-person interviews, and the overall feedback from students
has been very positive.
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INTRODUCTION

1 Introduction

It is hard to overstate the importance of software in the modern world. We use soft-
ware to socialize, educate, manage our time, handle money, play games, control
our vehicles, and much more. All software is created with some sort of program-
ming language. Consequently, the construction of programming languages and
their supporting tools is a broad and active research area, with a large impact on
industry.

An important part of implementing programming languages consists of creat-
ing source code analyses. A compiler needs to analyze code to find compile-time
errors and possible optimizations. It also needs to determine how to transform each
language construct into its target code, and this transformation is non-trivial. For
example, in many languages the ‘+’-operator can be used for both addition of num-
bers and concatenation of strings, and it is with source code analysis that the com-
piler decides which operation is applicable. Code analyses can also be found in
IDEs, where it is used to provide interactive coding assistance in the form of code
completion, hover information, etc. There are also a number of non-interactive
analyses that are often run in continuous integration pipelines [Zam+17; Sad+15].
A popular example is SonarQube [Son], which contains hundreds of analyses,
covering security issues, code smells, and more.

Source code analyses can be implemented as a set of smaller analyses that
depend on each other. For example, to detect compile-time errors, it is typically
necessary to compute types of all expressions, which in turn requires computing
name bindings. Developing an analysis is non-trivial, and debugging it can be
difficult as there may be thousands of smaller analyses that are linked together. For
example, the specification for Java 8 [Gos+15] is 788 pages long, and it contains
many semantic rules that interact with each other.

In this thesis we present work on trying to help the source code analysis de-
veloper. To this end we have developed CODEPROBER, an exploration tool of
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analysis results. In CODEPROBER, the analysis developer begins by editing an
example source file and selecting a program element in the file, such as an ex-
pression or function declaration. Then they select a (sub-)analysis step from their
analysis tool, and CODEPROBER presents the result of running the analysis with
the program element as input. The result is presented in a small floating win-
dow, which we call a property probe. CODEPROBER is live, which means that
displayed values (i.e., property probes) on screen stay up to date, even as input
values change. For example, if the user updates the example source file, or makes
changes to their analysis tool implementation, CODEPROBER will immediately
display updated values. In general, liveness in development environments refers
to the ability to modify a running program [Tan13]. This can enable a tighter
develop-test-fix development loop [Krä+14], as the time between making changes
and getting feedback is lowered.

Live development tools have to respond quickly to user interactions in order to
maintain a good user experience. One of the challenges with building live develop-
ment tools is getting performance to scale well in larger systems and codebases. As
there is more code to compile and/or execute on each keystroke, performance will
naturally degrade, which reduces the benefit of liveness. Benchmarks for CODE-
PROBER [Ala+24] show that interactions typically respond in less than 100 mil-
liseconds when exploring codebases containing 100k lines of code, which means
that it is fast enough to appear instant [Nie93] even in real-world codebases. The
exact response time depends on the analysis step itself, so an analysis implemen-
tation style that can quickly compute individual values works best.

CODEPROBER is a tool for exploring individual computations on a tree-like
structure, which fits well with Reference Attribute Grammars [Hed00] (RAGs), an
extension of Attribute Grammars [Knu68b]. RAGs is a formalism for analyzing
source code which separates the specification and evaluation of language seman-
tics. The analysis developer writes a specification for their tool as a set of high-
level equations, and a RAG system handles evaluating the specification. The eval-
uation can be performed on-demand, meaning that if only a small sub-analysis step
is requested, then no other values are computed. This is an important characteristic
that helps CODEPROBER achieve liveness even when exploring larger, real-world
analysis tools. There are several implementations of RAGs available, including
Silver [VW+10], Kiama [SKV09] and JASTADD [HM03]. CODEPROBER has
been specifically integrated with JASTADD, but in theory it can be used with any
tool that associates computation with nodes on a tree-like structure.

There are other tools that support attribute exploration, and there is even one
specifically built for JASTADD called DrAST [LTH16]. However, to our knowl-
edge, none of the other exploration tools support liveness. One of the biggest
technical challenges in implementing CODEPROBER was how to track the pro-
gram element the user selected even as they make changes, i.e. how to make the
computation stay live. Most live tools perform computation associated with a line
of code, for example showing values of variables on the lines where variables are
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updated. In CODEPROBER, the computation is associated with a position in a tree-
like data structure, which is significantly more difficult to track. Our solution is a
data structure which we call node locator and it is presented in Section 4.

We performed a mixed-method user study on the use and experience of using
CODEPROBER, in order to determine if it was useful and how it compares to tra-
ditional debugging tools such as breakpoint/step-debuggers. The study focused on
students in a program analysis course, where they use CODEPROBER and RAGs
in a series of labs. We found that the students found CODEPROBER to be useful
and enjoyable to use, and they seem to prefer it over traditional tools like debug-
gers and print debugging, at least for the task of creating program analyzers with
RAGs.

The next sections of this thesis introduction are the following:

• In Section 2 we give background on RAGs and JASTADD.

• In Section 3 we present CODEPROBER in more detail, and how it compares
to similar tools.

• In Section 4 we present node locators, the data structure that enables the
quick and robust exploration found in CODEPROBER.

• In Section 5 we present a summary of the user study.

Finally, in Section 6 we discuss ideas for future work, and in Section 7 we con-
clude.

2 Background
The purpose of source code analysis is to compute values from source code. These
values may be compile-time errors, machine code, refactoring suggestions, etc.
Knuth introduced Attribute Grammars [Knu68b] (AGs), which he described as “a
simple technique for specifying ‘meaning’ of languages defined by context-free
grammars”. Much of the work performed in this thesis is indirectly built on top of
AGs. In this section we present AGs, an extension to AGs called Reference At-
tribute Grammars [Hed00] (RAGs), and a metacompiler that supports RAGs called
JASTADD [HM03]. Finally, we discuss some challenges with attribute evaluation.

2.1 Attribute Grammars

Attributes are a technique for computing “meaning” from source code. The pro-
cess of parsing a program will reveal some intrinsic meaning in the code, such as
the values of number literals, and parent-child relations between the program ele-
ments (i.e. the structure of the parse tree). Attributes use this intrinsic meaning to
derive non-trivial values. To exemplify how attributes can be used, we will use a
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Add

Add

Dec(1)

Dec(2)

Hex(0x27)

Figure 1: The parse tree for the HEXCALC expression 1 + 0x27 + 2.

Listing 1: Implementation of HEXCALC in canonical attribute grammars, us-
ing slightly modified syntax to fit an abstract syntax tree and assuming a
base_16_to_10 operation exists.

v(Add(Lhs,Rhs)) = v(Lhs) + v(Rhs)
v(Dec(Value)) = Value
v(Hex(Value)) = base_16_to_10(Value)

simple calculator language we call HEXCALC. HEXCALC is a tiny language that
only supports additions of decimal (base-10) and hexadecimal (base-16) numbers.
The desired output (“meaning”) of a HEXCALC expression should be a single dec-
imal value. For example, for the input 1 + 0x27 + 2, the output should be 42.

Figure 1 shows the parse tree for the HEXCALC expression 1 + 0x27 + 2.
In the figure, a few intrinsic values are visible, such as the values of Dec (base-
10) nodes and the structure of the tree. However, it is not immediately obvious
what the value of the Hex (base-16) or Add nodes are. Attributes can be used to
describe how to compute these unknown values.

In Knuth’s paper he defines attributes on top of a context-free grammar, but
he does also write that his ideas “blends well with McCarthy’s idea of ‘abstract
syntax”’. By modifying his syntax slightly to fit with abstract syntax trees (ASTs),
we can implement value computation for HEXCALC as shown in Listing 1. The
specification is a declarative set of equations that describe how to compute the
value for each AST node type. The values of Add nodes depend on the values
of their child nodes. Dec node values are intrinsically known, so there is nothing
to compute. Hex nodes require conversion from base-16 to base-10, using an
operation base_16_to_10 which we assume is available for this example.

There are two kinds of attributes defined in Knuth’s paper: synthesized and
inherited. Synthesized attributes compute information based on a given tree node
and its descendants. The attribute definitions in Listing 1 are synthesized, as each
attribute only depends on the nodes themselves or their children. Inherited at-
tributes are instead defined in terms of the ancestors of a given node. This can
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be used to implement non-local information lookup, such as finding the type and
location of variable declarations.

2.2 Reference Attribute Grammars

Reference Attribute Grammars [Hed00] (RAGs) extend AGs with the capability
of attributes resolving into references to other AST nodes. RAG specifications are
able to specify computation of non-local information in a more concise manner,
by allowing AST nodes that are far away from each other in the tree to directly
reference each other, similar to how a parent node can directly reference its child
nodes.

In AGs, non-parent-child nodes cannot reference each other. What they can
do is to communicate with a common ancestor, using a combination of synthe-
sized and inherited attributes. This ancestor can act as a glue layer that transports
information on behalf of its descendants. For example, to make variable type infor-
mation available to variable uses, an AG specification should contain the following
two attributes:

1. A synthesized attribute that collects a table of variable names mapped to
variable types under a common ancestor. In languages like Java, variable
uses may be connected to declarations in other files via e.g. subtyping or
static imports, so the common ancestor in this case is located far up in the
tree, possibly the root of the tree.

2. An inherited attribute that makes the table from the synthesized attribute
available to all descendants of the common ancestor.

For each new piece of information that should be made available, the variable table
needs to be expanded, or a new table attribute can be defined. The resulting AG
specification can become one big table attribute, which makes the code less modu-
lar and/or extensible. Alternatively, it may become a set of smaller table attributes
that contain very similar looking (i.e. duplicated) code for collecting and trans-
porting information. With RAGs, a single reference attribute that connects variable
uses and declarations can be reused for transporting all variable-related informa-
tion. The resulting RAG specification is therefore a set of smaller attributes, which
retains modularity and extensibility while avoiding the need to duplicate code.

2.3 JASTADD

There are several tools that implement support for RAGs. For example,
Kiama [SKV09] adds RAG support to Scala with a library. Silver [VW+10] and
JASTADD [HM03] are both metacompilers that compile RAG specifications into
Java source code. An example of a tool built using RAGs is AbleC [Kam+17],
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Listing 2: Implementation of HEXCALC in JASTADD.
/* AST structure */
abstract Expr;
Add: Expr ::= Lhs:Expr Rhs:Expr;
Dec: Expr ::= <Value:int>;
Hex: Expr ::= <Value:String>;

/* Attribute definition */
syn int Expr.v();
eq Add.v() = getLhs().v() + getRhs().v();
eq Dec.v() = getValue();
eq Hex.v() = Integer.parseInt(

getValue().substring(2), 16
);

an extensible C compiler frontend implemented in Silver that is used for build-
ing extensions to the C programming language. In this thesis we work with
ExtendJ [EH07b], an extensible Java compiler implemented in JASTADD.

JASTADD compiles RAG specifications into normal Java code. The input to
JASTADD contains both attributes and a description of an AST structure. In List-
ing 2, a JASTADD implementation of HEXCALC can be seen. The implementation
starts with a description of the AST structure, which declares that there are three
node types (Add, Dec & Hex), which are all subtypes of Expr. It also declares
which fields each node type contains, such as Add having two child nodes called
Lhs and Rhs. JASTADD uses this to generate Java classes with appropriate con-
structors, fields and accessors for those fields (e.g. getLhs, getValue, etc.).
The attribute definition declares that all Expr nodes have an attribute v, which
should return an int. Then, there is a definition of v for each AST node type
in order, similar to Listing 1. The expression on the right of the equals sign is an
arbitrary Java expression. Attributes must not have any observable side effects,
but there are otherwise no restrictions, which is why it is able to use the standard
library function Integer.parseInt. JASTADD translates the attribute expres-
sions into normal Java methods and weaves them into the generated AST classes,
similar to static aspect weaving in AspectJ [Kic+01].

2.4 Attribute Evaluation

One of the challenges with evaluating attributes is how to handle dependencies.
For example, the attribute v for Add in Listing 2 depends on the value of v in
its child nodes. The attribute evaluator must make sure that those child values
are computed before the addition takes place. There are two main approaches to
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evaluating attributes: data-driven and demand-driven.

Data-driven attribute evaluation involves scheduling the evaluation of individ-
ual attributes according to their dependencies, and in this way evaluating all at-
tributes on all nodes. Ordered Attribute Grammars is an example of such an algo-
rithm [Kas80].

Demand-driven attribute evaluation involves only evaluating a requested at-
tribute value, along with all attributes it transitively depends on. Values may be
cached after they are evaluated, to ensure that no value is evaluated more than
once [Jou84]. This guarantees that a demand-driven evaluation does not perform
any more work than a data-driven evaluation. In fact, the opposite is more likely
since a demand-driven evaluation only evaluates the minimum necessary to fulfill
a given request. For example, if we wanted to compute the value of the Hex node
in Figure 1, then that value alone would be calculated with a demand-driven evalu-
ation strategy. If we later wanted to know the value of the parent of the Hex node,
then the base-16 to base-10 conversion would not be performed again, since the
result is cached. Conversely, a data-driven evaluator would have to evaluate the
values of all nodes in the AST before being able to safely access individual values,
such as the value of the Hex node.

RAGs use a demand-driven attribute evaluation strategy [Hed00]. This is safe
to do, because of the previously mentioned rule that attributes must not have any
side effects, so it does not matter if only a subset of attribute values are evaluated.

Liveness-focused tools such as CODEPROBER sometimes rely on incremental
computation in order to make the live feedback update quickly enough [KEV16].
For RAG-based tools, one such improvement that can be made is to add incre-
mental parsing, i.e. when the user modifies a piece of source code, only parse the
modified code and merge the result with a previously parsed AST. Then, the RAG-
based tool may also want to also incrementally evaluate an attribute to display to
the user, such as a set of compile-time errors, or a list of code completion items,
etc. However, incrementally evaluating attributes is non-trivial, as each attribute
may indirectly have dependencies to any other attribute in the tree. Even if only a
tiny part of the AST was incrementally parsed, the cached values in all other parts
of the AST can become stale. JASTADD is able to generate code that dynamically
tracks attribute dependencies to allow for incremental evaluation [SH12]. How-
ever, this dynamic tracking adds overhead which in some cases may exceed any
potential performance improvements. Therefore, in this thesis we only make use
of incremental parsing and on-demand evaluation, but not incremental attribute
evaluation. In order to avoid using stale values in an incrementally parsed AST,
CODEPROBER always flushes (removes) all cached values before any attribute is
evaluated.
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3 CODEPROBER

CODEPROBER helps debugging RAG-based analyses. In this section we present
the ideas behind the tool, and some of its functionality. CODEPROBER is presented
in more detail in both Paper I and Paper II. CODEPROBER is open source1, and
there is video available that demonstrates some of it features.2

3.1 Debugging RAGs

When creating a debugger for RAG-based analyses such as those built with JAST-
ADD, there are several possible approaches. Perhaps the most straightforward
approach would be to create a traditional breakpoint/step-debugger. However, this
would expose the developer to the internal attribute evaluation code, which they
are likely not interested in. We believe the on-demand characteristic of RAGs
enable new and interesting opportunities for debugging.

As mentioned in Section 2.4, attribute dependencies in RAGs are evaluated on-
demand. This means that individual values can often be computed quite rapidly,
without spending time on computing unnecessary values. This rapid evaluation of
individual attributes enabled the creation of CODEPROBER, a live exploration tool
for RAG-based analyses. CODEPROBER provides the developer with an interac-
tive environment for exploring attributes on an AST. The idea is that by being able
to quickly explore each individual attribute, the developer is able to build under-
standing of how their analysis works, and therefore be able to pinpoint errors. This
does not replace a traditional debugger, but is able to fulfill a similar need.

3.2 Property Probes

CODEPROBER has support for property probes, which were initially presented in
Paper I. A property probe is presented to the user in the context of a source code
text editor, and acts as a live observer of a property on an AST node. A property
in this case means any form of computation associated with an AST node. This
can be a RAG attribute, a visual representation of the structure of the AST, a list
of nodes of a certain type, etc. Probes are live, which means that they should stay
up to date when its input values change. There are two main input values: a RAG
analysis implementation, and an example source file which is used as input to the
analysis.

CODEPROBER can be seen in Figure 2, where it is used to inspect an error in a
HEXCALC implementation. The error is that the value computed by 0x12 + 3
is 15, but it should be 21. Through the help of probes (the four floating windows
on top of the code), the developer is able to investigate each intermediate step of
the computation, i.e. the value of all numbers and the addition. This reveals that

1https://github.com/lu-cs-sde/codeprober/. Accessed September 2024.
2A demo video of CODEPROBER: https://youtube.com/watch?v=lkTJ4VL0xtY.

https://github.com/lu-cs-sde/codeprober/
https://youtube.com/watch?v=lkTJ4VL0xtY
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Figure 2: CODEPROBER being used to investigate an implementation error in a
HEXCALC compiler. The developer has opened four different probes. One shows
the structure of the AST and the rest shows intermediate steps of a HEXCALC
expression evaluation.

the error is located with the HEX type, as its value is computed to be 12, rather
than the expected 18. CODEPROBER supports several kinds of property probes,
and two of them are shown in the figure. Three of the windows show attribute
values, which we sometimes refer to as “value probes”, or just probes. The last
window shows a visual representation of the structure of the AST, which we refer
to as an AST probe.

3.3 Usage

Upon starting CODEPROBER, the user is presented with a text editor where they
can type an example source file to be used as input to their analysis implementa-
tion. Once a file is specified, the user can right-click to create a probe, as seen in
Figure 3. In the figure, the user creates a probe showing the compile-time constant
value of an addition expression in the Java compiler ExtendJ [EH07b].

There are several kinds of probes supported, and different ways to explore
the AST produced by the underlying analysis implementation. In addition to the
previously mentioned value probes and AST probes, there are search probes that
show all nodes that pass a given predicate, and nested probes that chain several
value probes together. The output of a probe can be a variety of values, including
references to other nodes in the AST. If the output is a reference, then it can be
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Step 1 Step 2

Step 3 Step 4

(1) The user right-clicks on the addition ex-
pression in the source text and selects “Create
Probe”.

(2) The AST nodes that span the clicked posi-
tion appear in a menu, and the user selects the
desired node, AddExpr in this case.

(3) The user is presented with a menu of all
available properties on the AddExpr node,
and selects the constant property.

(4) Finally, the property probe window ap-
pears, showing the result value, in this case the
number 3.

Figure 3: Steps to create a probe for the constant property of the addition
expression x + 2.

hovered to cause the corresponding piece of the source code inside the text editor
to highlight. Additionally, the reference can be clicked to create a new probe with
the clicked node as the probe target. The feature set is described in more detail in
both Paper I and Paper II.

3.4 Spanning Tree

CODEPROBER presents probe results in connection to locations in source code.
For example, in Step 4 of Figure 3, the probe shows that it is connected to an
AddExpr node on line 7, columns 17 → 21. This is possible to do because
analysis tooling commonly parses source code into an AST, and associates source
locations with each node in the AST. In this thesis we present property probes as
being used for ASTs, but this definition is technically too narrow. Some analysis
tooling, such as those using RAGs can technically represent source code as graphs
due to the addition of non-local references, but they still have a spanning tree
that can be used for traversal purposes. A more accurate definition of probes is
therefore that they can be used with any data structure that has a spanning tree
over nodes that have location information.
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3.5 JASTADD integration
CODEPROBER can in theory be integrated with any tool that associates compu-
tation with a tree structure. However, in this thesis we have mainly integrated
with JASTADD. The code that JASTADD generates follows a predictable struc-
ture, and it additionally contains some annotations that describe where the gener-
ated methods came from, which CODEPROBER uses to filter and present informa-
tion in its UI. CODEPROBER has been used to explore several JASTADD-based
tools. This includes the Java compiler ExtendJ [EH07b], and IntraJ [Rio+21]
which adds intraprocedural control-flow and dataflow analysis on top of ExtendJ.
We have also used CODEPROBER with implementations of Oberon-0 [FH15] (a
tiny procedural language), Bloqqi [FH16] (a visual language for automation), and
ChocoPy [PSH19] (a subset of Python commonly used for educational purposes),
and more. Very few modifications had to be made to these tools to make them
compatible with CODEPROBER. In most cases only 2 lines of code had to be
added in order to provide CODEPROBER with an entry point into the code base. In
the Implementation section in Paper I we more concretely describe the API used
for integration.

3.6 Usage in Research and Education
CODEPROBER has been used in both research and education. In research, it has
been used to help develop intraprocedural analyses for Java [Rio23]. In a project
course, students have used CODEPROBER to help create and debug IDE exten-
sions [HH24; LB24]. It has also been used by some students performing master’s
thesis works, in order to help build analyses for Java [Sol24; AW24]. Finally, it has
been integrated into two courses. One is a course on compiler construction, where
students build a compiler for a C-like language, and they have access to CODE-
PROBER to help debug their implementations. The other is a course on program
analysis, where the students are handed an already working compiler at the start
of each lab session, and are tasked with extending it with some analysis. These
students are also able to use CODEPROBER to help debug their implementations.
The students in the program analysis course are the main focus of the user study
performed in Paper II.

3.7 Combination of Liveness and Attribute Exploration
There are other development tools that focus on liveness, i.e., instantly presenting
updated values in response to user input. There are also tools that offer differ-
ent forms of attribute exploration on ASTs. However, we are not aware of any
previous work that combines liveness and attribute exploration in the same way
that CODEPROBER does. In this section we briefly present the features of typical
liveness-focused tools, and of typical attribute exploration tools. In the Related
Work section in Paper II we perform a more thorough comparison to other tools.
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A typical liveness-focused tool contains a code editor where the user can type
the code they wish to explore. When changes are made, the tool runs the code and
extracts runtime values [Ler20; Krä+14; Dub+16; McD13; HWX23]. The values
are then presented to the user in connection to the code. For example, variable
values may be rendered on lines where the corresponding variable assignments
happen. One thing that differentiates CODEPROBER here is that the code inside
CODEPROBER’s editor typically does not run, it is instead used as input to a pro-
gram analysis implementation in order to compute a static property of the code.

A typical attribute exploration tool contains some way to specify an analysis
tool, or analysis tool specification as input. Additionally, the user can specify an
example source file to be parsed into an AST. Then the user is able to explore
attribute values associated with the different nodes in the AST [Slo99; LTH16;
Ike+00; RCHS14]. Most of the user interaction in these tools is usually presented
in terms of the AST, i.e., the values are rendered on top of- or in connection to- a
graphical AST view. Sometimes the tools also connect the AST view and source
code, for example so that the AST nodes can be hovered to highlight the corre-
sponding code. What these tools typically do not do, however, is to allow for live
updates of the example source file, which is one of CODEPROBER’s most impor-
tant features.

4 Node Locators

A tool that simultaneously supports liveness and attribute exploration on an AST
must have some way to consistently track a position in an AST while the user is
making changes to the corresponding source text. Tracking an AST position is
difficult in part because even minor syntactic differences can have large impacts
on the structure of the tree. In CODEPROBER, the user is able to change source
text and get live feedback of computations that are associated with AST nodes.
One of the greatest technical challenges involved in creating this is how to track
AST nodes across user input changes. This section presents both the data structure
and algorithms we designed for this purpose, which we call node locators. Node
locators are presented in more detail in Paper I.

4.1 Data structure

An ideal data structure has good performance and is good at handling user changes.
However, achieving these two qualities at the same time can be a challenge. To
exemplify why, we first consider two simple structures that we call FullPath
and TargetNode.

FullPath In an AST it should be possible to reach any AST node by starting
from the root node and accessing child nodes in a specific order. In an object-
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oriented language with a method GETCHILD(N) for accessing the N:th child, con-
sider the following sequence of calls:

root.getChild(2).getChild(5).getChild(0).getChild(3)

This sequence of calls can be encoded as a data structure by extracting the child
indexes, like this:

[2, 5, 0, 3]

The benefits of the FullPath structure is that it is unambiguous and quick. There
will always be at most a single node that a given list of indexes identifies, and ac-
cessing children by index should be a constant time operation. The main downside
of FullPath is that it is fragile to changes. If the user makes a change some-
where in the AST, then previously valid child index sequences may now point to
different nodes, or no nodes at all.

TargetNode Instead of storing the full sequence for reaching the target AST
node, it is possible to only store some identifying information that describes the
target node. For example, the following may be used to identify an addition ex-
pression on line 5 and columns 8→ 14 in a program:

{
type = AddExpr
location = 5:8 → 5:14

}

Any number of fields may be stored, for example the types of neighboring nodes,
how deeply nested the node is inside the AST, etc. This structure can later be used
to search through an AST to find the node that best fits the stored information. A
naive implementation of such a search algorithm could be quite slow, but it can
be significantly improved by pruning the search based on location information.
Many AST nodes contain information about which line and column they exist on.
Additionally, parent nodes normally completely encapsulate their child nodes, i.e.
no node has a greater span than its parent. Given this information, it is possible to
avoid searching through subtrees with line/column spans that do not overlap with
the location of the target node.

When the user makes a change, such as inserting a newline on the beginning
of line N , then a TargetNode that targets line M where M ≥ N can simply in-
crement its line by one. Applying the incremented TargetNode on the changed
AST should result in finding the correct target node.

The benefits of the TargetNode approach is that it is robust, and can be fast
enough if suitably implemented. Even after the user changes the source text, it is
quite likely that a target node can be found.
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The downside of TargetNode is that it can be ambiguous, as there may be
multiple nodes that have the same identifying information. For example, a devel-
oper working on top of a control-flow graph (CFG) may introduce synthetic AST
nodes to represent the entry and exit of a CFG in a method. Synthetic nodes such
as these often do not have any position information. This means that there can be
multiple entry and exit nodes in the same file with identical location information.
In addition, it is possible that the developer makes mistakes during development
and associates incorrect location information with some AST nodes. This can
break the assumption that parent nodes completely encapsulate their child nodes,
which would prevent the search pruning optimization. Given that we are inter-
ested in designing a tool that should be used during development, our chosen data
structure must be tolerant to some level of implementation errors.

Combined Approach As mentioned earlier, an ideal data structure has good
performance and is good at handling user changes. It should additionally be
able to handle some level of ambiguity in the AST. Neither FullPath nor
TargetNode is able to achieve this individually. However, it is possible to
achieve by combining aspects of both. We have done so, and we call our approach
node locators. A node locator is a sequence of steps, where each step moves a
“current node” from one node to the next, starting from the AST root. There are
three kinds of steps: Child, TAL and FN.

• A Child step contains a child index, just like one of the indexes in
FullPath.

• TAL stands for “Type At Location” and a TAL step contains an AST node
type and location information, similar to TargetNode. Since the steps are
applied in sequence, a TAL step is not necessarily applied from the root,
which avoids the ambiguity issues described for TargetNode.

• FN stands for “Function” and a FN step contains the name of a property and
optionally a list of arguments. This step type is mainly created to support
accessing children that are not “normal” indexed children, but rather higher-
order attributes [VSK89a], such as the synthetic entry and exit nodes for a
CFG. FN can be thought of as a more advanced Child step, and is described
in more detail in Paper I.

4.2 Algorithms
By correctly combining a sequence of the three step types, any node can be reached
in an efficient and robust manner. However, deciding on what combination to
pick is not trivial. Each individual node can usually be found by many different
combinations of steps. For example, consider the following line of Java code:

int x = y + z;
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Assume we are debugging some Java compiler implementation, and we want to
reference the addition expression y + z. There are multiple ways to reach the
expression. In our theoretical Java tool, any of the following locators would work:

[TAL("AddExpr", 2:10 → 2:15)]
[Child(0), Child(1), TAL("AddExpr", 2:10 → 2:15)]
[TAL("DeclStmt", 2:2 → 2:16), FN("rhs")]

The first example locator might be best in a small tool with a single source file.
However, when working on a larger tool that supports multiple source files in the
AST, such a locator would risk searching through files other than the one our target
node exists in, which wastes time and increases risk of identifying the wrong node.

The second example locator could solve the issue of searching in incorrect
files by taking a few Child steps from the root down into the correct file, and
then applying TAL there. However, use of Child steps tend to make the locator
less robust towards changes.

The third example locator is similar to the first one, but adds a layer of indi-
rection by finding the declaration statement first and then taking the “rhs” step, i.e
going to the right-hand side of the declaration. This increases the risk of identi-
fying the wrong node when the user makes changes. For example, consider what
happens if the user changes the source code to:

int x = f(y + z);

The third example locator would now find the function call to f, not the addition
expression.

Through a process of iterative development, we found a few heuristics that
seem to work well:

• Shorter locators are generally more robust.

• TAL should almost always be used if possible. In cases where it would be
ambiguous or for some other reason would not work, fall back to Child or
FN.

• TAL should be avoided when traversing from the root of the AST to the
desired source file (in multi-source file ASTs).

Combining these heuristics results in the second locator in our example above.
Creating these locators efficiently while handling TAL-related ambiguity correctly
is a challenge. Similarly, efficiently applying the created locators also requires
use of techniques like the search pruning described for TargetNode above. Our
developed algorithms are described in detail in Paper I.
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Figure 4: Room used during the interviews.

5 User Study

We created CODEPROBER because we believed it could provide a useful way of
debugging analysis implementations. In order to help determine to what extent this
is true, we performed a mixed-method user study on the use and user experience
of CODEPROBER in an educational setting. Our research questions for the study
are the following:

RQ1 What is the user experience of using CODEPROBER in an educational set-
ting?

RQ2 How is CODEPROBER used during the development of compilers and static
analysis tools in an educational setting?

RQ3 How does the use of CODEPROBER compare to other tools used by stu-
dents during the development process (e.g. debuggers, test cases, print-
statements, AI, etc.)?

In this section we summarize the methodology and results of the user study. The
full study is presented in Paper II.

5.1 Methodology

The user study is a mixed-method study with three parts, focusing on students in
the 2024 instance of a program analysis course. The three parts are:

1. In-person interviews with 9 students that participated in the course. We
also interviewed two students that were involved in the course as TAs. The
interview setup is shown in Figure 4.

2. Event log files gathered from 24 students in the course, containing a total of
576167 interactions in CODEPROBER.
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3. Course surveys from two courses where CODEPROBER was used during
labs. This includes two instances of the program analysis course, and one
instance of a compiler construction course.

We include these three parts in order to enable triangulation, i.e, the process of
investigating a phenomenon from at least two different perspectives in order to
draw conclusions with more confidence [RSP23, pp. 179–180].

The focus in the user study is on the in-person interviews, as they help us
answer all research questions. The other two sources help corroborate what was
said during the interviews, and can help prevent some bias in the results, such as
participant responder bias [Del+12]. We had interacted with the students in the
interview in some form prior to the program analysis course, and they knew that
we were working on CODEPROBER, so they could want to say positive things to be
kind, even though that would taint the results. The event logs and course surveys
are both anonymous, so they help detect if the interviews were unfairly positive.

5.2 Results
The overall findings from the user study were that students found CODEPROBER
to be a useful tool, and they voluntarily used it continuously throughout the labs.
We further found that they seem to use CODEPROBER more than traditional devel-
opment tools such as breakpoint/step debugging and print debugging. In Paper II
we go through each data source in detail. The summary of the research questions
results were:

RQ1 The students found CODEPROBER to be a useful tool that is enjoyable to
use, despite some technical issues.

RQ2 The students made continuous use of CODEPROBER, and they mainly rely
on standard probes, squiggly lines and liveness.

RQ3 Students in our study used CODEPROBER to partially replace print debug-
ging, breakpoint/step-debuggers and test cases.

These claims come with a set of caveats and limitations which are discussed in the
Threats to Validity section in Paper II. However, the results are still overall quite
positive, and we believe they show that CODEPROBER is promising. More work is
needed to investigate if the findings generalize to other contexts, such as different
universities, hobbyists, industry, etc.

6 Future Work
We see several possibilities for future work, some focused on expanding CODE-
PROBER, and others focused on applying property probes in new domains. Our
main ideas for future work are presented in this section.
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Figure 5: Parts of a test case for the ExtendJ Java compiler. The code prints the
type (“signature”) of a lambda expression. The test runner (not shown in the figure)
captures the printed value and compares against an expected value. Large parts of
the test code is dedicated to traversing from the file level (CompilationUnit)
down to the MethodDecl corresponding to the lambda expression.

6.1 Expanding CODEPROBER With Test Support

In the user study (Paper II), students said that they wrote fewer test cases due
to CODEPROBER. We hypothesize that this is because it is possible to manually
verify functionality by exploring it inside CODEPROBER, and writing unit tests be-
comes a comparatively large hurdle, so students tend to avoid it. This is a problem,
since CODEPROBER is not able to perform automatic regression testing. There is a
possible solution however: allow probes to be converted to test cases. The probes
contain input code, an action to be performed (evaluating a property) and a result-
ing value. These can be mapped to the arrange, act and assert pattern of typical
unit tests [Kho20].

Probe tests could make it easier to create more fine-grained unit testing. For ex-
ample, to assert that type inference is computed correctly, a test must parse source
code, find a specific expression node in the AST, extract the inferred type and then
compare against an expected value. Finding the expression node can be a cum-
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bersome task. For example, consider the test case shown in Figure 5. More than
half the statements in the test only exist to traverse through the AST. Additionally,
the statements contain several typecasts and accesses child nodes by hard-coded
indexes. If a developer wanted to refactor the compiler in a way that changes
AST node names or child indexes, then the test will need to be updated. We be-
lieve that tests created in CODEPROBER would not suffer as much from this issue
as the traversal code could be replaced by node locators which are automatically
generated, and possibly even maintained by the tool.

6.2 Applying Property Probes in Code Review

It would be interesting to apply property probes in a code review setting. When
performing code review, the reviewer must build an understanding of the change
being made in order to decide if it is good, or if additional changes are necessary.
Code review UIs typically only display a textual diff of the change being made.
Sometimes this is enough, but other times the reviewer needs more information.
For example, when a method is changed, it can be beneficial to see all the locations
where that method is called. Those locations might not appear in the textual diff.
What the reviewer can do is to fetch the change and start reviewing it in their
local IDE, where navigating through the code is easier. This takes time and further
increases how much code review can disrupt ongoing work. If more information
was displayed in the code review UI, the need for fetching changes to a local IDE
would be reduced.

One problem with deciding how to enrich a code review UI is that the kinds
of information a reviewer needs can be highly personalized and context depen-
dent [Söd+22]. Someone in an architectural role may be more concerned with the
high-level structure of the code, while a more junior developer may want to focus
more on lower-level details, such as ensuring that a coding standard is maintained.
A code review UI should ideally support these different roles with the information
they need, without making the experience cluttered. Property probes may be of
use here, by making it possible to explore a large set of information from an anal-
ysis tool running on the server, just like when using CODEPROBER to explore the
analysis steps. By following a similar design as CODEPROBER of not showing any
extra information by default, but letting the user pick and choose which analysis
results to display, the reviewer will be able to create a rich, custom reviewing ex-
perience. Additionally, by using a tree-diffing algorithm such as truediff [ESP21],
it would be possible to identify the “same” AST node in the before and after ver-
sion of a code change. This would enable the creation of a new kind of probe:
diff probe. These could evaluate the same property on the two AST nodes, and
display a diff of the output. This could be combined with search probes (see Fig-
ure 7 in Paper I) to enable queries like “show all nodes where the property X has
changed”.
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6.3 Side Effect Detector

Another interesting direction of future work would be to help JASTADD develop-
ers find side effect bugs in their analysis implementations. There is an informal
contract between JASTADD and the developers who use it: attributes must not
contain any observable side effects. Because of this contract, JASTADD is free
to schedule attribute evaluation in any order, and may cache results of those at-
tributes if deemed necessary for optimization purposes. There are no guarantees
given to the developer regarding in which order attributes are evaluated, and how
many times they are invoked. Side effects naturally depend on the order of oper-
ations, so their existence can cause incorrect values to be computed. Side effects
also diminish the value of exploring with CODEPROBER, as the assumption that
each property can be inspected in isolation while still producing the same value no
longer holds.

JASTADD assumes that there are no side effects, but it does not verify that
it is true. Each attribute body is able to reference global memory, interact with
the file system, make network requests, etc. If JASTADD was able to detect these
side effects, then it could give a warning to the developer and/or change how it
generates evaluation code. We see two main approaches to detecting side effects:
static and dynamic analysis.

Detecting Side Effects Statically

The code of attributes in JASTADD is regular Java code, which means that stati-
cally detecting side effects in JASTADD involves statically detecting side effects
in arbitrary Java code. While this is an undecidable problem, it is still possible to
produce interesting results with some level of overapproximation. JPure [Pea11] is
a purity checker for Java, which is able to detect side effects with a relatively high
degree of certainty. We could try adapting such a checker to work on JASTADD
code.

Detecting Side Effects Dynamically

Side effects may be detected at runtime by invoking the same attribute multiple
times in different configurations. For example, invoking a single attribute multiple
times in a row, or a set of attributes in different orders. Dynamic testing could also
detect performance issues, like memory leaks and/or slower evaluation times.

Simply exploring an analysis tool with CODEPROBER will automatically lead
to some level of dynamic testing being performed, as the developer will notice if
crashes occur, or if they run out of memory after a while. During the develop-
ment of CODEPROBER, we usually tested functionality against the Java compiler
ExtendJ [EH07b]. In this process we discovered two caching issues that would
leak memory over time. These issues had previously gone undiscovered because
ExtendJ is typically used and tested as a command-line compiler, where a memory
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leak is not necessarily an issue since the compiler usually finishes execution quite
quickly. However, for longer running processes like language server plugins in
IDEs, a memory leak can be a problem, so the near-accidental dynamic testing by
CODEPROBER was useful here. It would be beneficial to make the dynamic testing
more structured and automated. This could be created as an extension to the probe
tests mentioned above: once a set of tests are defined, they could be evaluated
in different configurations and monitored for performance issues. Alternatively,
a dynamic testing tool could be a simple command-line tool where the developer
specifies a number of attribute names which should be tested, and then the tool
could evaluate those attributes for all AST nodes. In such a tool there would be no
“expected value”, but it could still detect values that change over time.

6.4 LSP Workbench

The Language Server Protocol (LSP) is a protocol that defines how clients (IDEs)
and servers (programming language implementations) communicate about IDE
interactions. For example, the protocol specifies how to describe a hover event,
how to encode a list of code completion items, etc. The protocol is designed to
allow a single language server to be used in multiple IDEs, rather than having to
design a language extension for every single IDE. Almost all modern languages
have a language server implementation available.3

Language servers often need to compute very similar information as other pro-
gramming language tools, e.g. types of expressions, set of available variables at
a point in the program, etc. For this reason, it makes sense to share a significant
amount of code between e.g. a compiler and a language server. In this thesis we
present CODEPROBER as a tool to be used during development of source code
analysis tools, and we focus on compilers and bug detectors. However, we believe
that CODEPROBER could be useful when developing language servers too.

When developing a language server, a natural way to test the implementation
is to load the server into an actual IDE and check if the IDE interactions behave as
expected. Any observed issues could be debugged using CODEPROBER. For ex-
ample, the developer could copy the current code from the IDE into CODEPROBER
and use probes to inspect intermediate values in order to locate the underlying
cause of the issues. This works, but having to jump back and forth between the
IDE and CODEPROBER for testing and debugging is not convenient. An alter-
native solution could be that CODEPROBER implements support for parts of LSP
itself. This could make CODEPROBER into a tool that supports both testing and
debugging LSP implementations.

Furthermore, there is interesting research opportunities in reducing the com-
plexity of implementing the LSP protocol. We could for example build a transla-
tion layer that converts all LSP interactions into attributes in a RAG-based tool.

3https://microsoft.github.io/language-server-protocol/implemento
rs/servers/. Accessed September 2024.

https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
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This would mean that in order to implement a certain interaction, the developer
would no longer have to parse the raw protocol messages, but could instead im-
plement an attribute with a certain signature. Such abstraction/translation layers
that simplify LSP implementations have been done in the past, such as LSP4J 4

which simplifies writing language servers in Java, and MagpieBridge [LDB19]
which builds upon LSP4J to simplify connecting language servers to IDEs. An
initial attempt at exploring this possibility for JASTADD was done by students
we supervised in a project course, and the result is a Visual Studio Code extension
called JASTADDBRIDGE [HH24]. JASTADDBRIDGE uses CODEPROBER in order
to traverse and interact with the AST. The implementation shows good promise,
but also has some room to improve. For example, it supports quite a small subset
of LSP, only works with one editor, and does not support multiple simultaneous
files. All of these issues are relatively easy to overcome though, which makes this
a promising option for future work.

7 Conclusion
In this thesis, we presented CODEPROBER, a tool supporting live exploration of
source code analysis results. CODEPROBER aims to help the analysis developer by
providing an interactive view into the intermediate steps of their analysis imple-
mentation. CODEPROBER implements property probes, which are live observers
of computation associated with nodes in a tree-like structure, such as attributes
in an AST. The probes are able to consistently display updated values when the
user makes changes to the input to CODEPROBER. Making probes efficiently and
robustly handling user changes was one of the main technical challenges in im-
plementing CODEPROBER. In this thesis we present node locators, which is our
solution to this challenge.

CODEPROBER is a mature tool that has been used in both research and edu-
cation at our university. Two courses make use of CODEPROBER as a supporting
tool during lab assignments: one course on compiler construction, and one course
on program analysis. We performed a mixed-method user study that focuses on
the students in the program analysis course. The study found that the students
make heavy use of CODEPROBER and seem to enjoy using it. Additionally, they
seem to prefer using it over traditional debugging tools and techniques, such as
breakpoint/step-debugging and print debugging.

Overall, the study shows that CODEPROBER is a promising tool for debugging
analysis implementations. Looking forward we see several interesting opportuni-
ties for future work, including extensions to CODEPROBER itself, and making use
of property probes in a new domain.

4https://www.eclipse.org/lsp4j. Accessed September 2024.

https://www.eclipse.org/lsp4j
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Abstract

We present property probes, a mechanism for helping a developer explore par-
tial program analysis results in terms of the source program interactively while
the program is edited. A node locator data structure is introduced that maps be-
tween source code spans and program representation nodes, and that helps identify
probed nodes in a robust way, after modifications to the source code. We have de-
veloped a client-server based tool CODEPROBER supporting property probes, and
argue that it is very helpful in debugging and understanding program analyses. We
have evaluated our tool on several languages and analyses, including a full Java
compiler and a tool for intraprocedural dataflow analysis. Our performance results
show that the probe overhead is negligible even when analyzing large projects.

1 Introduction

Modern software tooling includes many kinds of program analysis. For instance,
compilers do type analysis, IDEs support type-based navigation and editing, and
bug-finding tools may use analyses based on dataflow and effects. However, de-

Anton Risberg Alaküla, Görel Hedin, Niklas Fors and Adrian Pop “Property Probes: Live Exploration
of Program Analysis Results” In Journal of Systems and Software, Volume 211, 2024, Elsevier.
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veloping new analyses can be difficult. There are often many subanalyses, and
they might need to handle many corner cases of the analyzed language.

In this paper we propose a new interactive mechanism, property probes, to
help the analysis developer. The main idea is to allow the developer to inspect
and display properties, i.e., (partial) analysis results tied to specific parts of an ed-
itable source code (as plain text). Examples of properties include name bindings,
types, generated code, propagated constant values, control-flow edges, and data
flow properties like live variables. The developer can interactively explore analy-
ses by creating probes for different program elements, and the results are updated
live as the source code is edited, and even after updates to the analysis tool itself.

It is a challenge to match a probe for a particular property to the corresponding
program element after source code changes, and we provide a robust algorithm for
this purpose. Our approach also supports the probing of properties of implicit pro-
gram elements that are not directly visible in the edited source code, e.g., imported
libraries or predefined elements built into the programming language, like class
Object in Java. We see property probes as a complement to traditional develop-
ment support such as automated tests and traditional breakpoint/step-debuggers or
“print debugging”.

We have implemented a property probe tool, CODEPROBER, specifically tar-
geting analyses built with Reference Attribute Grammars (RAGs) [Hed00]. The
attributes of an attribute grammar match the probed properties, and the interactive
probing fits the demand evaluation used in RAGs. However, the concept of prop-
erty probes can in principle be applied to any analysis that uses an abstract syntax
tree (AST) as the spanning tree over its program representation, and that associates
partial analysis results with nodes of the tree. We therefore expect the ideas to be
useful for analyses built with a much wider range of approaches than RAGs.

We have applied CODEPROBER to a number of different languages and anal-
yses implemented using the JastAdd metacompiler [EH07a] that supports RAGs
and demand evaluation. In particular, we have applied it to ExtendJ [EH07b], a
full Java compiler, and to IntraJ [Rio+21], an extension of ExtendJ that supports
intraprocedural control-flow and dataflow analysis. Furthermore, we have used
CODEPROBER in a course on compiler construction and in a course on program
analysis.

Our contributions are as follows:

• We introduce the concept of property probes (Section 2).

• We present the CODEPROBER tool and the different kinds of property probes
it supports (Section 3).

• We present a data structure node locator, used for robust identification of
the probed AST nodes after changes of the source code (Section 4).

• We present the algorithms that are needed for implementing node locators.
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Figure 1: Probe for the compile-time constant property of a selected addition
expression.

We also present optimizations for improving performance and user experi-
ence when using node locators in larger projects (Section 5).

• We present the architecture of CODEPROBER, and the requirements an AST
must satisfy to be used with CODEPROBER (Section 6).

• We present experiences from using CODEPROBER in case studies (Sec-
tion 7), and performance measurements to explore its limitations with re-
gards to the size of the edited code and number of active probes (Section 8).

Finally, we present related work in Section 9, and then conclude in Section 10.
This paper is an extension of a previous conference paper at SLE

2022 [RA+22]. Major additions include detailed descriptions of CODE-
PROBER (Section 3), algorithms (Section 5), and more extensive case studies
(Section 7).

2 Property Probes

In this section, we explain what we mean by properties and present the concept of
a property probe. We also briefly discuss different use cases for property probes.

2.1 Properties

We use the term property for a named compile-time value associated with an AST
node, and computed by some compile-time (static) analysis. For example, an addi-
tion expression could have a property int constant, holding the compile-time
integer value of the expression, as computed using constant propagation. Figure 1
exemplifies this. Here, an addition expression x+2 has been selected, identifying
an AST node of type AddExpr. Its property constant is shown, having the
value 3.

We distinguish between intrinsic and computed properties. An intrinsic prop-
erty is part of the AST constructed by a parser or an editor, and is directly available
without further computation. Examples include token values like variable names
and literal values. A computed property is computed by an analysis of the AST.
Examples include name bindings, types, and the constant property mentioned
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Figure 2: AST with intrinsic (solid blue) and computed (dashed orange) properties.
IntType is a synthetic AST node. Straight lines are child edges, and curved lines
are references.

Figure 3: Probe for the bytecode of a method. The probe result is automatically
updated after editing the type from int to float (dotted box).
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above. A computed property may be higher-order in that its value can be a fresh
AST subtree whose nodes may have their own properties. We refer to such com-
puted AST nodes as being synthetic. An example is an AST node for a primitive
type that is not present in the parsed program, but that is useful to reify as an AST
node.

Figure 2 illustrates a (slightly simplified) AST with intrinsic and computed
properties for the example in Figure 1. Here, intrinsic properties include the
id properties of variable declarations and accesses, and the value property of
an integer literal. Computed properties include decl, type, constant, and
intType. Here, the decl of a variable access is a reference to an AST node
representing the declaration, type is a reference to an AST node representing a
type, constant is the constant value of an expression as discussed above, and
intType is a reference to a synthetic AST node representing the primitive type
IntType.

Optionally, a property can take arguments, i.e., serve as a function on a given
AST node. An example could be a property boolean visible(String
id) for a statement node, that returns true if there is a declaration named id
visible at the position of the statement.

Different compiler and static analysis tools use different strategies to com-
pute property values. For tools built using RAGs, the properties are computed on
demand: if a client asks for a particular property of a particular node, that prop-
erty will automatically be evaluated, and any other properties it depends on will
be recursively evaluated, memoizing subresults for efficiency. After an edit, the
memoized values can be thrown away and new results are recomputed when the
values are asked for the next time. This often gives a very short response time after
an edit, but the time of course depends on what property is being asked for. More
traditional tools are often pass-oriented, traversing the complete program several
times, computing all properties of all AST nodes. After an edit, the whole compu-
tation needs to be redone, thus giving long response times. We do not prescribe any
particular strategy to be used, but assume that there is an automatic way to trigger
computation of the properties, so that their up-to-date values can be presented.

2.2 Property Probes

A property probe is an interactive element, presented in the context of a source
code text editor, and acting as a live observer of a property of an AST node. In
CODEPROBER, each property probe is displayed as a small window. An example
can be seen in Figure 1.

Internally, a probe is represented by a node locator (a way of identifying a
particular node in the AST), a property name, optionally a number of arguments (if
the property takes arguments), and a result value, i.e., the most recently computed
value of the property. The result value is a collection of primitive values, like string
or integer, and AST node references (represented as node locators).
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A probe has two main responsibilities:

1. It adjusts the node locator after source code edits.

2. It presents up-to-date results to the user, reevaluating the property as needed.

Evaluating a property means, in practical terms, invoking a function in the
context of an AST node. Keeping the result up-to-date means re-invoking the
same function whenever needed, such as when the source code is modified. Fig-
ure 3 shows an example in CODEPROBER of how a probe is updated when the
user edits the source code. In this case, the user has created a probe for the byte-
code of a method. When the user edits the source code, changing the type of the
variable from int to float, the bytecode in the probe result is updated, for ex-
ample, changing the istore_1 and iload_1 instructions to fstore_1 and
fload_1.

The user can create a probe starting from a location in the text, selecting the
desired AST node in case several nodes match the same location. It is also possible
for a user to create a new probe starting from the result of another probe. This
allows property exploration not only directly related to the edited text, but also
by exploring probe results, which can again be explored further, supporting an
interactive way of investigating partial results of an analysis.

Exploration of probe results opens for exploring properties of nodes that have
no matching location in the edited source text. One example is nodes correspond-
ing to ASTs of imported libraries. Another example is synthetic nodes created
to represent implicit program entities. Examples include built-in types like the
IntType in Figure 2 or class Object in Java, desugared representations of
language constructs, and computed complex properties resulting from a static anal-
ysis. Attribute grammars can use higher-order attributes for computing synthetic
nodes. A higher-order attribute is an attribute whose value is a new AST node
subtree, and where these new nodes may themselves have attributes [VSK89b].

2.3 Use Cases

Property probes help understanding the inner data structures of compilers and pro-
gram analysis tools through interactive exploration. We see a variety of situations
when property probes can be useful, both in education and for production work. In
education, they can help students understand core compiler concepts such as ASTs,
name bindings and type checking, as well as program analysis concepts like con-
trol flow and data-flow analysis. In extending an existing compiler, for example to
extend the supported language, property probes can be useful for understanding the
existing functionality and internal APIs. For program analysis tools, there are sim-
ilar use cases, when constructing a new analysis that build on existing ones. When
there are bugs in a tool, property probes can be used for interactively pinpointing
what computations are correct and which are faulty. Furthermore, property probes
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Step 1 Step 2

Step 3 Step 4

(1) The user right-clicks on the addition ex-
pression in the source text and selects “Create
Probe”.

(2) The AST nodes that span the clicked posi-
tion appear in a menu, and the user selects the
desired node, AddExpr in this case.

(3) The user is presented with a menu of all
available properties on the AddExpr node,
and selects the constant property.

(4) Finally, the property probe window ap-
pears, showing the result value, in this case the
number 3.

Figure 4: Steps to create a probe for the constant property of the addition
expression x + 2.

can be useful for prototyping interactive language services, like code completion,
semantic navigation, etc., by expressing the service data as computed properties.

Property probes do not replace ordinary control-flow focused debugging that
uses step/breakpoints or print statements, since they do not address the order in
which properties are computed. However, they provide a useful complement to
such debugging, and might reduce the need for it.

We have used property probes in two university courses and in development
of compilers and static analyzers, and have had overall positive results. This is
discussed further in Section 7.

2.4 Tool Architecture
To implement property probes for a specific analysis tool, we propose a client-
server architecture, see Figure 14. The client side uses a customizable code editor
such as Monaco [Mic] or similar. The server side consists of two components; a
server and an analysis tool.

It is the responsibility of the analysis tool to parse the edited text into an AST
(as well as any other files needed for the analysis), and to populate the AST with
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Figure 5: Example of a reference result. The decl property of the variable x has
been probed, resulting in a reference to a VariableDeclarator node. The
user hovers the result, causing the corresponding span in the source code (x = 1)
to be highlighted in gray.

the functionality to be explored using probes. The server uses an API to access the
analysis tool, e.g., to get the root of the current AST and to query properties on
different AST nodes. The server also handles the communication with the client-
side code editor.

The probes are stored on the client-side, using node locators as references to
node objects. This allows the AST to be reparsed at any time, or even the analysis
tool to be restarted from scratch during the editing session. It also allows the server
to be completely stateless.

3 CodeProber
CODEPROBER supports property probes on an underlying compiler or analysis
tool. In this section, we present its key features, using the ExtendJ Java compiler
as the underlying tool.

3.1 Creating a Probe

The user can create a probe interactively via CODEPROBER’s text editor. Figure 4
shows an example. The user right clicks in the source code and selects the menu
option “Create Probe” (1). A list appears, showing AST nodes that overlap with
the clicked location. The user selects one of them (2). A new list appears, showing
all properties available on the selected AST node. The user selects a property
(3). A window (property probe) appears which shows the result of evaluating the
selected property on the selected node (4). The user can click the position indicator
([7:17→7:21]) to get the same green highlighting as displayed in Figure 1.

3.2 Advanced Probes

The probe window created in Figure 4 is simple in that it shows a single property
for a single AST node, and the probe result is displayed as plain text (the value
3). Based on our experience from using the tool, we have developed support for
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Figure 6: Nested probes to show what class the field variable is declared
in. The user has first created a probe for field’s property decl, result-
ing in a FieldDeclarator. Then a nested probe was created, showing the
FieldDeclarator’s hostType property, resulting in a ClassDecl. Fi-
nally, the user has probed its name (the getID property), which is B.

several more advanced kinds of probes: nested probes (local probes created from
probe results), search probes (showing a set of properties), AST probes (visual
presentation of the AST), and probes contributing diagnostics (that is shown in
the source text). We will now discuss these in turn.

References and Nested Probes

A probe result can be a reference to an AST node. The user then can hover over
the result to see the corresponding source text for that node. Figure 5 shows an
example where the decl property of the variable access x is a reference to a
VariableDeclarator node, highlighted in gray.

The user can explore a result reference by clicking on it to create a new probe
for the referenced node. This can be done iteratively to follow chains of AST node
references. Instead of creating a new window for the new probe, it can be nested
inside the original probe. In addition to saving screen space, this retains the link
between the probes, so that an inner probe will be re-evaluated on the result of the
outer one when the user edits the program.

Figure 6 shows an example where a chain of nested probes is created to show
what class the instance variable field is declared in. Starting at the AST node
v for the field variable, the class name can be accessed via the chain of calls
v.decl().hostType().getID(). The user has first created a probe for the
decl property for the field variable, then a nested probe for hostType, and
finally another nested probe for getID. If the user were to change field on line
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Figure 7: Search probe that finds all nodes under a MethodDecl where
isConstant is true, and opens a nested probe for type on them.

9 to another variable, that would cause the nested probes to display potentially
different values.

Search Probes

The user may want to see a given property for multiple AST nodes. CODEPROBER
supports this through search probes. A search probe lets the user specify a query
to find all AST nodes that pass a given filter. Figure 7 shows an example. Here,
the query MethodDecl.*.type?isConstant selects all AST nodes in the
subtree of a given method declaration for which the property isConstant is
true, selecting two nodes in this case. Furthermore, the query includes the type
property, which is shown as nested probes. If desired, the user can then investigate
details of the probe results, using more nested probes.

Search queries don’t have to specify both a property and a filter. For exam-
ple, the query *.type on the root node would show the type property for all
nodes in the whole AST. The query ?isConstant would select all nodes that
are constant, but not evaluate any property on them.

AST Probes

To select what nodes to create probes for, the user needs an understanding of the
AST structure and the different AST node types used in the compiler or program
analysis tool. To support this, CODEPROBER provides AST probes where the AST
is rendered graphically. Figure 8 shows an example, showing the AST for the
method call f(x, y + 2). The nodes can be hovered to highlight their corre-
sponding span in the source code. They can also be clicked to create new probes.
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Figure 8: AST probe showing the AST of a method call. More probes can be
created by clicking on individual nodes in the AST.

Figure 9: Squiggly line diagnostics contributed by a probe.

This can be useful when learning about the internal structure of a compiler.

Probes Contributing Diagnostics

A probe can be used for contributing diagnostics information that is displayed di-
rectly in the text editor, for example, squiggly lines, arrows, and hovering behavior.
This can be used for prototyping language service support. Figure 9 shows an ex-
ample of a probe for showProblems, a property holding a set of error messages.
The error messages are displayed in the probe. In addition, each error message ob-
ject contains information about where to place squiggly lines in the text editor.
The visibility of the diagnostics can be toggled on and off with a checkbox (Show
diagnostics).

Figure 10 shows another example where the property is a set of call graph
edges. Here, each edge object contains information about where to draw an arrow
in the text editor.
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Figure 10: Arrow diagnostics representing a control-flow graph contributed by a
probe. The colors are random.

Figure 11: Probe on a synthetic Exit node of a control-flow graph, listing the
predecessors of the node.

3.3 Liveness

CODEPROBER probes are live in that their results are updated after each edit to
the source code, as was shown in Figure 3. Probe results are updated also if the
underlying compiler or static analysis tool is rebuilt. These updates happen auto-
matically, as CODEPROBER listens to changes in the file system, and can detect
when the underlying tool has been replaced. This supports a tight development
loop, for example, when the developer fixes bugs in the underlying tool. In prin-
ciple, a modified underlying tool might imply that existing probes can no longer
be matched. For example, if the abstract grammar is changed, the new AST struc-
ture might differ from the previous one, even if the source code is unchanged.
CODEPROBER makes a best effort to match probes anyway, as will be discussed
in Sections 4 and 5.

3.4 Synthetic Nodes

As discussed in Section 2, the value of a property might be a reference to a syn-
thetic AST node, i.e., a node that is computed rather than constructed by the parser.
Through the use of probes, these nodes can be investigated even if they do not have
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any source code representation. Figure 11 shows an example from a control-flow
graph analysis. The analysis constructs synthetic Entry and Exit nodes for
each method so that the control-flow graphs have well-defined starting and ending
points. In the figure, the user has created a probe for the synthetic Exit node,
accessed via the exit property of the method. The user has also created a nested
probe for the Exit node’s pred property, to investigate its predecessors.

If a synthetic node is given artificial line and column information, this can be
used for mapping the node to a source code position. In the figure, the analysis
has set the line and column information for the Exit node so that it appears to
be located at closing brace for the method. This allows the user to hover over the
reference to the synthetic node, and see which method it belongs to.

4 Node Locators
As mentioned earlier, so-called node locators are used at the client side to identify
the AST nodes referenced by probes. These node locators need to be updated after
changes of the source code in the text editor. There are many potential ways to
identify where an AST node is located. Some examples in plain English are:

1. “The call expression on line 12, column 9”

2. “The third child of the fifth child of the root AST node”

3. “The class declaration with ID set to ‘Foo”’

These ways of identifying nodes might work, but they are fragile to changes:
The first example will break if, for example, a statement is added at the beginning
of the source code; The second example will break if, for example, the construct
of interest is nested inside a new statement; The third example will break if, for
example, the class is renamed to ‘Bar’.

Furthermore, there can be probes on synthetic nodes that have no textual rep-
resentation, and that require more sophisticated identification methods.

We have designed the node locators with the goal of making them both re-
silient to different kinds of changes of the source code, and efficient to apply, i.e.,
to resolve them to actual object references. Another design goal is that node lo-
cators should be as language agnostic as possible, and not make assumptions of
how source text is parsed. This prevents potential solutions that rely on inserting
tracking markers in the code, for example using annotations or block comments,
as annotations and block comments are not supported in all languages. In addition,
such tracking markers would not be possible to use with synthetic nodes.

Our current design is the result of an iterative development process where we
have tried out probes on many different properties for several different analysis
tools and for different languages. In our experience the design works very well
in practice, although there will always be corner cases when node locators can
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fail, for example when the corresponding code is completely removed. This is
discussed in more detail in Section 4.5.

4.1 Node Locator Steps
A node locator is a list of steps where each step moves a current position to a new
position in the AST. The steps are applied in order, starting at the root of the AST.
Any of the steps can fail, in which case the whole application of the node locator
fails, and no node could be identified. The following steps are supported:

Child has the form
Child(i)

It means go to the i-th child node.

TAL stands for Type At Location and has the form
TAL(t, d, ls : cs → le : ce)

Here, t is an AST node type, d is a number of steps down in the AST from
the current node (the result of the previous step), and ls : cs → le : ce is a
line/column start/end span in the text. This step moves the current position
to the “best” node of type t in the subtree of the current position and whose
text span has at least one character overlap with ls : cs → le : ce.1 If there are
multiple compatible nodes in the AST, then they are sorted by how closely
they match d and ls :cs → le :ce (see Section 5.2 for implementation details).
If multiple nodes are equally good matches, then the first one in a depth-first
traversal is chosen.

FN stands for Function and has the form
FN(f , a1, . . . , an)

where f is the name of a function on the current node, and a1, . . . , an are
arguments to the function (n ≥ 0). The function is expected to return an
AST node reference, and the current position is moved to that node.

The Child steps provide a simple way of locating a node in an AST, but it is
not very resilient to changes. Even a small change, like changing something in the
beginning of the source code, would result in old node locators failing or resolving
to the wrong node in the new AST.

The TAL steps were introduced to provide a resilient solution. They can handle
variations in the placement of the nodes due to additions, deletions, and nesting
changes. The TAL steps also make use of text spans in the edited source code. For
this to work, the editor needs to adapt the TAL text spans in its stored probes as
the text is edited. If, for example, the user inserts a newline between lines N and
M , then for all TAL steps on line L ≥M , the line count is increased by 1. Similar
adjustments are made for lines and columns on all insertions and removals.

1Nodes that are not given explicit spans by a parser should have the span 0 : 0 → 0 : 0 and are
considered to overlap any other span.
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The FN steps were introduced to handle synthetic nodes, constructed by the
analysis tool in a different stage than parsing. In particular, they can be used for
higher-order attributes (HOAs), in which case the function is simply the name
of the HOA, and returns the root of the HOA subtree. In Reference Attribute
Grammars, the HOAs are evaluated on demand and memoized, so in case the
attribute had not already been accessed for other reasons, calling the function will
result in the HOA being created before its root is returned.

The FN steps might be useful also for other purposes. They are very versatile
as the function may return any node in the AST. One possible use might be to
introduce application-specific steps, such as jumping to a particular source file or
declaration node. However, we have not explored this possibility, since our main
goal has been to provide an algorithm that works out of the box for any language
and analysis tool.

4.2 Example Node Locators

In the Java compiler ExtendJ, the root AST node is of type Program. Program
has a List, which in turn contains a number of CompilationUnit nodes,
each corresponding to a single source file. Most AST nodes for a source file can
be identified by first identifying a CompilationUnit, and then using a TAL
step within that file.

As an example, assume we have the following variable declaration at line 5 in
a given source file:

int a = 1;

An example node locator for the variable declarator (“a = 1”) is:

[ Child(0),
Child(131),
TAL("VariableDeclarator", 10, 5:13 → 5:17) ]

Here, Child(0) goes from the root AST node (Program) to the List node.
Child(131) goes to the 132:nd CompilationUnit, which happens to rep-
resent the source file. “10” is the number of steps from the CompilationUnit
down to the VariableDeclarator node. “5:13” is the starting line and col-
umn and “5:17” is the ending line and column.

For library compilation units, we rely on FN instead, since libraries are imple-
mented using higher-order attributes in ExtendJ.

For example, to identify the Integer class, we would use:

[ FN("getLibCompilationUnit",
"java.lang.Integer"),

TAL("ClassDecl", 2, 0:0 → 0:0) ]
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Here, the FN step represents the function call
getLibCompilationUnit("java.lang.Integer")

on the root node, and results in a CompilationUnit node. The TAL step then
locates the ClassDecl two steps down from the CompilationUnit. The text
span in this case is 0 : 0→ 0 : 0, which is expected for AST nodes that do not get
created from a normal source file.

4.3 Kinds of Node Locators

There are two kinds of node locators that can be created: naive and robust.

Naive A list of steps corresponding to the path from the root down to the target
node. For each edge on the path, the corresponding step is either a Child
(for a normal child), or an FN (for a higher-order attribute).

Robust A naive locator where sequences of one or more Child steps are replaced
with a single TAL step if possible, i.e., if applying it results in exactly the
same node as the Child steps would.

The key difference between naive and robust locators is how good they are
at locating their target node after the user has made changes to the source doc-
ument. Naive locators are not good at handling changes, which is why we call
them “naive”. Still, naive locators have their uses. Construction and application of
naive locators is quite fast, so whenever a locator does not have to be resilient to
changes, a naive locator is preferable. Both the input and output of a probe may
be a collection of AST node references, which are represented by node locators.
When a change happens, the input is used to re-calculate the output. Therefore,
only the locators in the input need to be resilient to changes. The output nodes can
be naive, which is good for performance.

Main scenarios when Child steps cannot be converted to TAL are when in-
teracting with built-in or rewritten parts of the AST. Built-in AST nodes are often
missing position information, i.e., their span is 0:0 → 0:0, so any two nodes at
the same depth and type in the AST will overlap. Rewrites can also create nodes
with overlapping position, for example due to multiple rewritten nodes taking the
position from a single source node. For example of why overlaps are an issue,
consider the expression f(x, y). If both x and y have the same span, then a
TAL cannot be used to reference the y node.

There is a third scenario where TAL cannot be used, and that is with ASTs that
have content from multiple source files. Since TAL steps only consider line/col-
umn and not “file path” or similar, nodes from different files cannot be reliably
differentiated. See Section 5.5 for how we solve this problem.
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4.4 Adapting to Changes
As mentioned, the client keeps track of the active probes with their node locators,
and adjusts the text spans of the TAL steps as the code is edited. However, the
client does not have any knowledge of the syntax, so it only adjusts according
to textual changes. The consequence is that the node locator might not fit exactly
with the AST of the reparsed code. The flexibility of the TAL step usually makes it
possible to find the node, but this also means that there can be a better, more exact
node locator that should be used in the future. For this reason, when the server
sends updated probe results to the client, it also sends the updated node locator for
the probe.

As an example, assume we have the following source code:

if (x) {
a();

}
if (x) {

b();
}

The node locator for the first if-statement contains a TAL step TAL("IfStatement",
..., 1:1 → 3:1). Suppose now that the user decides to clean up some
duplicated code, so they remove the two lines in the middle. The source code now
looks like the following:

if (x) {
a();
b();

}

Because of the removed lines, the client adjusts the TAL step to TAL("IfStatement",
..., 1:1 → 2:9), covering only the first two lines (up to and including
the a() statement). The client then informs the server that there are changes,
and the server then sends back the updated probe result, together with a new
more appropriate node locator with a TAL("IfStatement", ..., 1:1
→ 4:1).

4.5 Known Limitation: False Positives
The proposed design for node locators has a known limitation relating to false
positives. In particular, when the code has been edited, it is not always clear which
node a user would perceive as the best match. For example, assume we have the
following expression:

a(b(c))
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The user adds a probe for b(c). The locator for that probe looks like this:

[ TAL("CallExpr", 7, 5:13 → 5:16) ]

Then the user changes the source code to:

a(c)

After the change, the probe will be re-evaluated on a(c), since it is the only AST
node that matches CallExpr and overlaps with the original TAL position. If the
user wanted the probe to keep matching the first argument to a, then matching
a(c) is a false positive. The user would rather match c.

One potential solution to this scenario is to make use of subtyping: The call
b(c) has the AST node type CallExpr, and according to the abstract grammar,
its parent expects any node of the supertype Expr at that position. By using Expr
instead of CallExpr in the TAL step, the new expression cwould match, solving
the user’s problem.

Another potential solution is to make the users intent more explicit in the loca-
tor, and include a FN step that selects the first argument to a. Such a locator could
look like this:

[ TAL("CallExpr", 5, 5:11 → 5:17),
FN("getArgument", 0) ]

Node locators need to balance resilience and risk of false positives when deciding
how strictly they should match nodes. We found that being strict with types and
permissive with locations seems to work well. Being less strict with types (for
example by using subtyping) could potentially introduce more false positives, even
if it would help the specific example above. Shorter locators also seem to be more
resilient, so extra steps like FN("getArgument", 0) should be avoided.

A more robust solution to the problem could be to use multiple kinds of loca-
tors simultaneously, and use some heuristic to pick the best result among them.

5 Node Locator Algorithms

Creating and applying node locators involves a significant amount of traversal in
the AST. Doing so efficiently can be a challenge. In this section we present al-
gorithms for node locator construction and application. We also discuss which
algorithms have potential performance problems, and how to mitigate them.

5.1 Creating Locators

We will present two algorithms for creating node locators; CREATENAIVELOCA-
TOR and CREATEROBUSTLOCATOR.
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Algorithm 1 Naive node locator creation

1: procedure CREATENAIVELOCATOR(target)
2: ▷ Create a naive locator for the target AST node.
3: list← []
4: node← target
5: while parent(node) ̸= null
6: list← [CREATEPARENTSTEP(node)] + list
7: node← parent(node)
8: return list
9: end procedure

CREATENAIVELOCATOR is presented in Algorithm 1. It assumes the exis-
tence of a procedure CREATEPARENTSTEP(N) that returns a Child or FN step
which represents how to get from the parent of N to N. A Child step can be used
when the child is accessed by index, i.e., for most AST nodes. FN steps can be
used for other AST nodes, for example children that are roots of HOA subtrees.
CREATENAIVELOCATOR creates a locator consisting only of Child or FN steps
by iteratively calling CREATEPARENTSTEP until it reaches the root of the AST.

Figure 12: Naive and robust node locator steps for the bottom-right “F” node.

(a) Naive locator.
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(b) Robust locator.
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CREATEROBUSTLOCATOR is presented in Algorithm 2. It steps through the
result of CREATENAIVELOCATOR and tries to identify subsequences of Child
steps that can be substituted with a TAL step. To explain the algorithm, we will
show how a naive locator in Figure 12a is transformed to a robust locator visible in
Figure 12b. The node labels A, B, ..., F indicate node types. CREATEROBUSTLO-
CATOR traverses the naive locator in reverse order and computes a shorter locator,
where some Child subsequences are replaced by a TAL step. To keep track of the
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current subsequence, it uses two pointers, src and dst that represent the source and
destination of a potential TAL step. When src and dst point to the same node, it
means that no TAL is in progress. Initially, they both point to the target node of the
locator, i.e., F in Figure 12a. In each loop iteration, CREATEROBUSTLOCATOR
does the following in order:

1. If a TAL step is currently being built (src ̸= dst) and cannot be grown any
further, finish building it and move dst up to src (lines 8→ 11).

2. If we cannot start building a new TAL step, take the incoming (naive) step
as-is. Also move dst up one step past src to avoid starting a new TAL step
(lines 12→ 14).

3. Move src one step closer to the root of the AST (line 15).

Finally, a TAL step is added from the root of the AST if needed (the final
“src ̸= dst”, lines 17→ 18).

The AST in Figure 12a contains multiple steps where a TAL might not be
possible to use, depending on whether nodes have unique text spans or not. In the
worst case, where all nodes have identical text spans s → e, there are three such
cases:

1. The bottom-right F node cannot be identified by a TAL since its left sibling
would take precedence.

2. FN steps, such as between C and E, always prevent TAL steps.

3. The bottom right C can be identified by a TAL from its parent (D), but not
from its grandparent (A). Such a TAL step would instead match the bottom-
left C node.

The output of CREATEROBUSTLOCATOR can be seen in Figure 12b, where three
Child steps are replaced with two TAL steps. If all AST nodes had unique spans,
then the two TAL steps could be replaced by a single TAL("C", 3, s → e)
step. Figures 12a and 12b are intentionally constructed to showcase how multiple
levels of overlap are handled. In most normal cases a single TAL step can cover a
majority of the tree.

5.2 Applying Locators

Algorithm 3 shows the algorithm for applying a node locator. The key part is the
procedure APPLYTALSTEP. It finds the best match for a TAL step in the subtree
starting with src. When multiple potential matches are found, ISBETTERMATCH
is used to determine which node is the best match. In case there are two equally
good matches, then whichever one is found first is returned.
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Algorithm 2 Robust node locator creation

1: procedure CREATEROBUSTLOCATOR(target)
2: ▷ Creates a robust locator for the target AST node.
3: locator←CREATENAIVELOCATOR(target)
4: src← target
5: dst← target
6: res← []
7: for each step in reverse(locator)
8: if src ̸= dst and ▷ Ongoing TAL?
9: (step is FN or ¬CANEXPANDTAL(src,dst))

10: res← [CREATETAL(src,dst)] + res
11: dst← src
12: if step is FN or ¬CANEXPANDTAL(src,dst)
13: res← [step] + res
14: dst← parent(src)
15: src← parent(src)
16: end for
17: if src ̸= dst ▷ Ongoing TAL?
18: res← [CREATETAL(src,dst)] + res
19: return res
20: end procedure
21:
22: procedure CREATETAL(src,dst)
23: ▷ Create a TAL step that can be applied to src to get to dst. src is an

ancestor of dst in the AST.
24: t← type(dst)
25: d← distance(src, dst)
26: s← span(dst)
27: return TAL(t,d, s)
28: end procedure
29:
30: procedure CANEXPANDTAL(src,dst)
31: ▷ Check if a TAL step from the parent of src would identify dst.
32: expandedSrc← parent(src)
33: tal← CREATETAL(expandedSrc, dst)
34: return APPLYLOCATOR([tal], expandedSrc) == dst
35: end procedure

The disjoint check in APPLYTALSTEP exists to avoid traversing through sub-
trees that do not overlap with the TAL step. We assume that parent nodes fully
cover all their children.

When comparing types, we currently consider only exact type matches. There
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Algorithm 3 Node locator application

1: procedure APPLYLOCATOR(locator, astRoot)
2: n← astRoot
3: for each step in locator do
4: n← APPLYSTEP(step,n)
5: if n == null
6: fail
7: end for
8: return n
9: end procedure

10:
11: procedure APPLYSTEP(step,node)
12: case step of
13: Child(i)
14: return getIthChild(node, i)
15: FN(fn, a0, .., an)
16: return invoke(node, fn, a0, .., an)
17: TAL(..)
18: return APPLYTALSTEP(step,node,node)
19: end procedure
20:
21: procedure APPLYTALSTEP(step,node, src)
22: if span(node) ̸= 0 : 0→ 0 : 0
23: and disjoint(span(node), span(step))
24: return null
25: if type(node) == type(step)
26: best← node
27: else
28: best← null
29: for each child in children(node)
30: match← APPLYTALSTEP(step, child, src)
31: if ISBETTERMATCH(step, src,best,match)
32: best← match
33: end for
34: return best
35: end procedure
36:
37: procedure ISBETTERMATCH(step, src, lhs, rhs)
38: ▷ Check if rhs is a better match than lhs when applying step from src.
39: if lhs == null or rhs == null
40: return lhs == null
41: sl← abs(span(step)− span(lhs))
42: sr← abs(span(step)− span(rhs))
43: if (sl == 0) ̸= (sr == 0) ▷ One perfect span match?
44: return sr == 0
45: dl← abs(depth(step)− distance(src, lhs))
46: dr← abs(depth(step)− distance(src, rhs))
47: if dl ̸= dr ▷ One side closer to ideal depth?
48: return dr < dl
49: return sr < sl
50: end procedure
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are arguments for and against permitting subtypes here, see Section 4.5 for a dis-
cussion on this.

ISBETTERMATCH compares potential matches against an ideal match, which
is determined by the span and depth values on the TAL step. Three criterias are
considered in descending order of importance:

1. Perfectly matching span.

2. Least deviation from ideal depth.

3. Least deviation from ideal span.

If APPLYTALSTEP is changed to permit subtyping matches, then ISBETTER-
MATCH could also use type comparisons to select the best match. For example, a
perfect type match might be less important than perfectly matching the intended
span, but more important than the other criteria.

5.3 Optimizing Node Locator Construction

There are cases when the performance of CREATEROBUSTLOCATOR (Algo-
rithm 2) can be a problem. To understand why, we must analyze the worst case
time complexity of some of the procedures that are involved. Assume a node
locator is being created for a node that is d steps down in the AST from the root,
and the full AST contains N nodes.

APPLYTALSTEP

CREATEROBUSTLOCATOR makes use of the APPLYLOCATOR algorithm which
in turn uses the procedure APPLYTALSTEP. This procedure iterates over every
node that overlaps with the span of the TAL step. The time this takes depends on
the shape of the AST, and the span information available on its nodes. If the AST
is a balanced binary tree and each node has non-overlapping text spans, then this
runs in O(log(N)) time. In the worst case, however, the AST is shaped like an
upside-down T (⊥) and each node has overlapping text spans. In this case, almost
the entire tree will be visited when applying TAL from any point along the vertical
part of the ⊥. This means that in the worst case, APPLYTALSTEP runs in O(N)
time.

CANEXPANDTAL

The CANEXPANDTAL procedure invokes APPLYLOCATOR with a TAL step, so
it also runs in O(N) time in the worst case.
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CREATEROBUSTLOCATOR

The main loop of CREATEROBUSTLOCATOR runs for d iterations. The first it-
eration can invoke CANEXPANDTAL once, and all subsequent iterations can in-
voke it up to 2 times. In the worst case, this means CANEXPANDTAL is invoked
(2 ∗ d) − 1 times. The total worst-case time complexity for CREATEROBUST-
LOCATOR is therefore O(d ∗ N). Because d = N in the worst case, the time
complexity is quadratic with respect to the size of the AST.

Achieving Linear Time

In practice, the performance of CREATEROBUSTLOCATOR is often good enough
if implemented as Algorithm 2. The APPLYTALSTEP procedure skips over entire
subtrees if their spans do not overlap with the TAL. In addition, APPLYTALSTEP
does not search through “FN” connections in the tree, which further reduces the
number of nodes that have to be visited. Still, performance can noticeably de-
grade when using locators in a larger context. In Section 8 we show benchmarks
where probes update within tens of milliseconds for a project with a hundred thou-
sand lines of code. Of those milliseconds, only a small fraction (∼ 20%) comes
from node locator related functionality. To get these numbers we had to optimize
CREATEROBUSTLOCATOR. There are two relatively simple and very effective
optimizations that can be done.

The first and most important optimization makes sure that nodes aren’t visited
more than once when CREATEROBUSTLOCATOR runs. The process of creating
TAL steps involves iteratively applying TAL steps further and further up in the
AST, as long as the application results in the expected target node. This can result
in APPLYTALSTEP traversing through the same subtree multiple times. However,
only the first time is necessary, and in all subsequent visits to the same subtree the
outcome of visiting that tree is already known.

The second optimization uses the knowledge that there is a perfect TAL match
at depth(tal) steps down in the AST. Any node at a different depth cannot pos-
sibly be the best match, so APPLYTALSTEP can also stop upon reaching a depth
further down than the expected perfect depth. Also, a better match can only be
before the target node in a depth-first search (DFS), due to the DFS traversal in
APPLYTALSTEP.

The optimizations allow CREATEROBUSTLOCATOR to avoid visiting large
parts of the AST when creating or extending a TAL step. Figure 13 aims to il-
lustrate these optimizations. A TAL step is being created for the target node e and
is being extended one step upwards in the tree, to include node a. First, only nodes
on the same depth need to be considered. Then, node d can be excluded since it
has already been visited (when creating the current TAL step). Node f can also be
excluded since it is after e in a depth-first search. Thus, only the nodes b, c and e
need to be considered for a perfect match (e is a perfect match since it is the TAL
target).
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Figure 13: Visualization of which nodes might be matched by a TAL step if it
expands one step. Green squares are the potential matches. All other nodes are
impossible to match, which enables the optimizations described in Section 5.3.
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The two optimizations brings the time complexity for CREATEROBUSTLO-
CATOR down to O(N), even in the worst case of a ’⊥’-shaped AST with fully
overlapping text spans.

5.4 TAL Adjustments
At the client side, CODEPROBER keeps track of the node locators of all probes,
and adjusts spans of TAL steps when the users makes changes in the editor. Each
span is represented by two positions; start and end. The two positions are adjusted
independently.

CODEPROBER uses the Monaco text editor, which reports changes as a range
of text being replaced with some new text. The cases of typing or deleting char-
acters correspond to the replaced range or inserted text being empty. These cases
are relatively simple to handle. The more special case of text being removed and
inserted at the same time is more challenging.

For example, assume that CODEPROBER has a node locator containing a posi-
tion for the b inside the expression a + b. The user has c ∗ d in their clipboard.
They mark b and paste, and the resulting text is a + c ∗ d. It is not immediately
clear where CODEPROBER should move the position that previously pointed at b.
The edit could be treated as two independent edits in a sequence; first a removal
of b, and then insertion of c ∗ d. In this case, the removal of b should move the
position to the space just after the + sign. The insertion of c ∗ d should then move
the position up to the end of the inserted text, i.e the d. Another possibility, which
CODEPROBER uses, is to try to retain the original position whenever simultaneous
removals and insertions occur. In this case, it means that the position should end
up at c.

Algorithm 4 shows HANDLEEDITORCHANGE which computes a new posi-
tion based on an original position and a change event. It assumes that there are
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two functions HANDLEREMOVAL and HANDLEINSERTION that adjust a single
position based on just a removal or insertion. Based on their outputs it can de-
tect simultaneous insertion and removal and decide whether the updated position
should be used, or if the original position should be retained instead.

Algorithm 4 Handle simultaneous removal and insertion

1: procedure HANDLEEDITORCHANGE(pos, change)
2: ▷ Adjust a position (pos) based on an change event (change) from

Monaco.
3: del← HANDLEREMOVAL(pos, change)
4: ins← HANDLEINSERTION(del, change)
5: if pos ∈ removedSpan(change) ▷ pos inside removal?
6: and ins ̸= del ▷ Was there an insertion?
7: and ins > pos ▷ Insertion larger than removal?
8: return pos ▷ If yes, retain original position
9: return ins

10: end procedure

5.5 Handling Multiple Files
Most language tools work with multiple files, for example through imports or pass-
ing a list of source files on the command line. However, CODEPROBER assumes
that all relevant information is available in a single AST. This means that the AST
can be quite large, since it will typically include content from many files, and not
only the edited text within CODEPROBER. It also means that nodes created from
different files may have overlapping line/column spans. If no special measures are
taken, this will lead to the following problems:

1. Accuracy of TAL steps will degrade due to the overlapping nodes.

2. Performance of creating and applying locators scales with the size of the
AST, so a larger tree will be slower.

3. The list of nodes that is presented when creating a probe (see step 2 of
Figure 4) might include irrelevant nodes from external files, due to span
overlaps.

4. Adjustments to TAL steps in external files cannot be reliably done, as CODE-
PROBER only has access to change information for the single edited file.

We have chosen to solve the above problems by introducing an optional
boolean property externalFileRoot for AST nodes. This can be set by the
analysis tool when building the AST. When this property is defined on a node,
it means that the node represents a file. If set to false, then the node is the root
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of the edited file inside CODEPROBER. If set to true, then the file is any external
file, for example an imported file. Several algorithms are then enhanced to take
the externalFileRoot property into account, as will be described in the
following subsections.

CREATEROBUSTLOCATOR

The issue of TAL having low accuracy across multiple files can be solved by not
using TAL steps above files in the AST. Any node with externalFileRoot
defined is assumed to represent a file. Therefore, CREATEROBUSTLOCA-
TOR in Algorithm 2 can be enhanced to forbid TAL steps after a node with
externalFileRoot is found. In more concrete terms, add a local boolean
variable foundFileRoot to CREATEROBUSTLOCATOR, and update it in the main
loop with:

1: foundFileRoot← foundFileRoot
2: or src implements externalFileRoot

Then, add “foundFileRoot or” as a prefix to the two instances of “step is FN”.
This stops any ongoing TAL step from being expanded further, and prevents any
TAL from being built further up in the AST.

By not using TAL above files in an AST, the performance problems related to
multiple files are solved as well. The performance of creating and applying TAL is
strongly related to the size of the (sub-)tree where the creation/application starts.
By forbidding TAL above files, the size of the (sub-)trees are limited to a single
file.

Algorithm 5 Listing nodes that overlap with a position

1: procedure LISTNODES(node,pos)
2: ▷ Get a list of all AST nodes from node and down that overlap with pos.
3: if node implements externalFileRoot
4: and invoke(node, externalFileRoot) == true
5: return []
6: if span(node) ̸= (0 : 0→ 0 : 0) and pos /∈ span(node)
7: return []
8: res← [node]
9: for each child in children(node)

10: res← res+LISTNODES(child,pos)
11: end for
12: return res
13: end procedure
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Probe Creation Node List

As was shown in Figure 4, when the user starts creating a probe, a list of nodes
overlapping the clicked position is shown in a menu. Algorithm 5, LISTNODES,
shows how this list is computed. It is relatively similar to APPLYTALSTEP in
Algorithm 3, in that it recursively traverses through the AST and has an early return
condition if the position looked for is outside the span of the currently examined
node. To avoid descending into nodes for an irrelevant file, an additional return
condition is added, checking if the examined node has the externalFileRoot
property set, and with the value true. In this case, an empty list is returned.

CreateTAL

To make TAL step adjustments more reliable for external files, we extend TAL
with a new boolean field, external . This field should be set to true whenever the
target node of a TAL, or any of its ancestors, has externalFileRoot set to
true. In more concrete terms, replace the last line of CREATETAL with:

1: e← ISEXTERNAL(dst)
2: return TAL(t,d, s, e)

ISEXTERNAL recursively searches upwards in the AST for the closest implemen-
tation of externalFileRoot :

1: procedure ISEXTERNAL(node)
2: if node == null
3: return false
4: if node implements externalFileRoot
5: return invoke(node, externalFileRoot)
6: return ISEXTERNAL(parent(node))
7: end procedure

CODEPROBER’s client does not adjust the values on a TAL step with external set
to true.

6 Implementation
The overall architecture of CODEPROBER has three components: a client, a server,
and an analysis tool, see Figure 14. The implementation is open source and avail-
able on https://github.com/lu-cs-sde/codeprober. This section
describes the three components and the API between them, together with rules and
recommendations on how the AST produced by the analysis tool should work.

6.1 Overall Architecture
In CODEPROBER, the client is a web page, mostly written in TypeScript, and
using the Monaco code editor [Mic]. The server is written in Java, and can use

https://github.com/lu-cs-sde/codeprober
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Figure 14: High level architecture

any analysis tool written using the JastAdd metacompiler (packaged as a jar file,
following certain conventions).

For practical purposes, CODEPROBER packages the client and the server to-
gether as a single jar file which takes a path to the analysis tool as its argument.
When started, CODEPROBER opens a local HTTP server that serves the webpage,
and a local WebSocket[MF11] server for all dynamic requests. The user can then
simply go to the webpage and start editing and creating probes.

6.2 Client↔Server API

CODEPROBER’s client is a browser application, so the options for inter-process
communication with the server is quite limited. CODEPROBER supports HTTP re-
quests and WebSocket, but default to using WebSocket for its better performance.
There are cases where HTTP requests are preferable, see Section 7.6. The client
and server communicate with remote procedure calls (RPC). There are three dif-
ferent request types sent by the client: LISTNODES, LISTPROPERTIES and EVAL-
UATEPROPERTY, corresponding to the three steps when the user creates a probe,
as in Figure 4. The client sends the EVALUATEPROPERTY request also when the
user edits the text, as in Figure 3.

There is one message sent from the server to the client, REFRESH. This is sent
when the server detects that the underlying analysis tool has been updated. The
client is not expected to respond to this message, but will instead re-evaluate all
active probes by sending EVALUATEPROPERTY requests.

In all requests sent from the client to the server, the client includes the current
editor state, i.e., the full text. The server will then ask the underlying analysis tool
to parse this text into a new AST. Sending the full text in each request allows the
server to be stateless. For performance, the server can, however, cache the latest
text used for parsing, to avoid reparsing if the text has not changed. With this
optimization, we have not seen that sending the full text in each request gives any
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performance problems, even it the text is large. Any imported files can be similarly
cached. Additionally, it is possible to buffer changes until a period of inactivity
has passed, see Section 7.6.

For responses to requests on node locators, the server includes updated node
locators in the response, based on the new AST. The client then uses the new
locator in subsequent requests. This way, the node locators on the client side are
constantly adapted to the most recent AST, as was discussed in Section 4.

Example. Figure 15 shows a sequence diagram of the messages sent when the
user creates the probe in Figure 4. In the first step (1 → 2), the user clicks in the
text to create a probe. The client then sends the LISTNODES request, with the full
text and the cursor position as arguments. In response, the server sends a list of
node locators, corresponding to the nodes that match the cursor position.

In the second step (2 → 3), the user selects one of the nodes. The client
then sends the request LISTPROPERTIES, with the full text and the node locator
as arguments. In response, the server sends an updated node locator NL′

2, along
with a list of property identifiers, each containing a property name and its argument
types.

In the third step (3→ 4), the user selects one of the properties. The client then
sends the request EVALUATEPROPERTY, with the full text, the node locator NL′

2,
the property identifier and any arguments to the property. (If the property has
arguments, the client prompts the user to supply them interactively.) In response,
the server sends the updated node locator NL′′

2 , as well as the probe result. Any
AST nodes in the result are encoded as node locators that can be used for future
LISTPROPERTIES requests.

For the scenario in Figure 3, the client will send one EVALUATEPROPERTY
request for each of the active probes.

6.3 Server↔Analysis Tool API
The concept of property probes can in theory be used for analysis tools imple-
mented in any language. CODEPROBER is written in Java and currently requires
the analysis tool to run on the JVM. To use CODEPROBER with analysis tools
not running on the JVM, a bridge implementation running on the JVM is needed.
In our experiments we have used analysis tools running on the JVM. Most are
implemented with the JastAdd metacompiler.

The server communicates with the analysis tool using reflective calls. Heavy
use of reflection can have a negative effect on performance, but this is not a prob-
lem for CODEPROBER, as seen in Section 8.

The AST is parsed or reparsed by calling the main method on the analysis
tool jar file, with the path of a temporary file containing the client state (the full
text). The main method should store the parsed AST in a static field in the main
class, that should be declared as follows:

public static Object CodeProber_root_node;
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Figure 15: Sequence diagram for Figure 4

Once an AST is produced, the server uses reflection to access and traverse it.
The server assumes that the AST follows a certain structure. A number of methods
should be available on each AST node for traversal purposes:

1. getNumChild() - returns the number of children on this node.

2. getChild(int) - returns a child at a given index.

3. getParent() - returns the parent node for this AST node, or null for the
root AST node.

4. getStart() / getEnd() - returns the start/end position as line/col-
umn pairs for this AST node.

When listing available properties, the default implementation is to again use
reflection, via java.lang.Class.getMethods(). The full list is filtered before being
returned to the client. Methods that are non-public are removed. Methods with
arguments can only contain arguments of type int, boolean, String or AST
node references. Methods with other argument types are removed.

To compute node locators, it must be possible to determine the connection
between a parent and child AST node in the form of either a Child or FN step.

Child steps are determined by iterating over all children in the parent node.
Using identity comparison, we can detect the index of the child node.
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If a node is a higher-order attribute (HOA), an FN step should be used, includ-
ing the name and the arguments of the HOA. This can be determined thanks to the
fact that JastAdd memoizes the arguments to, and results of, all HOA invocations.
To construct an FN step for a HOA, CODEPROBER selects the parent of the HOA,
and then iterates through all the parent’s HOA memoizations, again using identity
comparison to find the name and arguments of the appropriate child HOA.

In case no parent/child connection can be determined, the child node is con-
sidered to not be attached to the AST. This causes node locator creations to fail,
and the server sends an error code to the client.

6.4 Desirable AST Features

To use property probes, some design choices for the analysis tool are desirable to
help improving the user experience: good source locations in the AST, on-demand
evaluation of properties, and pure properties. We will discuss these in turn.

Source locations. For property probes to work well, it is desirable that the
parser captures line and column positions and stores them in the AST nodes at
parsing. Also, the positions should honor the AST hierarchy: CODEPROBER as-
sumes that a node with an explicitly set position has an equal or larger span than all
nodes in its subtree. Otherwise, our TAL algorithm might miss the best matching
node, since it uses positions to prune subtrees in its search.

In many tools, nodes do get appropriate positions, in order for the tool to be
able to report locations of errors and warnings. However, for a given tool, there
might be nodes that lack this information. For instance, locations may have been
added only for nodes with associated error messages. Another reason might be
that the AST has been transformed, without carrying location information over to
the transformed parts.

Missing locations will degrade the user experience, as features like highlight-
ing and right clicking to select AST nodes will not work. In the client of CODE-
PROBER, a small warning triangle is shown next to each AST location that has its
line and column set to zero.

However, CODEPROBER also tries to compensate for missing location infor-
mation. It uses a position recovery strategy to infer suitable location information
in case it is missing. There are multiple supported strategies, and the user can se-
lect which (if any) to use. The default strategy is called RECOVERZIGZAG and is
shown in Algorithm 6.

RECOVERZIGZAG looks at nearby parent and child nodes, progressively
searching further up and down in the AST until an explicitly set location is found,
and which is then used as a replacement position. A recovered position usually
covers a slightly larger or smaller span than the real span of the AST node.
Therefore, position recovery should be seen as a temporary solution, and it is
better if the analysis tool is updated so that all AST nodes carry their own position
instead.
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Algorithm 6 Default position recovery strategy

1: procedure RECOVERZIGZAG(node)
2: ▷ Find a replacement position for node from its parent and children.
3: up← node
4: down← node
5: while up ̸= null or down ̸= null
6: if up ̸= null
7: if span(up) ̸= (0 : 0→ 0 : 0)
8: return span(up)
9: up← parent(up)

10: if down ̸= null
11: if span(down) ̸= (0 : 0→ 0 : 0)
12: return span(down)
13: down← firstChild(down)
14: return (0 : 0→ 0 : 0)
15: end procedure

On-demand evaluation. The user can create probes for any property the AST
supports, but usually only a tiny subset of the functionality is ever probed for at
the same time. This fits well with on-demand evaluation. Rather than computing
all properties up front, it is advantageous if properties are lazy and their values
computed only when demanded. On-demand computation is not strictly necessary,
but if all potentially probed values are computed up-front, as soon as the source
text is edited and the AST is reparsed, re-evaluation of all these values might take
a long time and negatively impact the user experience. Of course, if the user does
not edit the source text, but only explores properties, the probes can still be very
valuable for tools that do up-front computations.

Pure properties. The probed properties should be observationally pure, i.e.,
without visible side-effects when accessing them. If accessing properties has side-
effects, they may behave differently depending on in which order they are invoked,
and the benefits of property probes then diminishes. In addition, there is a caching
setting in CODEPROBER that greatly improves performance by reusing the AST
whenever possible, to avoid unnecessary reparsing. If properties can cause changes
in the AST, then caching is not reliable.

All our evaluations have been performed with JastAdd-based tools, where all
property evaluation is on-demand and all properties (attributes) are observationally
pure.

6.5 Program Representation

In this paper, we have assumed that the program representation is an AST. How-
ever, it is sufficient if the representation has a spanning tree, with the traversal
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interface discussed above, and where source text locations can be attached to the
nodes in the spanning tree. In fact, this is the case for JastAdd tools: Many of the
JastAdd attributes are node references, so the program representation is actually a
graph, but with the AST as the spanning tree.

We have also performed brief experiments with non-JastAdd tools like Spot-
Bugs [Spo], PMD [Pmd] and WALA [Wal]. SpotBugs and WALA both perform
their analyses on the bytecode level, which is common among analysis tools for
Java. Bytecode level tools can also be used with CODEPROBER, but the experience
is slightly inferior. This is because the text editor in CODEPROBER shows source
code, but the AST that the user interacts with is that of the bytecode, which is
not as intuitive. Still, we were able to explore the properties of those tools, which
shows that CODEPROBER is not necessarily restricted to tools that put analyses
directly on top of source code AST’s.

7 Case Studies
We have performed a number of case studies of CODEPROBER in order to quali-
tatively evaluate its usefulness, and find opportunities for improvements. In par-
ticular, we have run it on a full Java compiler, on a tool for intraflow analysis of
Java, and on compilers for several other smaller languages. We have used the tool
in teaching two different courses (compiler construction and program analysis).
Furthermore, we have deployed it on a cloud server, so it can be run directly in the
browser without the need for installing any local tools.

7.1 Java Compiler
During development of CODEPROBER we continuously tested its functionality on
the Java compiler ExtendJ. Based on this experience, we added a few features that
we think are useful also for many other analysis tools.

For example, the position recovery strategy mentioned in Section 6.4 was
added specifically because some node types in ExtendJ do not carry their own
position information. The support for multiple files, described in Section 5.5, was
also added based on our experience from ExtendJ.

During development we also identified and fixed two different caching issues
in ExtendJ, which we contributed back to ExtendJ. We hypothesize that these is-
sues had not been discovered before because ExtendJ had not before been used in
the live, incremental way that CODEPROBER uses its underlying analysis tools.

In general, our experience is that using property probes with ExtendJ has been
an excellent way of building understanding of the compiler. One common use case
for ExtendJ is to write program analysers or experimental extensions to Java. To
do this you need to know what AST node types are available, and what properties
they contain. This can be accomplished by consulting the official API documen-
tation [Ext]. However, we soon found ourselves using CODEPROBER more often
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than the documentation. For example, if you want to know what properties are
available on a for each statement, then you can write such a statement, right click
on it and see the list of properties. If any property looks interesting, you can click
it to immediately see how it works. With the API documentation you need to first
find the name of the node (EnhancedForStmt) and then you get a list of prop-
erty names, but these cannot be directly invoked since there is no concrete code
attached.

7.2 Flow Analysis

IntraJ [Rio+21] is an extension to ExtendJ that adds intraprocedural control-flow
and dataflow analysis. The main developer of IntraJ used CODEPROBER in devel-
oping new types of flow analysis. Before using CODEPROBER, the IntraJ devel-
oper had used “print debugging” when developing new analysis features:

• Write code for the new feature.

• Add print statement(s) to check that the feature works correctly.

• Iteratively modify the code and print statements until you get the expected
behavior.

• Remove the print statement(s).

Now, property probes have replaced most of the “print debugging” steps, since
it is much faster and simpler to open/close probes than it is to add/remove print
statements and recompile IntraJ.

The IntraJ developer also mentioned that they use the ExtendJ API documen-
tation less, since it often is quicker to explore functionality via the property probes
in CODEPROBER.

One new feature was added specifically for IntraJ, arrow contributions. This is
a feature that allows property probes to contribute arrows to be drawn between two
positions in the source code, overlaying the text. IntraJ uses this feature to visualize
the control-flow graph directly in the source code. Previously, the control-flow
graph was usually inspected in textual form, which was inconvenient, or using a
dot visualization of the AST with control-flow edges, which became very large
even for a small program. The visualization using arrows is shown in Figure 10.
The idea was inspired by the bug explanations in Clang Static Analyzer [Llv].

7.3 Compilers for Other Languages

We tried out CODEPROBER with compilers for a number of different additional
languages: Oberon-0 [FH15] (a very tiny procedural language), Bloqqi [FH16]
(a visual language for automation), and SimpliC (a simple C-like language, used
in teaching). The experience worked well for all compilers. We did, however,
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discover that each of the compilers had a few AST nodes that did not carry correct
location information. Nodes that produced errors/warnings generally had correct
locations. Missing locations were usually attributed to either desugaring or that
multiple nodes were created by the same parser production (the parser generator
attached location only to the return node of a production). This was no major issue,
however, since the position recovery strategy developed for ExtendJ worked fine
here, as well.

We also used CODEPROBER with a student implementation of a ChocoPy
compiler. ChocoPy is a subset of Python, commonly used for educational pur-
poses [PSH19]. Here we had more severe location-related issues. One of the chal-
lenges with parsing Python is the indentation sensitivity. The student ChocoPy im-
plementation we used had solved this by making the parser a two-step process; first
it transforms all indentation into whitespace-insensitive indentation tokens, and
then it parses the transformed source code. AST nodes produced from the trans-
formed sources always had line numbers that matched the original source code,
but their columns were usually wrong by a few characters, since the whitespace-
insensitive tokens did not match the width of the original indentation. It was pos-
sible to create probes, but the user experience was not very good. Of course,
these problems could easily have been solved by fixing the student ChocoPy im-
plementation to set proper line and column numbers, but it illustrates the kinds of
problems a user can run into.

7.4 Compiler Course

We used CODEPROBER in a course on compiler construction which is taken by
around 70 students each year. In the course, the students build a compiler for
a C-like language, step by step over six lab sessions. The first two labs cover
scanner and parser generation. The remaining four labs cover name analysis, type
analysis, call graphs, and code generation, all using the JastAdd metacompiler.
For most students, this course is their first encounter with terms like “grammar”,
“abstract syntax tree”, etc.

For many years, an AST exploration tool, DrAST [LTH16], has been used
successfully in the course, allowing the students to visualize the AST of a program,
and to look at attribute values of individual nodes. For the 2022 edition of the
course, we introduced CODEPROBER as an additional opportunity for the students
to use, and gave a brief introduction to the tool early in the course. After each of
the lab sessions, we performed short informal interviews with the students, to ask
about their experiences with both DrAST and CODEPROBER.

The students’ tool preferences fell into three main groups of roughly equal
size. Either they used CODEPROBER, DrAST, or neither of the tools. Very few
students used both tools.

The students who preferred using CODEPROBER generally liked the ease and
speed of testing their compilers: Adding/removing code and probes could be done
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much quicker than, for example, writing test cases. While this was positive feed-
back, it also highlights one downside we noticed with CODEPROBER: it can lead
to students writing fewer ordinary unit tests. Because it is so quick and convenient
to open a probe, the students did not feel motivated to write the tests. They had
the opinion that if something breaks in the future, it is easy to just start probing
again. While this may work in the short term, having normal regression tests help
in the long term. To improve on this, we plan on adding a test probe feature in
CODEPROBER, i.e., a mechanism that allows a probe to be saved as a test case.
We think such a feature can provide a very convenient way of constructing test
cases.

A common point of feedback from those students that preferred DrAST was
that they liked being able to see the AST visually. When working with tools like
JastAdd, students need to have a good understanding of what the AST looks like,
to know where and how to declare attribute equations. Even when the students
had understood the concept of an AST, it was helpful to them to see the individual
nodes visually for a given example. AST Probes (see e.g. Figure 8) were added
based on this feedback. The implementation is inspired by the DrAST view.

The students who did not use either tool said they did not “see the point” of
using either tool. They used more traditional methods to aid the development, like
test cases and “print debugging”. When students asked for help during the labs,
we sometimes asked them to inspect a few properties inside CODEPROBER. We
needed to guide them step-by-step on how to do this. Afterwards, we noticed that
some of those students started using CODEPROBER much more. This tells us that
there is a barrier to getting started with CODEPROBER, and we need to work on
improving usability for first-time users. We believe the portion of students using
CODEPROBER will be larger in next iterations if we add some of the planned
improvements.

7.5 Program Analysis Course

The program analysis course included labs on type inference, interval-based
dataflow analysis to detect array out of bounds errors, and type analysis using
points-to analysis. For these labs a small teaching language, TEAL, is used, and
implemented using the JastAdd metacompiler. The core language implementation
is provided as part of the course material, so the students only need to implement
the analysis parts. The course leader forked CODEPROBER and modified it to
be a more special-purpose tool for this course. The fork had a number of small
changes, such as adding syntax highlighting for TEAL and hiding some of the
options in the tool that were not necessary for the course. However, one of the
main changes was the support for background probes, which are probes that are
always on, and whose results are presented via squiggly lines at various points
of interest in the code, and supporting extra hover information. A unique set of
background probes was then configured for each lab. Figure 16 shows an example
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Figure 16: CODEPROBER being used in a program analysis course.
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Figure 17: Result from course evaluation from a program analysis course. +100 is
“fully agree”, and -100 is “fully disagree”.

of this from a lab on type inference. The figure contains several places with
hoverable information that are extracted from the students’ analysis tool by the
background probes. Hovering over the tiny dots (...) will show type equations
for the related program element. Yellow squiggly lines appear wherever the type
equations conflict and produce a type mismatch. Hovering over the lines, as is
done in the figure, shows details about the mismatch. As the students progressed
through the lab, more dots and yellow squiggly lines appeared. Whenever type
equations or type mismatches seemed wrong, students could resort to normal,
manually created probes to investigate why. The preconfigured background
probes made it easy for the students to get started, and is definitely something we
will use in the future.

A few analyses the students wrote needed to run in a loop until some value con-
verged. Implementation mistakes could lead to infinite loops, which manifested in
CODEPROBER as a probe loading forever. This is an area where CODEPROBER
can be improved. For example, each probe can in theory be evaluated in a separate
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process, and that process can be killed after a certain timeout. The server could
also periodically sample and report stack trace information back to the client, to
give hints as to where the loops/deadlocks are occurring.

Every student used CODEPROBER to some degree. It was also through CODE-
PROBER that teachers reviewed the student implementations at the end of the labs.
However, some students only used the preconfigured background probes, and did
not explore any extra properties on their own. We suspect this group of students
has some overlap with those who used neither DrAST nor CODEPROBER in the
compiler course.

It was not originally planned for CODEPROBER to become a special purpose
tool like this, but the general feedback from students was positive: In an anony-
mous course evaluation questionnaire completed by 15 students, 9 agreed strongly
with the statement that CODEPROBER was effective in helping them discover and
understand bugs and omissions in their analysis implementations (see Figure 17).
To support use cases like this, CODEPROBER will merge in some of the fork’s
changes, and add more configuration support so that it can be adapted to future
use cases without needing to fork the entire repository.

7.6 Cloud Server

The normal way of running CODEPROBER is to run the server on the local ma-
chine, and browse to localhost to run the client. We were also interested in hosting
the CODEPROBER server on a cloud server so that users can run the client directly
on the web, without installing any local software. This can be very useful for
demonstrations and also for providing playgrounds for users before deciding to
install it on their own computer.

As an experiment, we decided to adapt CODEPROBER to run in GitHub
Codespaces. Codespaces is a service that hosts development environments in
the cloud, and allows you to connect to them directly in the browser. GitHub
Codespaces was made generally available in 20222. Anybody with a GitHub
account can try it for free, which makes it a good candidate for running demon-
strations. A few minor changes were made to CODEPROBER to make it run
well in Codespaces. The most notable ones were to delay requests and to make
WebSocket optional.

Delayed Requests

We noticed that during heavy use, the requests to Codespaces would sometimes
fail. When inspecting our server logs we couldn’t see any trace of the request
that failed. Our guess is that Codespaces has some hidden throttling limits. To
overcome this limitation we added a small delay to probe updates when running

2https://github.blog/2022-11-10-whats-new-with-codespaces-from-g
ithub-universe-2022/

https://github.blog/2022-11-10-whats-new-with-codespaces-from-github-universe-2022/
https://github.blog/2022-11-10-whats-new-with-codespaces-from-github-universe-2022/
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in Codespaces. Instead of immediately updating when the user makes a change,
the client will wait for a period of inactivity before sending update requests to the
server. The delay defaults to 0.5 seconds. After adding this delay we haven’t had
any issue with random request failures.

Optional WebSocket

The WebSocket connection between CODEPROBER’s client and server is normally
able to stay connected indefinitely. When running in Codespaces however, it au-
tomatically disconnects after a few minutes of inactivity. The exact inactivity time
varies, but seems to be around 1 to 5 minutes. During normal use, CODEPROBER
might be idle in the background for several minutes while the user is working on
their tool, and only occasionally will the user come back to inspect something in
CODEPROBER. This usage pattern does not work well with the automatic Web-
Socket disconnections.

To overcome this issue we added support for sending WebSocket-related re-
quests as HTTP PUT requests instead. We replaced server-initiated messages (e.g.
REFRESH in Section 6.2) with long polling. The result is a slightly slower time per
request, since each request has to establish a new connection. The upside is that
this allowed CODEPROBER to stay idle in the background for a long time without
disconnection issues.

7.7 Summary

The case studies show that property probes are useful for a variety of analysis
tools and different languages, both for development and in teaching. By running
CODEPROBER for a full Java compiler, we made sure it works for real program
analysis development. By running it in courses, we found that students appreciated
the tool, and used it voluntarily to solve problems, which we take as an indication
of its usefulness. Furthermore, by trying it out in many different scenarios, we
have found several opportunities for adding new useful support. Examples include
the position recovery strategy (fixing missing line and column information), sup-
port for multiple files (necessary for big projects), arrow diagnostics (visualizing
graphs on top of the code), AST probes (visualizing the AST in a probe), and
background probes (that are always active, and manifested directly in the code as
squiggly lines). We also successfully adapted CODEPROBER to run on a cloud
server, allowing users to try it out without needing to install any software.

8 Performance Evaluation
In the previous section we saw examples of CODEPROBER being used for a few
different tools and in teaching scenarios. These examples show that CODEPROBER
works well in practice, at least in smaller contexts. In this section we investigate
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the performance of CODEPROBER for larger projects, to ensure that the response
time is low enough for interactive use also in these cases. We are interested in
finding out the administrative overhead of creating and evaluating probes, how it
relates to other overhead like parsing, and how these overheads scale with project
size.

8.1 Methodology

The processing time it takes to use property probes can be divided into three main
parts:

• Parsing

• Property evaluation

• Probe administration

The processing times for parsing and property evaluation depend on the un-
derlying analysis tool, which is ExtendJ in our benchmarks. As mentioned earlier,
ExtendJ is a full Java compiler, implemented using the JastAdd metacompiler,
which uses on-demand evaluation for properties. Different properties may natu-
rally take different time to evaluate. Since we are interested in investigating the
probe overhead rather than property evaluation, we have chosen simple properties
with constant evaluation time in our setup.

To evaluate properties, the code needs to be parsed into an AST, and repars-
ing is needed whenever the user edits the code. Initially, all source files on the
source path will be parsed, including the one edited in CODEPROBER. Additional
imported class files are parsed on-demand, depending on what properties are eval-
uated. ExtendJ has support for incremental parsing at the file level, so when the
user edits code, only the edited file is reparsed, and ASTs for other files on the
source path are reused. As part of the parsing cost, we also count the adminis-
trative cost of flushing memoized properties—their values might be inconsistent
since the AST has changed. (There is an incremental attribute evaluation mode in
JastAdd, but it carries its own overhead, and is not used in our experiments.)

For property probes, all time-consuming work happens on the server side, so
this is what we measure in the probe administration part. A headless client is used
for measurements, and it runs on the same machine as the server in order to avoid
any network latency in the data.

The probe administration part contains all the server-side functionality that is
required to support property probes. This includes listing nodes that overlap with
the user’s cursor, creating and applying node locators, serializing probe results to
send them to the client, etc.

We have run measurements on both a high-end benchmark machine and on a
normal development laptop. The results we report are from the benchmark ma-
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chine, in order to get as noise-free results as possible. The results from the laptop
were roughly 1.5 times slower than those from the benchmark machine.

The benchmark machine ran Java 11 on Ubuntu 21.20 with an Intel i7-11700K
CPU and 128GB DDR4 RAM. The machine was configured with a minimal
amount of background services to reduce noise in the data. The laptop ran Java 17
on Mac OS 12.2.1, an Apple M1 Pro CPU and 16GB LPDDR5 RAM.

Benchmarking is done with three variables: project configuration P, action
type T, and number of actions N.

P is one of six project configurations. The minimum configuration is a single
file containing five lines of code. The largest configuration is the source code of
Apache FOP [Apa], which contains over 900 source files and 96K lines of code.

The action type T is either creating or evaluating probes. The number of ac-
tions N is 1, 5, 10 or 15.

Whenever CODEPROBER performs more than one action for the same source
code, it will reuse the AST. Therefore, the parsing cost only needs to be paid once
per source code version. The cost for a subsequent actionk (k > 1) is therefore
only the property evaluation time and probe administration.

For each combination of P, T, and N, we performed the following sequence:

1. Simulate a change to the source code.

2. Perform N actions of type T.

This sequence was performed in a loop until steady state had been achieved. After
that we performed the sequence an additional 5000 times, and recorded the average
time to finish the N actions.

We also measured full parsing time, since this is relevant both when the user
starts up CODEPROBER, and in case the user reconfigures the analyzed project,
in which case a full reparse of all source files is performed. For this reason, we
measured full parsing both as a start-up cost (without JVM warmup) and as steady
state (after warmup of the JVM).

8.2 Results

All results are shown in Table 1. Furthermore, the time for creating and evaluating
probes are plotted in Figures 18a and 18b. We will now discuss these results in
more detail.

Creating a Probe

Creating a probe involves two operations:

1. List all AST nodes overlapping with the user’s cursor.

2. List all properties available on a given AST node.
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Table 1: Performance measurements, all times in milliseconds.
The data for creating and evaluating probes is plotted in Figure 18.

Project configuration names are shortened in the table to A,B,...,F, their full
names are “Mini”, “Probe Server”, “Commons Codec”, “NetBeans”, “PMD” and
“FOP” respectively. “Hot” represents a steady state, e.g. the JVM has warmed up.

“Cold” represents startup, e.g. the JVM has just been started.

Proj Size Time to create N probes Time to evaluate N probes Full parse
LOC 1 5 10 15 1 5 10 15 Hot Cold

A 5 0.8 3.4 6.2 9.5 0.3 0.9 1.7 2.5 0.1 128.5
B 2K 1.5 4.5 8.1 11.7 0.9 1.7 2.6 3.5 9.0 198.2
C 10K 4.0 7.3 11.0 15.0 3.4 4.2 5.2 6.2 44.1 290.6
D 18K 6.3 11.2 14.7 18.4 5.6 8.5 9.3 10.3 57.7 345.7
E 50K 15.7 22.2 29.6 37.5 14.4 16.2 18.1 20.1 155.1 493.2
F 96K 32.0 40.9 50.9 61.6 30.5 32.8 35.4 38.3 348.4 695.1

The two operations correspond to the LISTNODES and LISTPROPERTIES re-
quests in Section 6.2. The result of these actions is a probe with a so far empty
result. The actual evaluation of the probe is triggered by the EVALUATEPROPERTY
request which is benchmarked separately.

If a user creates a probe based on an existing probe result, the first operation
will be skipped. In our benchmarks we always measure both operations, which
gives us a worst case time for creating a probe. The results can be seen in Table 1,
and are plotted in Figure 18a.

Evaluating a Probe

A probe is evaluated for one of two reasons:

• either a new probe was created,

• or some underlying data changed, and existing probes must be re-evaluated

Evaluating a probe corresponds to the EVALUATEPROPERTY request in Sec-
tion 6.2. In the scenario where a user plays around with code to see how properties
update, the probes will be evaluated significantly more often than they are created.
In another scenario, where the user keeps the code fixed, and only explores new
properties by creating new probes, there will be a single evaluation each time a
probe is created.

Since the property evaluation cost is kept very small in our benchmarks, the
measurements should consist almost entirely of parsing time and probe adminis-
tration time.
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The results can be seen in Table 1, and plotted in Figure 18b.

Full Parse Time

The results shown in Figures 18a and 18b are using incremental parsing. The
costs shown include a single re-parse of the edited file, regardless of how many
probes were created or evaluated. A full parse is sometimes needed, such as when
initially starting CODEPROBER, or when changing project configuration while
CODEPROBER is running. We have benchmarked the full parse in two scenar-
ios. Once where the parsing code had reached steady state, and once where the
parsing code had just been loaded into the JVM (“Startup”). Full parse is mea-
sured for all project configurations P. The time for the full parse (steady state and
start up) can be seen in Table 1.

8.3 Discussion

J. Nielsen defined three time limits concerning responsiveness [Nie93]. According
to that definition, responding in less than 0.1 seconds is enough to appear instant,
responding in less than 1 second is good enough to not interrupt the user’s flow
of thought, and responding in less than 10 seconds is the limit for keeping users’
attention so they do not start on other tasks.

As can be seen from Table 1, all overheads for creating a new probe or reeval-
uating one or many probes are well below 0.1 seconds. For example, creating a
probe in the largest project (FOP) takes 32 ms, and reevaluating 15 probes after an
edit takes 38.3 ms, so they are all within Nielsen’s category of appearing as instant.

From the plots in Figures 18a and 18b, we can see that the time difference
between creating or evaluating 5, 10, or 15 probes is fairly constant for a given
project. For example, for FOP, the time to evaluate 5, 10, and 15 probes is 32.8,
35.4, and 38.3 ms respectively. This means that the administration time per probe
is only around (38.3-32.8)/10 = 0.55 ms. The bulk of the total time is for reparsing
the edited file and flushing memoized properties, e.g., around 32.8-0.55*10 = 27.3
ms for FOP. This means that creating many probes is not a problem for perfor-
mance. It will rather be the screen size that limits how many active probes the user
would like to have.

We can also see that the time grows linearly with project size. The main reason
for this is not the probe administration, but the parsing and the flushing of mem-
oized properties. The parsing is proportional to the size of the edited file, which
should be rather similar in all projects. The flushing of memoized properties is
proportional to the size of the AST of the complete project, including all source
files. This is because of the way JastAdd implements memoization (as fields in
AST node objects). This might be possible to optimize in JastAdd, e.g., by storing
memoized properties in a way that is faster to flush, or by using incremental flush-
ing. While the growth is linear, it is still fairly slow, and fairly large projects can
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Figure 18: Time to create and evaluate probes
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be handled without problems.
The benchmarks show results for properties that are very quick to compute.

Naturally, in case the user probes a property that takes a long time to compute, the
response time will be correspondingly longer. However, if the underlying analysis
tool is demand-driven, like the JastAdd-generated tools we have used, the response
time can still be very short, even for fairly advanced computations. For example,
we have experimented with probes showing generated bytecode for a method and
the arrow diagnostics showing control-flow, and they do update directly when edit-
ing the code.

The measurements of the full parse is an effect of the underlying analysis tool,
rather than CODEPROBER. However, we wanted to include these numbers to show
that it is not a factor that gives any problems. As can be seen in Table 1, the longest
time for a full parse (that happens initially at start up), takes 695.1 ms for the largest
project (FOP, 97 kLOC), so less than 1 second.

Overall, property probes have shown to be very helpful in exploring how an
analysis works, and for implementing and fixing features. The approach fits very
well for analysis tools that use on-demand evaluation for individual properties,
like the JastAdd-based tools we have tried it on. However, we think the approach
can be very useful also for tools that do up-front evaluation, as long as the results
can be tied to an AST with source text locations. In this case, properties can be
explored interactively, although the user will of course have to wait for a possibly
lengthy reanalysis if the underlying source text is edited.

9 Related Work

CODEPROBER allows interactive exploration of properties based on the source
code. Earlier tools for debugging and exploring attribute grammars include,
for example, Noosa [Slo99], DrAST [LTH16], Aki [Ike+00], and EvDebug-
ger [RCHS14]. They all have ways of showing the syntax tree and attribute
values, but none of them have any concept of probes that are updated after
changes to the source text.

Noosa is a special-purpose interactive debugger for compilers implemented
in the Eli attribute grammar system. It supports, e.g., visualization of the AST,
display of attributes of the AST, linking between source text and AST, monitoring
the stream of abstract events during data-driven attribute evaluation, and setting
breakpoints relating to such events.

DrAST is an interactive tool for visualizing JastAdd ASTs and inspecting AST
node properties. It introduces a filtering language to collapse subtrees in order
to reduce the visual complexity of the AST, and to specify which attributes to
show directly in the tree for certain node types, possibly conditionally. Individual
attributes can also be inspected.

Aki is a visual debugger for attribute grammars, supporting algorithmic and
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slice-based debugging of attributes. Based on attribute dependencies, it can sys-
tematically query the user about correctness of attribute values, in order to pinpoint
the source of an error. Aki can present the syntax tree for a source program and its
attribute values. Aki’s debugging techniques are developed for traditional attribute
grammars where attributes are evaluated in a data-driven manner. It would be in-
teresting future work to develop similar techniques for RAGs and demand-driven
evaluation and integrate them into CODEPROBER.

EvDebugger supports creating and debugging attribute grammar implementa-
tions. The main goal of the tool is to support students in learning attribute gram-
mars, and in particular to illustrate the attribute evaluation process. EvDebugger
has support for showing a syntax tree, and stepping through an attribute evalua-
tion process to understand in what order attributes are evaluated. It is based on
traditional attribute grammars where evaluation is data-driven, according to static
dependencies in the grammar.

While CODEPROBER is not primarily aimed at teaching attribute grammar
evaluation algorithms, it would be interesting to add support for tracing and step-
ping through a demand-driven evaluation, to help students understand how such
an evaluation works, when memoization happens, etc. Additionally, it would be
very interesting future work to add support for showing dynamic dependencies
between properties, and letting the user navigate this graph to explore property
values. This would be very related to the algorithmic/slicing debugging methods
mentioned above, allowing a user to explore why a certain property has a certain
value.

The Language Server Protocol (LSP) [Mic] is a widely supported protocol for
interaction between editors and language implementations. It supports features
like code completion, refactoring, validation, and more. Some of CODEPROBER’s
features could be implemented as a language server. For example, evaluating prop-
erties that produce diagnostics (“squiggly lines”) and presenting them over LSP is
possible. However, many features are not possible to replicate within LSP. This
includes custom UI such as the probe windows and arrows rendered on top of the
code. In addition, node locators depend on the user’s input actions to adjust TAL
steps, and that information isn’t easily accessible over LSP. There is interesting
future work in trying to port as much functionality as possible over to LSP.

The concept of node locators has relations to origin tracking [VDKT93]. This
is a set of techniques for identifying where a node came from after tree rewrites.
This is useful, for example, when generating error messages for transformed trees.
Origin tracking has also been integrated with attribute grammars with higher-order
attributes [WW14] (HOAs), which might be useful for improving locations for
HOAs used in our CODEPROBER.

Node locators also have connections to edit scripts. Edit scripts describe dif-
ferences between two versions of a source file, either in textual or AST form.
This can be used to generate detailed program diffs, or track nodes across multiple
versions of a source file. However, existing techniques, like GumTree [Fal+14],
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IJM [Fri+18], MTDIFF [DP16], and TrueDiff [ESP21], are focused on detecting
differences between two files, without any knowledge of the actual input sequence
that transformed one file to another. Our node locators require that we have in-
put information available while editing. This is a limitation, but it also makes the
algorithm much simpler. It might be possible to derive input information using
edit scripts, and thus make it easier to integrate property probes with, for example,
LSP.

Property probes in CODEPROBER can be viewed as being on liveness level 3
out of 6 according to Tanimoto [Tan13]. Probes are automatically updated when
either the input source file or the analysis tool have been changed, but do not
predict user actions.

Property probes can also be compared to watch expressions found in many
debuggers. Watch expressions typically only run while a debugging session is
running, and the expressions are evaluated in the context of the current debugging
session state. Property probes, on the other hand, are always active, and are eval-
uated without any state (except the source file contents that were used to initially
construct the AST).

Beller, Spruit, Spinellis and Zaidman found that “developers spend surpris-
ingly little time in the debugger” [Bel+18], citing complexity of debuggers as a
potential reason. Many developers they surveyed preferred using “print debug-
ging” instead, despite its limitations. This indicates to us that there is a need to
develop new ways of exploring/debugging programs. It might be easier to develop
debugging tools for particular use cases, like for exploring partial program analysis
results. This paper represents one such tool.

Erdweg et al. define language workbenches as “tools that support the efficient
definition, reuse and composition of languages and their IDEs” [Erd+13]. They
define a feature model according to which a language workbench must support
notation, semantics, and an editor for the defined language. Optional features in-
clude testing and debugging of the language definition. For the editor, optional
features include support for semantic services like reference resolution (i.e., name
binding), semantic completion, error markings, live translation, etc. In relation to
language workbenches, CODEPROBER supports many of these optional features
since it can be used for debugging and exploratory testing of the language speci-
fication, and it can be used for prototyping semantic language services. So while
CODEPROBER is not a language workbench by itself, it could be used as a com-
ponent of one.

10 Conclusion

We have presented the concept of property probes, an interactive mechanism for
exploring program analyses in terms of the source code.

To support probes to be updated after edits, we introduced node locators with
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three kinds of steps: Child, TAL, and FN, and illustrated how they are used to
robustly map between source code and the nodes in the program representation,
and to handle synthetic nodes that have no representation in the source code.

We have developed CODEPROBER to support property probes, and discussed
its client-server architecture and implementation. To validate our work, we suc-
cessfully applied CODEPROBER to a number of tools for different languages and
analyses, all based on Reference Attribute Grammars. We have also used CODE-
PROBER in two courses, and received positive feedback from students. This initial
testing has already shown the utility of the tool. We are now using the tool exten-
sively in our own work on program analysis. We have also shown through experi-
ments that the overhead of using probes is very small, even if the analyzed project
is large, giving latencies in the interactive tool that are far below the recommended
limit of 0.1 seconds.
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Abstract

Context: Developing compilers and static analysis tools (“language tools”) is
a difficult and time-consuming task. We have previously presented property
probes, a technique to help the language tool developer build understanding of
their tool. A probe presents a live view into the internals of the compiler, enabling
the developer to see all the intermediate steps of a compilation or analysis rather
than just the final output. This technique has been realized in a tool called
CODEPROBER.

Inquiry: CODEPROBER has been in active use in both research and education
for over two years, but its practical use has not been well studied. CODEPROBER
combines liveness, AST exploration and presenting program analysis results on
top of source code. While there are other tools that specifically target language tool
developers, we are not aware of any that has the same design as CODEPROBER,
much less any such tool with an extensive user study. We therefore claim there is
a lack of knowledge how property probes (and by extension CODEPROBER) are
used in practice.

Anton Risberg Alaküla, Niklas Fors and Emma Söderberg “Study of the Use of Property Probes in an
Educational Setting”. Submitted for publication.
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Approach: We present the results from a mixed-method study of use of CODE-
PROBER in an educational setting, with the goal to discover if and how property
probes help, and how they compare to more traditional techniques such as test
cases, print debugging, etc. In the study, we analyzed data from 11 in-person
interviews with students using CODEPROBER as part of a course on program
analysis. We also analyzed CODEPROBER event logs from 24 students in the
same course, and 51 anonymized survey responses across two courses where
CODEPROBER was used.

Knowledge: Our findings show that the students find CODEPROBER to be useful,
and they make continuous use of it during the course labs. We further find that the
students in our study seem to partially or fully use CODEPROBER instead of other
development tools and techniques, e.g. breakpoint/step-debugging, test cases and
print debugging.

Grounding: Our claims are supported by three different data sources: 11 in-
person interviews, log analysis from 24 students, and surveys with 51 responses.

Importance: We hope our findings inspire others to consider live exploration to
help language tool developers build understanding of their tool.

1 Introduction
Language tooling, like compilers and static analyzers, can easily become com-
plex to develop. A professional compiler takes many person-years to develop and
typically has to comply with complex semantic specifications. For example, the
specification of Java version 81 is 788 pages long, and its reference implementa-
tion2 is over 5 million lines of code.3 The language community has developed
numerous tools over the years to assist with this complex activity. We have seen
advances in areas such as language tool generation [HM03; SH11] all the way to
full language workbenches [KV10; DS11]. There has been a lot of progress in
the development of language tool chains to enable faster development of language
tools, but we still have more work to do.

One activity in language tool development worthy of more attention is pro-
gram comprehension, which underpins tool understanding, feature development,
maintenance, and debugging. As we increase the level of abstraction and intro-
duce more code generation into the workflow, the distance to the running code

1https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf. Accessed
September 2024.

2https://github.com/openjdk/jdk8u-ri. Accessed September 2024.
3This includes the sources of the JVM, the standard library and other tools necessary to fully support

the language. The langtools directory, which contains sources for javac is 120k lines of code.

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://github.com/openjdk/jdk8u-ri
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increases. Declarative specifications can be great as a way to separate the ‘what’
from the ‘how’, but when the specification is not doing what it should, it can be
tricky to get insights into how to improve it. We hypothesize that the nature of a
declarative approach may introduce additional hidden dependencies [Gre89] that
may decrease usability when things break down.

One approach to shed light on the “hidden” inner functionality of a language
tool is to utilize so-called property probes [Ala+24]. Property probes, which have
been realized in the tool CODEPROBER4, provides a live, exploratory view into
the functionality of a language tool. The aim with CODEPROBER is to assist dur-
ing the development of language tools in a way that complements existing tools,
with the goal to help explore and build understanding of language tooling. CODE-
PROBER is meant to be used both by students learning about building compilers
and program analyzers, and used by practitioners in industrial language tool devel-
opment. CODEPROBER has been in active use in education and research for over
two years now. However, we lack an understanding of how property probes are
used in practice and what the users’ experience of using them are.

In this paper, we present a mixed-method study on the use and user experience
of CODEPROBER in an educational setting, focusing on students learning about
compilers and program analyzers. We combine the results from 11 interviews,
logs analysis from 24 students, and surveys results from 51 responses to find an
answer to the following research questions:

RQ1 What is the user experience of using CODEPROBER in an educational set-
ting?

RQ2 How is CODEPROBER used during the development of compilers and static
analysis tools in an educational setting?

RQ3 How does the use of CODEPROBER compare to other tools used by stu-
dents during the development process (e.g. debuggers, test cases, print-
statements, AI, etc.)?

We find that the students find CODEPROBER to be useful, and they make continu-
ous use of it during the course labs. We further find that the students in our study
seem to partially or fully use CODEPROBER instead of other development tools
and techniques, e.g. breakpoint/step-debugging, test cases and print debugging.

The rest of the paper is structured as follows. We start by giving some back-
ground into how language tooling is built, specifically focusing on Reference At-
tribute Grammars which CODEPROBER works with (Section 2), before we give
an introduction into CODEPROBER’s features (Section 3). We then introduce the
overall design of the study (Section 4), followed by the method and results for the
interview part (Section 5), log file analysis part (Section 6), and survey part (Sec-
tion 7). Finally, we discuss the results in light of our research questions (Section 8),
before we discuss related work (Section 9) and conclude (Section 10).

4https://github.com/lu-cs-sde/codeprober. Accessed September 2024.

https://github.com/lu-cs-sde/codeprober
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Figure 1: Overview of how a RAG-based compiler works. The original code is
parsed, and the AST is decorated with attributes. Finally, the attribute v of the

root node is accessed, which computes the other attributes on demand. Solid blue
color indicates an intrinsic attribute, i.e., something that is already known in the

original AST. Dashed orange color indicates something that is computed.

2 Language Tools with On-Demand Evaluation

In this paper, we refer to compilers and static analysis tools as “language tools”.
They have similar overall goals: transform source code into some desired output.
The output can be machine code, a list of diagnostic messages, the result of run-
ning test cases, etc. The implementation of a language tool can be pass-based,
where values needed internally in the tool are computed in passes, e.g. computing
a symbol table before type resolution. Alternatively the evaluation of semantic
values can be on-demand, e.g., computing names needed to resolve a type.

In this section, we provide a high level overview of building language tools
with Reference Attribute Grammars (RAGs) [Hed00], an approach for building
language tools that compute semantic values on-demand. RAGs are an extension
of Attribute Grammars [Knu68a]. RAG-based tools start by parsing source code
into an abstract syntax tree (AST). They then associate functionality (“attributes”)
with the AST nodes. Attributes may depend on other attributes, and can compute
values on-demand. This lets the developer specify a full language tool as a set of
smaller attributes that depend on each other. In the end, RAGs can compute the
same information as a traditional pass-based compiler, but the evaluation can be
seen as happening in reverse. Evaluation starts by accessing the desired output,
and then gradually works backwards through the intermediate steps.

Figure 1 provides an illustration of a RAG-based language tool in the form
of simple calculator language. The language supports additions and two kinds of
integers: base-10 and base-16. The desired output for this language is the base-10
value of the program. For example, for the input 0x27 + 3, the output should be
42. The computation is defined as an attribute v that has different definitions de-
pending on the node type. For example, the definition for addition nodes accesses
v on its children and adds them together. The program output is then computed by
accessing the attribute v on the root node (which might trigger more attributes to
be computed).
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An interesting aspect of RAGs is that all functionality is always accessible on
the AST, but nothing is computed by default. As long as only a subset of the
functionality is accessed, it can usually be computed very quickly. For example,
the performance evaluation by Alaküla et al. [Ala+24] shows that some selected
attributes finish evaluating in 1− 30 milliseconds. The exact time it takes depends
on the complexity of the chosen attribute, but in general it is quick enough to
appear instant to the user [Nie93]. This enables quick, interactive exploration of
the inner workings of the language tool, which can be of great help during the
development process. For example, assume that the code that transforms from
base-16 to base-10 integers computes the wrong value. In Figure 1 it is possible to
directly access the v attribute of 0x27 and evaluate it in isolation.

2.1 Debugging RAGs

In order to debug and build understanding of a RAG-based tool, it is beneficial to
be able to explore each attribute individually. Accessing and evaluating these in-
ternal properties is possible to do with traditional debugging tools and techniques,
but we believe it can be inconvenient to do so. In this section, we give examples
of the problems that may arise, especially when working with language tools for
non-trivial languages.

Assume a language tool developer wants to inspect a specific attribute like v
in Figure 1 using print debugging. They would have to: 1) Add a print statement
to the language tool specification, 2) Rebuild the language tool, 3) Run the tool
with an example input file, and 4) Filter the output to find the line corresponding
to the node of interest. Steps 1 and 2 need to be done for every new information the
developer wants to extract, and build times can be prohibitive for larger language
tools. Additionally, step 4 can be a significant hurdle when exploring larger input
files, as the same attribute may be invoked many times for different AST nodes.
Step 4 can be mitigated by making the print statement conditional. However, this
might require some non-trivial conditional expression. Similar issues arise with
traditional breakpoint/step-debuggers, where defining a conditional breakpoint for
a particular node might be non-trivial.

Print debugging and breakpoint/step-debugging are viable options for explor-
ing attributes on an AST. However, we believe it is more convenient to freely
explore attributes without rebuilding the language tool and to use the input text to
find nodes of interest. This has been realized in the tool CODEPROBER [Ala+24]
that supports property probes, which we will describe in the next section.
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Figure 2: Overview of CODEPROBER. The language tool developer has created a
property probe of the expression x + 2 in the input text. The property
constant computes the compile-time constant of that expression. The

developer can either change the input text or the language tool, and the probed
result is automatically updated.

3 CODEPROBER

This section gives a brief introduction to CODEPROBER [Ala+24] and its features5.
CODEPROBER allows for an interactive exploration of intermediate results in lan-
guage tools. The results are live and automatically updated when the input text
(typically code) or the language tool changes. An overview of CODEPROBER is
shown in Figure 2.

CODEPROBER does not compute any values on its own. Rather, it simpli-
fies accessing and exploring values that another language tool computes. CODE-
PROBER requires that the language tool parses input text into a tree with node prop-
erties that can be accessed. The language tool developer can then create probes
via the input text in CODEPROBER to access these properties. The requirement
of node properties maps very well to attributes described in the previous section.
However, property probes are a general technique that can be applied to other
kinds of language tools as long as they fulfill the requirements, i.e., they associate
properties with nodes in a tree.

3.1 Basic Usage

As an example, the language developer starts by writing the input text they wish to
explore into the CODEPROBER editor, and then right clicks to create a probe. Fig-
ure 3 shows the process of creating a probe in the Java compiler ExtendJ [EH07b].
In it, the developer started by writing a small Java program. Then, they create a
probe for the compile-time constant value of an addition expression. From this
point, if the developer makes any change to the Java program, or if they update

5A video demonstration of CODEPROBER: https://youtube.com/watch?v=lkTJ4VL0
xtY.

https://youtube.com/watch?v=lkTJ4VL0xtY
https://youtube.com/watch?v=lkTJ4VL0xtY
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Step 1 Step 2 Step 3 Step 4

(1) The developer
right-clicks on the
addition expression
in the source text
and selects “Create
Probe”.

(2) The AST nodes
that span the clicked
position appear in
a menu, and the
developer selects
the desired node,
AddExpr in this
case.

(3) The developer
is presented with a
menu of all avail-
able properties
on the AddExpr
node, and selects the
constant property.

(4) Finally, the prop-
erty probe window
appears, showing the
result value, in this
case the number 3.

Figure 3: Steps to create a probe for the constant property of the addition
expression x + 2.

the underlying Java compiler, then the probe will display updated values. The de-
veloper can then continue to create probes for other properties, for example, byte
code generation, without requiring recompilation. This is different from e.g. print
debugging, where the developer has to modify source code, compile and run for
each new piece of information they wish to extract.

This ability to explore properties, together with the liveness features, is central
to the experience of using CODEPROBER. Normal probes, as shown in Figure 3,
is a core way of interacting in CODEPROBER. However, several more ways of
interaction are supported. Some of these are illustrated in the following list using
a teaching language called TEAL. See also Section 4.2 for more information about
TEAL.

• Diagnostic contributions allow probes to contribute diagnostics to the text
editor, in the form of “squiggly lines” (Figure 4a) and arrows (Figure 4b).
This can be used for example to present semantic issues or render a control-
flow graph.

• AST probes display part of the AST in graphical form. This can be seen in
Figure 5.

• Search probes support finding a set of nodes that pass some predicate, and
evaluate an attribute for all of them simultaneously. A search probe can be
seen in Figure 6.

Currently, we have implemented support for language tools specified with the
meta-compilation system JastAdd [EH07a]. JastAdd combines reference attribute
grammars with object- and aspect-orientation. For an introduction to JASTADD,
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(a) Squiggly line diagnostics

(b) Arrow diagnostics, showing a
visualization of the control-flow graph of a

function.

Figure 4: Screenshots of diagnostic contributions in CODEPROBER. The most
common kind of diagnostic is “squiggly lines”, and they are shown in three

locations in Figure 4a. The user is hovering the last location (x variable on the
last line), and the popup shows the variable’s interval value at that point in the

program. In this case, the value of x on the last line must be within the interval of
[7, 10].

Figure 5: AST probe showing the AST of a function call. More probes can be
created by clicking on individual nodes in the AST.

see [Hed09]. However, there is an interface that other kinds of language tools can
implement to integrate with CODEPROBER.

4 Study Overview

In this section, we provide an overview of our study along with a description of the
context in which the data for the study was collected. With the objective of gaining
a deeper understanding of how property probes are used in practice via the CODE-
PROBER tool and the user experience of using CODEPROBER in an educational
setting with students learning about compilers and program analysis, we designed
a mixed-method study to address the research questions defined in Section 1.
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Figure 6: Search probe that finds all nodes in the function (FunDecl) where
property isAccess is true, and opens a nested probe for property interval

on them. The user is hovering the middle Access node, which causes the
corresponding span in the text editor to be highlighted. (Note that the middle

result of [7, 7] is correct, it displays the interval value prior to the assignment).

4.1 Study Objective and Design

The study is composed of three parts; interviews with students, analysis of logs
from students using CODEPROBER, and a survey sent to students after they used
CODEPROBER as part of course labs. An overview of when the different parts
took place is seen in Figure 7.

Each part helps address one or more of the research questions. The interview
questions are designed to help answer each research question (RQ1, RQ2, and
RQ3). The log analysis tells us how CODEPROBER is used, which helps answer
RQ2. The course survey contains a question about the “effectiveness” of CODE-
PROBER, which helps in answering RQ1. Triangulation, in the context of user

2023 2024 February March April2022

L0 L1 L2 L3

Course Survey

Interview

Log Data Collection

Lab instance

Course instance

Figure 7: Overview of when the different parts of the study took place. The four
red lines labeled “L0” to “L3” represent the planned durations of Lab 0 to Lab 3

in the program analysis course. Late lab submissions were allowed, which is why
the log data collection proceeded after the end of Lab 3.
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studies, refers to investigating a phenomenon from at least two different perspec-
tives. Perspectives can mean making observations at different points in time, using
different techniques, observing different groups of people, etc. The main idea is
that by observing the same phenomenon from multiple perspectives, it is possible
to draw conclusions with more confidence. We hope that our study design, com-
bining three parts with different methods, will help to answer our RQs with better
confidence.

The details of each of the study parts, along with their results, are presented
in Section 5, 6, and 7, respectively. For the rest of this section, we will focus on
describing the context of the study.

4.2 Educational Setting

The data collection for this study is carried out in connection to two university
courses taught to engineering students typically specializing in computer science;
a course on program analysis and a course on compilers. Both of these courses
have integrated the use of CODEPROBER in the practical work in the course. Our
data collection is focused on the Spring 2024 instance of the program analysis
course, but we also include survey responses gathered for the Fall 2023 instance
of the compilers course and also the earlier Fall 2022 instance of the program
analysis course.

It should be noted that students who take the program analysis course have
often taken the compilers course prior to it (or another compilers course) and at
least two other programming courses. In the Spring 2024 program analysis course
instance, 27 of the 31 students that finished the course had previously taken the
compilers course at our university (note that 3 of those students had taken the
compilers course before CODEPROBER was introduced in the course). Half of the
remaining 4 students had taken a compilers course at another university, and 2 had
not taken any compilers course.

In the below subsections we describe the student population of the program
analysis, as well as the two courses in more detail.

Student Population

The average student in the program analysis course is in their 4th year of a 5-year
computer science and engineering program6 at Lund University. There are a few
cases where PhD students or students from a different engineering program take
the course as well. In the 2024 instance of the course, there were 31 students, and
27 of these were from the computer science and engineering program.

The first three years at the computer science and engineering program contains
7 mandatory programming-related courses, totaling 44.5 ECTS credits. These

6Full name: “Master of Science in Engineering, Computer Science and Engineering”
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courses cover topics like object-oriented programming (Scala & Java), concur-
rency, agile software development (including test-driven development), functional
programming and more. There are also several labs that contain the use of tradi-
tional debuggers.

The students in the program analysis course develop language tools in an ed-
ucational setting, making them target users for our user study, especially since
CODEPROBER has been incorporated in the course. They further have experience
from debugging in previous courses, which gives them a good foundation for rea-
soning about CODEPROBER and comparing it with alternatives.

As can be seen in Figure 7, we interview the students at the end of the last
lab in the course. This is so that they have time to build as much experience with
CODEPROBER as possible, and they still have that experience fresh in their heads
when we interview them.

The Compilers Course

In the compilers course (7.5 ECTS credits), students learn how to create a compiler
from scratch. Over a series of 6 labs they create a basic C-like compiler. They do
this incrementally, starting with scanning and parsing, and eventually adding code
generation.

CODEPROBER is introduced to the students at the end of lab 3, at the same
time as they start writing their own RAG attributes. Then for the remainder of the
labs, they are told that they should implement test cases for everything they do, but
they are also welcome to use CODEPROBER if they want.

We have not collected logs-based data on how many students make use of
CODEPROBER in this course. However, at the end of the lab sessions we usually
ask how they approached solving the lab, and we estimate that roughly two thirds
of the students mention using CODEPROBER. This estimate is also reflected in
the course evaluation for the compilers course (Figure 9c), where just over two
thirds of the students (15 of 22) “agree” or “fully agree” that CODEPROBER is
“effective”.

The Program Analysis Course

In the program analysis course (7.5 ECTS credits), the students implement several
different kinds of program analyses on top of an existing compiler in a language
called TEAL (“Typed Easily Analysable Language”). TEAL is a gradually typed
imperative language. An example of TEAL code from the labs is included in
Figure 4a. At the start of each lab, the students are provided with a working com-
piler and instructions for what to add. The provided compilers are all implemented
using JASTADD. In the 2024 course instance, the following labs were included:

Lab 0: Introduction to JASTADD and CODEPROBER. A relatively short lab,
specifically designed to assist students with no prior experience with
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JASTADD. In this lab, they implement simple type checking. No log data
was collected from this lab.

Lab 1: Type Inference. In this lab, the students implement monomorphic type
inference, based on collecting and solving constraints.

Lab 2: Dead-Assignment Analysis. In this lab, the students mainly implement
dead-assignment analysis, i.e., given a declaration or assignment, compute
whether the assignment is unnecessary.

Lab 3: Interval Analysis. In the final lab, the students implement interval anal-
ysis, i.e., for all integer variables, compute its possible range of values. An
example from this lab is included in Figure 4a.

The size of the labs vary significantly, both in terms of how much code is handed
out and how much code is required to solve them. The handout code varies from
3000 to 4000 lines of code (not counting tests). The solutions to the labs vary from
100 to 600 lines of code. A snapshot of the handout code for all labs is available
on Zenodo 7.

Each lab contains a small set of example files that can be opened in CODE-
PROBER. The version of CODEPROBER used in the labs is preconfigured to extract
some diagnostic information from the students tools. This diagnostic information
is usually presented as hoverable squiggly lines or dots, such as the dots seen in
Figure 4a.

The students are encouraged to write tests, and use of CODEPROBER is in
theory optional. However, examples are often given in terms of CODEPROBER,
and the TAs often ask to see functionality via CODEPROBER, so in practice all
students actively use it to some degree.

5 Interviews

This section presents the method and the results of the semi-structured interviews
carried out with students taking the Spring 2024 instance of the program analysis
course described in Section 4.

5.1 Method

Below, we describe how we designed and executed the interview study, i.e., how
we collected data in the study and how we analyzed that data.

7https://doi.org/10.5281/zenodo.13380279

https://doi.org/10.5281/zenodo.13380279
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Data Collection

As a first step of the data collection for this interview study, we designed the inter-
view protocol in connection to the research objective. After testing the interview
protocol with a pilot interview and refining the protocol, we continued to recruit
participants and to carry out the interviews. See below for further details.

Designing the Interview Protocol The interview protocol includes the fol-
lowing parts:

1. Warmup. We ask background questions about the participants experience
and skill, and basic questions about CODEPROBER. Some of these questions
do not directly relate to a research question, but help us get to know the
participant, and helps the participant to start thinking more about CODE-
PROBER.

For the questions about skill, Peitek et al. [Pei+22] found that one of the best
indicators of “programming efficacy” is to ask the programmer to rate them-
selves compared with their peers. Therefore, in the background form we
asked the participants to rate their programming skills in comparison to their
classmates on a scale of [−2, 2]. Value −2=“Much Worse”, −1=“Worse”,
0=“Identical”, 1=“Better” and 2=“Much Better”.

2. Workflow. We ask a set of questions relating to how the students approach
the labs. What editor do they use, do they write test cases, when is CODE-
PROBER used, etc. This section relates to RQ2 and RQ3.

3. Scenarios and Tools. We ask how much the student uses different develop-
ment tools during different scenarios of working in a code base. This discus-
sion is driven by them filling in a table of how much they use each tool when
developing language tools (mostly in the program analysis course). One axis
of the table contains development tools, and the other axis contains develop-
ment scenarios. The included tools are “Print debugging”, “Breakpoint/step
debugging”, “Test cases”, CODEPROBER and “AI” (Copilot/ChatGPT/etc.).
The scenarios are “Developing a new feature”, “Developing understanding
of a codebase” and “Fixing a bug”. There is some overlap between the sce-
narios, but they roughly map to the middle, beginning and end of the lab,
respectively. Finally, we ask them how much they like using each develop-
ment tooling. This section relates to RQ1 and RQ3.

4. Likes and Dislikes. Finally, we ask the participants what they like most and
least about CODEPROBER. We also ask if there are any features they would
like to add. This ends up being somewhat a repetition of what was said in
the previous two sections, but it gives the interviewee a chance to highlight
which things matter most. This section relates to RQ1 and RQ2.
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Figure 8: Room used during the interviews.

After designing the main interview protocol we performed a pilot study. After-
wards a few minor things were adjusted. The end result is an in-person interview
that takes about 50 minutes to perform. The interview is a mix of open questions
and some forms for the interviewee to fill in. The full interview design is available
in Appendix A, B, C and D.

Recruiting Participants We attended one of the course lectures and presented
our intention to perform this study. An outline of the interview was shown, as well
as their rights and expected reward (a small take-home gift). We also stressed that
the interview would not measure or benchmark the students in any way. We hoped
this would make students more eager to apply, and it seemed to have worked as 9
of them applied (out of 31). In addition, we interviewed 2 teaching assistants that
either are or were involved in the course, but are not part of the team working on
CODEPROBER. The pilot study was carried out with one of the TAs. In total, we
interviewed 11 people.

Execution of the Interviews The first and second author of this paper met
each interview subject in turn. We sat around a table that had a laptop running
CODEPROBER, to be used as demo/reference if necessary. One led the interview
and the other took notes. A picture of the room used during all interviews is
visible in Figure 8. The interviews were recorded after informed consent from
participants. The laptop had active screen- and voice-recording throughout the
interview. In addition, a phone was used to record voice for redundancy.

Data Analysis

The interviews provided two kinds of data: the forms and audio recordings. The
form data was relatively small, and was manually entered into a spreadsheet. The
audio required more processing. First, we transcribed all recorded interviews us-
ing OpenAI Whisper [Rad+23]. Then, we did a manual inspection over all the
transcripts and fixed any errors from the model. This resulted in 1770 lines of text
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being added and 2434 lines being removed. The corrected transcriptions are in
total 11607 lines of text. Finally, we performed coding.

Coding the Transcripts A coding scheme was developed to help with extract-
ing information from the interview transcripts. The goal of this coding scheme was
to extract common themes, with regard to the use and experience of using CODE-
PROBER and other development tools, as formulated in the research questions.
The first and second author of this paper independently extracted a coding scheme
from the same transcript. Then they met, discussed the result and merged the two
coding schemes into one. This process repeated three additional times, until the
coding scheme was relatively stable. Then, the scheme was applied to all tran-
scripts. The final coding was reviewed by the third author. The full coding scheme
can be found in Appendix E.

5.2 Results

During the interviews, our participants filled in three forms focused on their ex-
perience and skill, feature usage, and development techniques and their use in
different scenarios. We will present the results from these three forms before we
move on to present the themes constructed from the analysis of the remaining in-
terview data. The data from the forms is split into two groups: students and TAs.
The student group has 9 participants, and TAs has 2. This split is done since the
TAs background and relation to the course differs significantly from the average
student.

Participants Experience and Skill

The median student we interviewed had 6 years programming experience and was
in their 4th year of university studies. All but one of the students had previously
taken the compiler course at our university. One interviewee was a PhD student,
and the rest were students in the computer science and engineering program (see
Section 4.2).

For the self-assessed skill, we got responses of 0 and 1, with the average re-
sponse being 0.45. With little variation in the result for the skill self-assessment,
we decided to not split results based on skill.

CODEPROBER Feature Usage

The feature usage form contains a list of features inside CODEPROBER. The inter-
viewees were asked to fill in how much they use each feature, on a scale of [0, 5].
They could also answer with “x” if they did not know said feature existed. The
results are presented in Table 1.
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Table 1: Average usages of CODEPROBER features. Feature names are shortened
to fit the page, see Appendix C for full names. Usage rate is reported on a scale of
[0, 5], where 0=Never, 1=Very Rarely, 2=Rarely, 3=Sometimes, 4=Often, 5=Very

Often. In case the interviewee had not heard about the feature, they could also
answer “x”, which is shown as a separate column.

Feature Students TAs
Use #x Use #x

Creating probes from text (e.g Figure 3) 4.67 0 4.50 0
Creating probes from node references 3.88 1 5.00 1
Inspecting probe outputs 4.56 0 4.50 0
Hovering AST node references 4.00 0 2.00 0
Inspecting the AST (e.g. Figure 5) 2.39 0 1.50 0
Creating nested probes (‘▼’) 3.75 1 4.00 0
Using Minimized probes 1.17 3 2.00 1
Using arrows, showing e.g. the control-flow graph 2.61 0 2.00 0
Looking at/conveying information in squiggly lines 4.44 0 3.50 0
Liveness from text updates 3.78 0 4.00 0
Liveness from rebuilding the compiler 4.56 0 4.50 0
Using the “Stop” button for long-running probes 2.00 2 1.00 1
Search probes (e.g. Figure 6) 2.00 8 1.00 1
Tracing 1.20 4 1.50 0

The table shows a few clear winners in terms of features. Creating probes,
looking at their outputs, and performing live updates are all very common. These
features also happen to be the ones that are described in detail in the lab instruc-
tions. Some other features are less used or less well known, such as search probes
and tracing (showing what attributes, with their intermediate values, an attribute
depends on).

Techniques and Scenarios

The technique and scenario form consists of two parts. First, some questions
of how much different development techniques are used for different scenarios.
The context here is developing language tools, and most students (N=5) answer
it solely based on the experiences in the courses. Second, the interviewees are
asked to rate how much they like using each technique. The results are shown in
Tables 2 and 3.

Interview Themes

Here we present the main themes constructed from analyzing the interview tran-
scripts. In cases where individual quotes are used, the participants name is pre-
sented as PX, where X is an integer in the range of [0, 10]. P0 and P10 are teach-
ing assistants, the rest are students in the program analysis course. Any quotes that
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Table 2: Average usage of tools for different development scenarios. Scale is
[0, 5], where 0=Never, 1=Very Rarely, 2=Rarely, 3=Sometimes, 4=Often, 5=Very
Often. Some names have been shortened to fit the table, full table is available in
Appendix D. Note that these numbers are in the context of developing language

tooling; they do not apply for software development in general.

Tool New feature Understanding code Bugfixing
Students TAs Students TAs Students TAs

Print debugging 1.44 3.50 1.11 0.5 2.33 3.50
Breakpoint/step 0.33 1.50 0.11 3.5 1.22 3.00

Test cases 2.67 4.50 1.33 0.5 2.50 4.00
CODEPROBER 4.44 2.50 4.44 0.0 5.00 3.25

AI 0.78 1.75 0.22 0.0 0.44 0.50

Table 3: Average responses to how much the interviewee likes using each
development technique. Scale is [1, 5] where 1=Strongly dislike, 2=Dislike,

3=Neutral, 4=Like and 5=Strongly like. Tool names have been shortened to fit the
table, full table is available in Appendix D.

Tool Students TAs
Print debugging 3.67 2.00
Breakpoint/step 3.89 3.75

Test cases 3.11 3.50
CODEPROBER 4.78 4.25

AI 2.33 2.50

were originally in Swedish have been translated to English.
We believe the interviews achieved a degree of data saturation [GBJ06]. The

later interviews mostly repeated themes that earlier interviews had brought up,
which makes us believe that our sample size is good enough to make some mean-
ingful observations. We use the syntax “(N=NUM)” below to indicate how many
(NUM) of the 11 participants said a given theme.

Theme: Liveness All (N=11) participants mentioned that the liveness is a
positive aspect of CODEPROBER. Liveness comes in two forms; changing the
input text inside CODEPROBER, and updating the language tool being explored.
Some interviewees (N=5) mentioned that they rely more on the second kind of
liveness, because they know of a specific example that produces incorrect behavior,
so there is no need to keep changing the text. They instead keep working on their
compiler until the probes display the expected output. This way of working has
some similarities to test-driven development. Some related quotes:

P3: “Because it’s often that you are trying to debug something. You
have a piece of code that should produce an error, but there is no
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error. So you change your own code and recompile and see, is there
an error? No, not now either.”
P4: “Often you have an example you create. And then you use hot
reloading to see, to make it work.”
P5: “[talking about changing the text] ...not that often actually, it
feels like I often have a specific example I want to look at. Rebuilding
the compiler and seeing the probes update live, yes quite often.”
P6: “Most of the time I write my example and then run CODE-
PROBER”

Still, everybody relies on the first kind of liveness as well, which can be seen in
Table 1.

Theme: Exploration All (N=11) participants mentioned some form of explo-
ration when talking about CODEPROBER. Liveness, mentioned earlier, is one form
of exploration, in that it enables the developer to explore which combinations of
input leads to what output. There is also exploration in terms of listing which AST
nodes exist, which properties are available to use, and how the different properties
link the AST nodes together. Some related quotes:

P2: “many times we have searched how to jump through the AST”
P5: “CODEPROBER is nice because you like do not have to set up
anything, you just click around.”
P7: “[when asked about what they like most about CODEPROBER]
it is how you can step through if you want to find.. like, for example
that you can explore a bit. [..] If you did not use CODEPROBER it
would be very difficult to find what methods to use.”
P8: “It [CODEPROBER] is very good in how you can visualize
things. And easily understand, if you have a node here, then I can see
all functions that can be used”

Theme: Freezes and Crashes By far the most common negative feedback
relating to CODEPROBER are about freezes and crashes, with all but one mention-
ing having issues (N=10). Most of the mentioned issues relate to a specific lab in
the course. In this lab, the students implement interval analysis, i.e. they should
find out what interval a variable’s value may have a given point in the program.
To handle loops, their analyses must run iteratively until the analysis values con-
verge. To make sure that the analysis always finishes in a reasonable time they
must additionally implement widening, i.e. overapproximate the interval values
after a certain number of iterations.

During development most students had some bugs in their implementation,
such as not implementing widening correctly, and this could cause their analysis
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to get stuck in an infinite loop. In some scenarios, this was not presented clearly
in the CODEPROBER UI, causing some (N=4) to state that they can’t always trust
the values in the CODEPROBER UI, because they might be stuck. CODEPROBER
tries to recover from this stuck state, but did so incorrectly, which meant that even
when CODEPROBER became responsive again, it could be that the values shown
in the UI aren’t accurate. Some related quotes:

P4: “it’s maybe your compiler that is wrong, but sometimes it’s that
CODEPROBER get stuck and you have to restart it.”
P5: “I have no idea why it crashed, because later on it didn’t crash
at all”
P8: “I don’t know if the error is because there is an error in my code,
or that something froze”

Theme: Reduced Use of Other Tools While CODEPROBER isn’t a direct
replacement for any other tool, it does seem to lead to reduced use of the other
tools. A majority of the participants (N=9) mention that CODEPROBER has par-
tially or fully replaced testing. Some related quotes:

P2: “sometimes I am content with seeing that it works as I want in
CODEPROBER.”
P4: “if I have CODEPROBER then I write fewer tests because in a
way I have verified it by hand”
P7: “when you are finished with something and are going to write a
lot of test cases when you already know that it works, thats annoying”

This reduction in testing is not positive, as CODEPROBER does not help prevent
regressions. All but one of the participants (N=10) mention that one of the positive
aspects of test cases is that it helps prevent regressions. A majority (N=6) of
interviewees also mention that they dislike the process of writing test cases. We
believe it is important that the students learn to work with tests more, but also
understand some of their rationale for not writing tests here. It is “just” code for a
lab after all, and perhaps they would be more open to writing tests for a long-term
project.

A majority of participants (6), mentioned using print debugging more outside
the course. This is in part due to the nature of the lab assignments. In the labs,
the student code could run iteratively until values converged. If print statements
were added there, there could be thousands of log entries, reducing the efficiency
of printing. Similarly, some (N=4) mentioned using debuggers more outside the
course. This is in part because in the course the students work with JASTADD,
and debugging support is not very strong for it. JASTADD generates Java code,
and this can be stepped through with any standard Java debugger. However, the
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developer would have to step through some internal evaluation code that JAST-
ADD generates, which negatively impacts the experience. CODEPROBER seems
to partially substitute both printing and stepping for the students. Some related
quotes:

P3: “CODEPROBER has kind of replaced print debugging in these
courses. Because you can, without writing a lot yourself, just open
and look at it. [‘it’ being an attribute value that would otherwise be
printed]”
P4: “Breakpoint debugging is easier if you are in a project that
doesn’t have a lot of JASTADD caching code and such, but is more
straight forward. There I use it more. And I use print-f debugging
more then as well.”
P8: “CODEPROBER [..] I compare it a lot to a breakpoint/step-
debugger. Just because it makes it a lot easier to understand.”

Theme: Reasons for Using AST View Some participants (N=4) mentioned
making use of the AST view (shown in Figure 5). The reasons for doing this
include trying to understand the structure of the AST, seeing which children belong
to which node, and more. Some related quotes:

P1: “I needed to find what one of the children nodes was called.”
P2: “It feels like I did it a lot in the beginning, but maybe less and
less.. [..] when you have an understanding of how it is built, then you
do not need to look at it.”
P5: “AST View, it is mostly when I’ve forgotten which attributes
exists and I don’t feel like looking at the generated Java code, or the
pre-written source code. [..] You can see them [the AST nodes] and it
is easy to see the methods”

Even among the participants using the AST view, usage was quite low. In Ta-
ble 1, the average usage of the AST view is 2.39 (≃“Rarely”). Most (3 of the 4)
participants that mentioned using the AST view also mentioned using alternative
methods. For example, to understand the structure of the AST, it can be convenient
to look at the definition of the AST structure (abstract grammar) instead. Only one
person said that they use the AST view “Often”, and this is the only participant
that did not previously take the compilers course.

We initially added the AST view in response to students in the compilers course
requesting it. They requested it after having seen a similar feature in another tool
called DrAST [LTH16], and mentioned that the graphical view helps to build
understanding of the structure of the AST. However, once that understanding is
achieved, then the AST view might not be as helpful anymore. This matches what
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some participants said. A possible takeaway from this is that the usefulness of an
AST view is inversely proportional to the users experience level. Therefore, when
building a tool meant to be used by students, or a tool to help introduce people to
a larger codebase, consider adding an AST view. When building a tool for more
experienced users, then it might not be as important to add.

Theme: Continuous use of CODEPROBER When asked about their work-
flow throughout the labs, a majority of participants (N=8) talked about an iterative
process where they switch between writing code and checking the result inside
CODEPROBER. Some (N=4) also said their usage or CODEPROBER goes up or
down depending on where in the labs they are. Some related quotes:

P4: “[..] when you get into the middle [of the lab] the usage
goes down, and then towards the end and beginning you use it
[CODEPROBER] a lot.”
P7: “more in the end [of the lab] you do smallfixes and such, then
you go into CODEPROBER to see if things actually changed or not.
So more coding in the beginnning, and then more CODEPROBER in
the end.”
P8: “I would say that in the middle [of the labs] you spend more
time looking at code. Because I have [..] identified the parts I need
to work on in CODEPROBER. [..] And towards the end you go back
[to CODEPROBER] to verify if that works.”
P9: “Towards the end it is a lot more CODEPROBER. [..] It is about
trying to find why things go wrong. I go into the code, make a small
change, recompile and check inside CODEPROBER again.”

We asked the participants for a rough estimate of how much of the total lab time
they spend inside CODEPROBER. Both the average and median response of the
7 answers was 30% inside CODEPROBER. The lowest individual answer was 5%
from one of the TAs. They said that the reason for this is that they started us-
ing JASTADD and building compilers before CODEPROBER existed, so they have
gotten used to working with test cases and print debugging instead.

6 Log File Analysis
In this section, we present the method and the results from the log file analysis part
of the study.

6.1 Method
For the 2024 instance of the program analysis course, we modified CODEPROBER
to log user interactions into a file on the users machine. Here, we describe the
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design of these log files, how we collected the data, and how the data was analyzed.

Data Collection

The log files generated by CODEPROBER contain lists of JSON objects on the
following form:

{"s":SESSION, "t":TIME, "d":{ "t":TYPE } }

SESSION is an ID that is randomly generated every time CODEPROBER is started.
TIME is a timestamp. TYPE is the type of event. Depending on the type of event,
the object containing TYPE can contain more fields.

The log files are generated on the machine where CODEPROBER is run. After
a session is completed, the students using the tool upload the log files with git to
their repositories. We ask students for informed consent to inspect the log files.

Having the students manually upload their log files has the upside that it makes
it very clear to them what data we are collecting. However, there is a risk that some
log files get missed due to the extra work of uploading via git.

Self-reported Time The course responsible collected anonymous feedback
from the students on how much time they spent on the labs. This was done in
order to help adjust the labs for future instances of the course. However, this infor-
mation also fits well with the log analysis, and is therefore used as a supplementary
data source.

Data Analysis

Once the course was done, we cloned all the student repositories to a local ma-
chine. Then we created a script that traverses all repositories (that had given con-
sent) and processes the log files. The script extracts values from the logs and writes
them to csv files that we could import into a spreadsheet. Most extracted pieces of
data are quite simple, such as counting how many instances of a certain event type
occur. One of the nontrivial points of data being extracted relates to figuring out
how much CODEPROBER is used during the labs.

Estimating Use of CODEPROBER Based on our observations, CODE-
PROBER is often left idle in the background while the developer works on their
language tool. When they have updated their tool, or figure out something new
they wish to investigate, they bring CODEPROBER back into the foreground and
interact with it. Since CODEPROBER is mostly left idle, the time difference
between the first and last event of a session cannot be used to measure how much
the tool is used. Instead, we can detect periods of use by grouping events together
if they happen close to each other. We define a mini session as a sequence of
events e1, e2, ..., en, where their time differences |Tei+1

− Tei | ≤ ∆ for some
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Table 4: The number of collected events per lab, and the number of repositories
those events were collected from. Lab 1 was performed in groups of two, so “12”

represents 24 people. Labs 2 and 3 were done individually.

Lab #repos #events
1 12 223277
2 21 90600
3 21 262290

All 54 576167

Table 5: Approximations of number times CODEPROBER was used in the
program analysis course labs. Computed by grouping events together based on a

certain threshold.

Lab Average usage counts based on grouping length (∆)
1sec 5sec 10sec 1min 5min 15min 30min 1hour

1 1405.7 648.1 448.3 180.3 48.2 19.8 13.1 10.0
2 477.1 234.7 166.7 75.0 27.0 12.0 8.8 7.3
3 1195.3 565.6 408.8 188.5 60.4 26.8 17.7 12.4

All 962.8 455.3 323.4 142.5 44.8 19.5 13.2 9.9

grouping length ∆. Summarizing the durations of all mini sessions gives us a
better approximation of how much CODEPROBER was used.

6.2 Results

In total, 576167 log events were uploaded by the students. The number of events
and repositories is presented in Table 4.

Amount of CODEPROBER Use

Table 5 shows the average number of mini sessions. Table 6 shows the combined
duration of these mini sessions. Both tables show computed values for several
grouping lengths (∆). Note that the log data only contains active interactions
within CODEPROBER. This means that the time spent looking at probe outputs
and thinking about what to do is not captured. We believe the data in Table 6 is
still quite accurate, but the real numbers may be slightly higher, especially in the
columns with lower ∆.

The log data also tells us the number of times the students rebuild their com-
piler per lab: 103 times on average, and a median of 62. Comparing this with the
corresponding number in Table 5 for a grouping of 10 seconds (323.4), we can de-
duce that about one third of the mini sessions are due to the tools being recompiled.
In other words, for each time they rebuild their tool, they perform on average two
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Table 6: Approximations of the duration CODEPROBER was used in the program
analysis course labs. Computed by grouping events together based on a certain

threshold.

Lab Average usage duration (hours) based on grouping length (∆)
1sec 5sec 10sec 1min 5min 15min 30min 1hour

1 0.19 0.69 1.08 3.00 7.74 11.59 13.87 16.20
2 0.05 0.21 0.34 0.98 2.77 4.82 5.91 7.01
3 0.13 0.55 0.85 2.43 7.27 12.03 15.09 18.66

All 0.11 0.45 0.70 2.00 5.62 9.13 11.25 13.58

Table 7: Self-reported durations of labs.

Lab Self reported time (hours) # Responses
Average Median

1 18.8 18 13
2 11.1 10 11
3 38 30 8

All 21 16.5 32

actions inside CODEPROBER (creating probes, changing text, etc.). This matches
Table 1, which lists liveness from rebuilding the compiler as one of the most used
features, with only “Creating probes from text” having a higher usage rate.

If CODEPROBER is used continuously throughout the labs, then we should be
able to estimate how much time students spent on the labs based on how much
CODEPROBER is used. Looking at Table 6 with grouping length set to e.g 1 hour,
we can approximate that the average lab takes 13.58 hours to complete. The stu-
dents self-reported the time they spent on the labs, and this is presented in Table 7.
The average self-reported lab duration is 21 hours. Since the self-reporting is
anonymous, we do not know if the measured times and self-reported times are
from the same individuals. That said, we believe that the numbers are similar
enough to indicate that CODEPROBER is used continuously throughout the labs.

Spread of CODEPROBER Use

Table 8 shows details about the distribution, quantity and duration of the log events
that were collected. The three inner tables represent lab 1, 2 and 3 respectively.
Each row is a single student or student group for the corresponding lab. The ten
center columns show the distribution of the captured log events, normalized across
the span of those events. For example, the table shows that students S22,S10
produced 23.8% of their lab 1 events in the first 10% of the event span.

The table shows a few patterns in the data. First, across all labs the students
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Table 8: Distribution of events per 10-percentile of normalized time during the
labs (first table is Lab 1 etc). Columns 1-10, 11-20, etc are the 10-percentiles of
time. For example, during Lab 1, the students S22,S10 produced 23.8% of the

events in the first 10% of the time. The tables also include number of events and
number of days between first and last event.

Students 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 Events Days
S22,S10 23.8 6.0 0.9 0.0 0.0 16.2 49.9 0.0 0.0 3.3 4500 17.4
S23,S24 4.5 7.5 0.2 0.0 0.9 0.9 12.6 10.0 30.3 33.3 469 0.1
S14,S8 11.5 5.3 2.2 42.6 0.0 7.9 0.0 4.9 0.0 25.5 19263 31.4
S17,S2 0.1 8.4 4.1 36.2 0.0 11.9 15.7 17.2 0.0 6.5 22789 4.9
S25,S15 0.7 4.6 20.5 17.4 17.2 0.0 0.0 0.0 0.0 39.6 12574 24.2
S19,S6 7.7 0.0 0.0 0.0 8.8 15.2 0.0 0.0 0.0 68.3 58284 15.3
S4,S12 0.0 0.0 0.0 7.1 20.5 0.0 0.0 18.8 0.0 53.5 14229 7.1
S5,S20 40.4 0.0 1.7 0.0 28.0 0.0 1.3 27.6 0.0 1.1 41336 14.0
S21,S7 0.2 0.0 0.0 11.9 26.5 0.0 0.0 0.0 0.0 61.4 6037 11.7
S11,S9 0.1 0.0 17.3 27.7 3.4 19.0 32.0 0.0 0.0 0.5 12731 21.0
S13,S3 28.1 0.0 0.0 0.2 2.5 5.4 1.0 0.0 20.0 42.8 24340 7.1
S18,S16 10.2 0.0 0.0 0.0 0.0 0.0 16.8 1.9 0.0 71.2 6725 6.5
Average 10.6 2.6 3.9 11.9 9.0 6.4 10.8 6.7 4.2 33.9 18606 13.4

Students 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 Events Days
S1 0.7 0.0 0.0 0.0 0.0 0.0 25.3 38.6 7.4 28.1 4027 1.3
S2 3.2 0.0 0.0 0.0 44.5 0.0 0.0 0.4 0.2 51.7 6920 8.1
S3 41.9 56.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 8946 7.9
S4 82.1 0.0 10.9 0.0 0.0 0.0 0.0 0.0 0.0 6.9 3162 4.0
S5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 9.0 83.6 5144 11.7
S6 4.1 0.0 0.0 11.8 0.0 2.9 73.5 0.0 0.0 7.8 6998 5.0
S7 24.3 32.7 8.2 0.0 0.0 0.0 0.0 0.0 0.0 34.8 4907 16.0
S8 7.0 10.3 6.2 5.1 24.6 0.0 3.6 3.7 0.1 39.4 8736 3.3
S9 6.4 0.0 0.0 0.0 0.0 15.2 0.0 0.0 67.7 10.7 3522 8.2
S10 61.9 34.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 4168 12.0
S11 20.2 0.0 0.0 0.0 0.0 1.1 0.0 17.7 0.0 61.0 1953 6.7
S12 1.9 30.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.8 4904 1.4
S13 1.7 0.0 19.8 8.8 17.5 5.8 0.0 10.5 13.3 22.5 2445 3.7
S14 82.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.4 6540 18.9
S15 3.6 32.1 55.4 0.0 4.4 1.7 0.0 0.0 0.0 2.8 4717 23.0
S16 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.4 39.6 984 1.2
S17 22.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 66.7 9 0.0
S18 5.0 0.9 0.0 2.1 39.2 1.9 1.5 0.0 24.7 24.7 778 0.1
S19 17.8 32.9 0.0 0.0 13.4 12.1 0.0 0.0 0.0 23.9 4461 2.3
S20 19.8 0.6 0.0 3.6 11.0 8.6 0.0 0.0 0.0 56.3 6217 1.3
S21 13.3 5.0 0.0 15.9 13.3 25.0 5.9 0.0 4.3 17.2 1062 0.2

Average 21.2 11.2 4.8 2.3 8.0 3.5 5.2 3.7 8.3 31.8 4314 6.5

Students 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 Events Days
S1 2.8 7.1 21.0 0.0 3.3 11.6 12.1 5.1 21.6 15.5 12025 9.8
S2 30.8 0.0 0.0 17.5 0.0 0.0 0.0 5.3 0.0 46.4 2825 3.1
S3 40.1 5.1 0.0 0.0 0.0 15.1 5.9 5.3 26.8 1.6 12353 7.8
S4 0.4 0.0 0.4 9.7 64.1 24.7 0.0 0.0 0.6 0.3 5772 27.3
S5 8.9 0.9 0.0 0.0 8.8 19.8 1.5 0.8 27.5 31.6 1413 7.0
S6 0.3 0.5 29.8 31.2 0.9 11.1 0.0 0.6 1.0 24.7 25166 10.6
S7 0.3 2.8 0.0 39.9 0.0 0.0 0.0 15.3 23.3 18.3 8874 7.9
S8 5.8 3.1 15.9 2.8 0.0 0.0 13.1 17.8 20.5 20.9 10349 9.9
S9 51.4 3.8 7.8 0.0 0.0 8.6 9.4 0.0 0.0 18.9 3367 9.2
S10 1.8 5.3 0.2 2.9 56.4 0.0 19.9 0.0 0.0 13.4 12490 18.9
S11 17.9 0.0 0.0 0.0 0.0 0.0 73.3 0.0 0.0 8.8 7422 11.8
S12 49.7 14.5 0.0 0.0 0.0 0.0 0.0 23.6 0.0 12.1 3557 3.3
S13 1.7 0.0 0.0 0.0 5.2 5.2 8.8 13.1 31.3 34.7 7714 10.2
S14 0.9 25.0 0.0 0.0 0.0 0.0 30.1 0.0 27.1 16.9 15544 8.2
S15 0.2 0.0 0.0 0.6 0.0 0.8 35.9 1.1 13.3 48.0 20814 12.6
S25 8.6 0.0 0.0 0.7 22.8 0.0 15.1 21.0 0.0 31.9 3002 3.2
S16 6.8 6.8 0.0 0.0 0.0 0.0 36.8 3.2 5.7 40.6 2032 1.2
S26 21.2 10.1 0.0 0.0 0.0 1.0 41.7 2.4 17.8 5.8 70567 15.1
S19 6.6 3.6 39.0 0.0 0.0 11.8 4.1 0.2 19.0 15.5 3481 9.2
S20 73.7 1.2 0.0 0.0 0.0 1.1 0.8 0.1 1.8 21.2 31940 6.1
S21 36.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.7 1583 7.2

Average 17.5 4.3 5.4 5.0 7.7 5.3 14.7 5.5 11.3 23.4 12490 9.5
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produce the largest portion of events in the last 10% of the time. Second, there is
some tendency to use CODEPROBER more in the beginning of the lab, especially
for lab 2 and 3.

We believe the distribution of the log events is due to a combination of the
following two things:

1. The students work a moderate amount of time once they get access to the
labs. After that they work in quite short bursts, until reaching the deadline
of the lab, at which point they put in the largest amount of work.

2. The amount that CODEPROBER is used is different depending on how far
the students have progressed in the labs.

The second explanation is supported by the responses to the question about their
workflow in the labs (Section 5.2, theme: Continuous use of CODEPROBER).

We believe the events are more spread out for lab 1 because CODEPROBER
is more useful later in the lab. The lab involves collecting and solving type con-
straints. Until the students have implemented the base classes required for repre-
senting and solving constraints, there is quite little to inspect in CODEPROBER.
For labs 2-3, the data shows some tendency to use CODEPROBER more in the
beginning and at the end of the lab. We interpret this as some students use CODE-
PROBER first to build an understanding of the code they were handed. Once that
understanding is in place, the students enter into a phase of mostly developing new
features and briefly coming back to CODEPROBER to check that the most recently
developed feature works as expected. Towards the end of the lab, they need to
make sure everything is working correctly in order to pass the labs.

7 Survey
In this section, we described the method and results of the survey part of the study.

7.1 Method
At the end of each course in Lund University, the students are invited to participate
in an anonymous survey about the course. Large parts of the survey is standardized
by our faculty, but the course responsible is able to insert up to 4 custom questions
for their course. These questions come in the form of statements that the student
should respond to on a scale of [−100,+100], where−100 means “fully disagree”
and 100 means “fully agree”.

At the end of the two courses where CODEPROBER is used, one or more cus-
tom questions relating to CODEPROBER was added. There is a limit of four ques-
tions per course instance, and there are other non-CODEPROBER concerns that
need to be surveyed as well. Therefore, we only managed to get one near identical
across the two courses:
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Figure 9: Results from course evaluations in three course instances. X-axis goes
from −100, meaning “fully disagree”, up to +100, meaning “fully agree”. Y-axis

is the number of individual responses.

Program Analysis Course Survey: CODEPROBER was effective at
helping me discover and understand bugs and omissions in my analy-
sis implementation.
Compilers Course Survey: CODEPROBER was effective at helping
me discover and understand bugs in my compiler.

7.2 Results

In total, we have survey responses from three course instances; the program anal-
ysis course instance in 2022 and 2024, the compilers course in 2023.

Figure 9 shows the responses from the three course evaluations that included
a question about CODEPROBER. In the program analysis course, 23 of the 29
responses “agree” or “fully agree” with the statement that CODEPROBER is “ef-
fective”. In the compilers course, the corresponding numbers are 15 out of 22.

The more positive response in the program analysis course can be explained
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by a few factors. For one, CODEPROBER is introduced from the very first lab, so it
becomes a more integral part of the students’ workflow early on. In the compilers
course, the students complete ∼ 2.5 labs before seeing CODEPROBER, so by that
point they have gotten used to working with test cases.

Another factor to explain the difference may be the nature of the lab assign-
ments. In the compilers course the labs vary significantly. The tasks include pars-
ing, analyzing, interpreting and generating code from source code. We have anec-
dotal evidence from talking with students that CODEPROBER is most used and
most appreciated by the students in the analysis lab. The program analysis course
labs exclusively consist of analysis-related tasks, and CODEPROBER may there-
fore be an overall better fit for that course. Another difference is that the students
are given an existing compiler in the program analysis course that they extend,
rather than building it from scratch (like in the compiler course). Thus, the need
to build an understanding of a given codebase is bigger in the program analysis
course.

8 Summary of Results

In this study, we have three sources of data, whose background and individual re-
sults are presented in Sections 5, 6 and 7 respectively. In this section, we combine
all the individual results to answer our research questions.

8.1 RQ1 What is the user experience of using CODE-
PROBER in an educational setting?

RQ1 can be answered by the interviews and course evaluations. Both paint a pos-
itive picture of CODEPROBER. The students found the liveness and exploratory
nature of CODEPROBER useful. Being able to explore their language tool without
having to add print statements or set a breakpoint enables quick and convenient us-
age. The course evaluations also confirm the usefulness of CODEPROBER. While
the course evaluations are not as extensive as the interviews, they are anonymous,
allowing students to voice their opinions without social pressure. Since the survey
answers (despite their limited scope) are positive, we are more confident in the
interview results.

The most common point of negative feedback was related to freezes and
crashes. The way CODEPROBER was used in the 2024 instance of the program
analysis course highlighted a few bugs we had not seen before. We plan on
improving this for future course instances.

In the interviews, we asked the students questions regarding the usefulness of
CODEPROBER and how much they “like” using it. We believe both aspects are
important to the overall user experience. For example, while most (N=10) in-
terviewees agree that test cases are useful, a majority (N=6) of interviewees also
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mention that they dislike writing test cases, which can lead to less automated test-
ing overall. The score in Table 3 shows that interviewees, on average, “strongly
like” using CODEPROBER.

In summary, we consider the answer to RQ1 to be that the students find CODE-
PROBER to be a useful tool that is enjoyable to use, despite some technical issues.

8.2 RQ2 How is CODEPROBER used during the develop-
ment of compilers and static analysis tools in an ed-
ucational setting?

RQ2 can be answered by the results from the interviews and analysis of log
files. From the interviews, we find that CODEPROBER is used to varying degrees
throughout the entire labs. This is confirmed by the log files, as there are a number
of log events throughout the entire lab series. Almost half of the events occur in
the first and last 10% of the labs. We interpret this as some students use CODE-
PROBER first to build an understanding of the handout code and later on to verify
that everything works as expected.

In terms of features, students mainly focused on standard probes, squiggly
lines and liveness, as shown in Table 1. The other features are less used, either due
to lack of need or because they did not know those features existed. Whether this
means that the other features are worthwhile is hard to say, as more experienced
developers may have different usage patterns. One thing we can say however is
that feature discoverability within CODEPROBER may need some improvement.
For example, a majority (N=7) of interviewees remarked that search probes seem
useful after we demonstrated it to them, but they had no idea that the feature ex-
isted.

In summary, we consider the answer to RQ2 to be that the students made con-
tinuous use of CODEPROBER, and they mainly rely on standard probes, squiggly
lines and liveness.

8.3 RQ3 How does the use of CODEPROBER compare
to other tools used by students during the de-
velopment process (e.g. debuggers, test cases,
print-statements, AI, etc.)?

RQ3 can be answered by results from the interviews. Table 2 shows that students
use CODEPROBER more than any other tool in the labs. Test cases and print de-
bugging are quite close to each other in a shared second place, and breakpoint/step
debugging and AI assistants are last.

The reason for not using those other tools can in part be explained by the de-
veloper experience of working with JASTADD/RAGs. Some attributes in RAGs
can have their results cached, and others may evaluate themselves multiple times
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until a fixpoint is achieved. This means that when an attribute with a print state-
ment is invoked, the print may not execute at all, or it might execute many times,
depending on what has been cached in the AST so far. This hurts the usefulness of
print statements. Similarly, a breakpoint/step debugger would have to step through
the code that handles caching and fixpoint iteration, which is likely not what the
developer is interested in. So while we found in the interviews that CODEPROBER
is used a lot more than those other techniques, it is not necessarily because the
experience is so much better. It can be because the experience of print debugging
and breakpoint/step-debugging is in general worse when working with RAGs, and
CODEPROBER is able to fill that role instead.

Note that test cases are different: we believe that they are generally as useful
for RAGs as in general software development. Here, we believe the problem is that
it is too quick and convenient to verify that something works in CODEPROBER, so
students do not want to spend the extra time in creating a proper test case. CODE-
PROBER does not currently support any form of regression testing, so the reduced
use of test cases is not a desired outcome. To help combat this, we plan on adding
test support to CODEPROBER, i.e. the ability to save a probe as a test case that can
later be run in for example in JUNIT. That would reduce the barrier of creating a
test case to a few clicks. In addition, we believe this problem will likely naturally
disappear in larger projects, where manually verifying all functionality simply is
not practical. There the developers will have a stronger motivation to write tests.

In summary, we consider the answer to RQ3 to be that the students in our
study used CODEPROBER to partially replace print debugging, breakpoint/step-
debuggers and test cases. We hypothesize that this is in part because the challenges
of debugging RAGs are not handled as naturally by those traditional tools. We
cannot say much about AI because none of our survey participants used it very
much, neither in the course nor in general software development.

8.4 Threats to Validity

Internal Validity There is risk of bias in the findings from the interviews due to
participant responder bias [Del+12]. We have interacted with a majority of these
students before in some capacity, either as teaching assistants or supervisors in
various courses. The main author of this paper was a teaching assistant in the
program analysis course itself. The students know that we are developing CODE-
PROBER, and therefore they may want to be “kind” and mostly say positive in the
interviews. We tried to mitigate this by explicitly asking for feedback on things
that do not work well, and by having the person they knew the least well lead
the interviews. This risk of bias is also why we spent time on analyzing log files
and course evaluations, as these are anonymized and can help verify whether the
interviews were overly positive or not.

When designing surveys, acquiescence bias needs to be considered, that is,
the tendency for respondents to agree with statements as they are presented. The
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course survey in our study only contained a single statement relating to CODE-
PROBER, due to the size restrictions mentioned in Section 7. The statement is
phrased positively, which may positively skew the responses we got. A common
method to prevent this bias is to add both positive and negative versions of the
same statement [Nun78; SÁ+18]. However, due to the limited total number of
statements that could be added to the survey (4), and the fact that there were several
aspects of the courses that should be surveyed (not just about CODEPROBER), we
could only add one common statement across both courses. Despite the potential
for bias, we still believe the survey is valuable due to its anonymity.

The number of students in the interviews is quite low (9), and is a potential
threat to the interview findings. However, we did notice data saturation in the
interview responses, and we believe that additional interviews would not signifi-
cantly affect the results.

External Validity This study was conducted on a limited set of students in one
specific educational setting. This limits the generalizability of the results. Students
from different universities, educational settings or cultural contexts may respond
differently to a tool like CODEPROBER. CODEPROBER is mainly created to help
develop JASTADD-based tools, as was the case in this study. This means that the
results may not be generalizable to other students unless they also use JASTADD,
or a similar RAG-based language tool stack. Still, we believe that it would be
possible to reproduce the results of the study in a different educational setting,
provided that the student group has a similar educational background and use a
similar tool stack.

Due to the focus on an educational setting, the results may not be generalizable
to other contexts, e.g., industry, hobbyists, etc. However, we still believe that
CODEPROBER can be useful for other language tool developers who use a similar
tool stack.

9 Related Work

In this section we present related work for four different aspects of this study: 1)
Liveness in development tools, 2) User studies, 3) Language tool development, 4)
Use of debugging tools.

9.1 Liveness

Many live development tools have similar overall designs. They have a text area
where the developer can input code. When changes are made, the tool imme-
diately runs the code, extracts runtime information and displays the information
back to the developer [Ler20; Krä+14; Dub+16; McD13; HWX23]. A significant
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difference between CODEPROBER and these other tools is that the target audi-
ence for CODEPROBER is language tool developers, whereas the other tools target
programmers in general. The users of CODEPROBER are usually interested in the
behavior of the language tool for a particular input code rather than the behavior of
the input code. Like other live development tools, the values displayed in CODE-
PROBER are computed by the underlying language tool for a given input code. One
difference is that the values in CODEPROBER are usually static information about
the input code (e.g., the type of an expression) rather than its dynamic behavior.
However, the underlying language tool can provide properties that compute the
input code’s dynamic behavior and display it in CODEPROBER. It would be inter-
esting future work to improve the visualization of such dynamic information, for
example, by integrating projection boxes (see below) in CODEPROBER. CODE-
PROBER supports changing the underlying language tool, and this also changes
which language is supported in the text area and what properties that are available.
In contrast, other tools generally only support one language. We will discuss some
of the other tools here in more detail, and how they compare to CODEPROBER.

Lerner [Ler20] presented VERSABOX, a Python editor that displays runtime
values of variables in floating windows (projection boxes) next to the code. The
boxes move around so that the information for the currently focused line is dis-
played most prominently. In CODEPROBER, the probes are used to select entry
points into the underlying language tool. This lets the developer pick which subset
of possible information they want to see at any given time. In VERSABOX, the full
program is always executed, and in the paper they mention that information over-
load is a potential problem. We believe CODEPROBER’s design scales better when
developing larger language tools, both in terms of usability and performance. It
would be interesting future work to explore integration of projection boxes into
CODEPROBER. The probes could be used as entry points for collecting runtime
information of the underlying language tool.

McDirmid [McD13] presented YINYANG, a code editor and language that sup-
ports live “probing” of expressions. The language supports prefixing any expres-
sion with an @-sign. This has no impact on the semantics of the expression, but it
causes the runtime value of the expression to be rendered in a small box (“probe”)
inside the code editor. The ability to select which expression to probe via the
@-sign is similar to how CODEPROBER only displays information once a probe
has been created. This helps reduce information overload. However, we believe
YINYANG has similar scaling issues as VERSABOX when developing non-trivial
language tools. For example, the developer may want to inspect the type of a
specific expression inside a large input text. With YINYANG, they would have
to 1) parse the input text, 2) programmatically locate the node representing the
expression inside the parsed tree, and 3) invoke a “type” function (and possibly
its dependencies) with an @ decorator. In CODEPROBER, the developer would
right-click the expression and create a probe for “type”.
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9.2 User Studies

There are several user studies that investigate the effect of liveness in development
tools. A common theme [GTS24; Wil+97; HB07; McC+22; Krä+14; Ler20] is
to perform controlled experiments with beginners (e.g., students), and tasks that
should be solved during the experiment, with or without live feedback. In con-
trast, the students in our study use CODEPROBER for several weeks, and work in
a codebase of several thousand lines of code. We believe this makes it possible
to make interesting observations of how CODEPROBER is used to develop larger,
real-world-like codebases. Nonetheless, it could be interesting as future work to
perform a controlled experiment with CODEPROBER too. In this section we dis-
cuss a few of the related studies in more detail.

Hundhausen et al. [HB07] studied the effect using development environments
with three levels of feedback: 1) No feedback is given, 2) Feedback is given after a
button is pressed, and 3) Live feedback is always given. They found that any form
of feedback is better than none. However, they found no significant difference
between continuous live feedback and feedback that was given after a button press.
They suggest that continuous live feedback may sometimes be a distraction, and
the button allows the developer to wait until they are ready to take advantage of
the feedback. CODEPROBER combines liveness and letting the developer choose
when to receive feedback. By default, CODEPROBER gives no feedback to the
user. Only when the user has created a probe will some form of feedback be
given. In addition, changing the specification for the underlying language tool has
no immediate impact, the developer must compile the underlying language tool
for changes to appear inside CODEPROBER. Creating probes and compiling the
underlying language tool can be compared to the button in Hundhausen et al.’s
study. They enable the developer to get live feedback, but only when they are
ready for it. Once a probe is created, then the feedback will be given continuously
when the input text is changed, like scenario 3 in Hundhausen et al.’s study.

Kramer et al. [Krä+14] extended the JavaScript IDE Brackets8 with a view that
displays runtime values of the code to the side, similar to the work on projection
boxes discussed above. They also performed a user study where they compared
the performance of developers based on if they received live feedback inside the
editor or not. Interestingly, they did notice some significant workflow differences.
Developers without their extension (without live feedback) tended to solve tasks in
two phases: first they implemented most of the functionality, and then they spent
time on making sure everything works. The developers with live feedback instead
tended to continuously fix issues as they wrote the code. In our study, we did not
have a control group that worked without CODEPROBER, so we can not observe
this difference directly. However, some interviewees did hint towards this iterative
develop-fix workflow (Section 5.2, theme: Continuous use of CODEPROBER).

Rein et al. [Rei+24] extended a Squeak/Smalltalk environment with a “cross-

8https://brackets.io/. Accessed September 2024.

https://brackets.io/
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cutting perspective” to help the developer filter and visualize execution traces. This
perspective was evaluated in an exploratory user study with 7 students. The inter-
views were each 2.5 hours long. First, the interview subjects worked to solve some
tasks using the new perspective for 1.5 hours. Then for the remaining time they
were asked about their experiences. Live task solving like this could have let us
make some more detailed observations about exactly how CODEPROBER is used.

9.3 Language Tooling Development

Language workbenches are tools that “supports the efficient definition, reuse and
composition of languages and their IDEs” [Erd+13]. Language workbenches are
often able to provide liveness features, in part because they control and tightly in-
tegrate parsing, semantic specification, testing, and more. For example, Gabriël
et al. added incremental compilation of the grammar in Spoofax [KEV16]. This
enabled grammar changes to immediately show updated parse trees and/or syn-
tax errors within Spoofax. Dubroy et al. [Dub+16] created Ohm, a workbench
that lets the developer specify a grammar, examples (≃test cases) and semantic
actions. The actions behave similarly to synthesized attributes in Reference At-
tribute Grammars [Hed00], except they are specified on the concrete syntax tree
rather than the abstract one. Whenever grammar, examples or actions are modified,
live feedback is given to the user. The tight integration inside a workbench enables
some features they provide, but it can also sometimes be a limitation. For exam-
ple, if one wanted to use Spoofax or Ohm with a custom parser, then this would
likely require forking and modifying the respective tool’s source code. JASTADD
helps the language tool developer with specifying semantics, but does not have any
opinions regarding parsing or debugging. The goal of CODEPROBER is to provide
debugging functionality for JASTADD and tools similar to it. By itself, CODE-
PROBER is not a language workbench. However, by combining a parser generator,
JASTADD and CODEPROBER, it is possible to get an experience similar to one
provided by language workbenches.

There exists several other tools that enable some form of AST exploration.
Some examples include Noosa [Slo99], DrAST [LTH16], Aki [Ike+00], and
EvDebugger [RCHS14]. None of these tools have the concept of probes that are
updated after changes to the source text. They also focus much of their interaction
on the AST. CODEPROBER on the other hand handles most user interactions in
terms of source code, which we believe scales better for more complex language
tools and when exploring larger input texts. For example, we think that displaying
and navigating an AST view for 500 lines of Java code is non-trivial, while
rendering and navigating 500 lines of text is simpler. These tools are discussed in
more detail in [Ala+24].
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9.4 Debugging

CODEPROBER can aid in the process of debugging, but it is not a traditional de-
bugger by itself. Part of the goal of this study is to investigate if, and to what de-
gree, the need for debugging can be met by CODEPROBER. This section presents
studies on the usage (or lack thereof) of traditional debuggers.

Ko et al. [Ko+23] performed a survey to investigate which barriers and factors
prevent students from making more use of debuggers. They did this with an online
survey where 73 students participated. They found that the lack of focus on debug-
ger usage in academic courses is one of the main reasons. Also, the complexity of
debuggers high initial learning curve was one reason. In our interviews a majority
(N=8) of interviewees also mentioned that a downside of debuggers is that they
can be quite difficult to set up and run.

Beller et al. [Bel+18] performed a mixed-method study to determine “how de-
velopers debug software problems in the real world”. They performed an online
survey where 458 developers participated, and performed automated data collec-
tion from IDEs of 108 people. They found that “developers spend surprisingly
little time in the debugger; only 13% of their total development time on average”.
Many developers preferred using print debugging instead. The reasons they found
for this behavior include the complexity of modern debuggers. Another reason is
experience – they found that more experienced developers tended to use debug-
gers slightly more. In the context of language tools, we believe that the design of
CODEPROBER solves some problems of complexity found with traditional debug-
gers, as discussed in Section 2.1. That is, finding the AST node of interest during
debugging is non-trivial with traditional debuggers, but is one of the primary fea-
tures of CODEPROBER. The fact that our students seem to use CODEPROBER
more than debuggers, test cases and print debugging strengthens this claim. But
even with CODEPROBER, we believe that debuggers are still very useful, espe-
cially for more complex bugs.

10 Conclusions

We have presented a mixed method study of the experience of using CODE-
PROBER in an educational setting. Our findings show that the students find
CODEPROBER to be useful, and they make continuous use of it during the course
labs. One of the most used features is its liveness, e.g. the ability to nearly
instantly respond to changes. We found that CODEPROBER to some extent
replaces existing tools and techniques like test cases, breakpoint/step-debugger,
etc. We hypothesize that this is in part because the nature of RAGs does not work
so well with these more general tools, so CODEPROBER is able to better meet
this demand. The reduced use of test cases can be seen as a negative outcome, as
CODEPROBER does not support automatic regression testing. For this reason, we
are interested in adding support for testing inside CODEPROBER in the future.
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Further research is needed to explore how CODEPROBER or a tool like it would
be perceived by people outside an educational setting, for example industry profes-
sionals. There is also interesting future research in trying to apply it to completely
different domains. We have used CODEPROBER exclusively for language tool-
ing, but in theory any program that performs computations on a tree structure is
a possible target. For example, many models for building UI are tree structures.
Scene graphs (often used in games) and the Document Object Model (“DOM”,
used in browsers) fit into this category, and are therefore possible future targets for
CODEPROBER.
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Appendices

A Interview Design

The script used during interviews.

Interview structure
0. Physical setup

1. Introduction

1.1. Background

1.2. Warmup

Hand them this form on a printed piece of paper: Table I: Background Information. Ask them to fill the form. Note: 1 question require a longer answer, so it should be answered verbally. Also
ask:

Briefly describe the rest of the interview:

2. Main
2.1. Intro to CodeProber

Showing CodeProber

Features

2.2. Workflow

The interview happens in Niklas' room
One "demo computer" with VS Code and CodeProber running, in case we/the interviewee wants to show something

This computer will also run audio recording the whole time
Process for getting the computer ready:

Open quicktime, prepare for starting audio recording (File->New Audio Recording, don't press start yet)
Open the directory edap15-2024-exercise-2  in Visual Studio Code

Note: this is cloned from https://git.cs.lth.se/creichen/edap15-2024-exercise-2 at revision 8b2b01b740ab704e3936842207e8588ae9dfe52a , with a small modification to make
at least 1 "report" show up in CodeProber.

Run ./gradlew clean jar
Run ./code-prober.sh examples/hw2-task-2-0.teal
Click the link http://localhost:8000/  to open in browser of choice, preferably Chrome or Firefox (there may be issues in Safari)
Close all other windows to avoid distraction (only keep Quicktime, VS Code and browser).

One phone, running audio recording as well, laying on the table
One note-taking computer, to be used by the interviewer that isn't talking.
Some cans of drinks (soda, water, ..) and cookies

A set of printed papers for each test subject:
Informed consent form (2 copies, one to sign and one to take home)
The tables to be filled in (Table 1, 2 and 3 below)

Pens

Offer a drink and cookies
Hello, welcome. Introduce Niklas and Anton. Niklas will ask questions and Anton will take notes.
Go over overview and purpose of study:

CodeProber is an active research project
We are curious of how you use CodeProber

We try different solutions

We would like to know what work and what doesn't work
We are happy to get honest feedback, including flaws
This helps us better understand the tool and how it can be improved

Research questions:
How is CodeProber used during the development of compilers and static analysis tools?
What is the user perception of CodeProber? Things that you like/don't like.

How does CodeProber compare to other tools during the development process (e.g debuggers, test cases, print-statements)?

Interview Information:
We will record for transcription purposes. These transcriptions will be stored locally on our devices (accessed by Niklas/Anton).
Anonymized results will be discussed in the research team for this study (Anton, Niklas, Emma Söderberg).
Anonymized results from interviews may be included in a publication

You can withdraw from the study within 1 month of the interview

Ask participant to sign Informed Consent Form

Start audio recording.

Experience of compiler development/program analysis beyond the compiler and program analysis course?

We'll begin by talking about CodeProber specifically

Then talk about other development tools, and how they all fit together

Present one of our laptops. It has VS Code and CodeProber running on it.

Exercise 2 - dataflow analysis. Null-pointer- and dead assignment analysis
Please show us and think aloud:

Please open a probe showing Program.reports
Niklas makes changes to remove the null pointer bug (illustrating liveness)
Please open an AST view / AST probe for the function called f

Hand them this table on a printed piece of paper (2 sided): Table II: CodeProber Features

CodeProber supports a number of different features.
For each one of the following, please fill in if/how much you use it.

Please think aloud
(If they don't recognise a feature, show it on the laptop)
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Lets pretend that you are working on one of the labs in the program analysis course. On a high level, what are you spending your time on? Where do you look for information, what editor do you
write code in, how do you debug problems, etc. In other words, please describe your workflow. You can describe it just using words, or use the laptop as a reference.

2.3. Comparison to other development tools

When working in a codebase, you almost inevitably run into problems. When you do, there are several different tools or techniques you can use to overcome the problem.
We have chosen to focus on 5.

Hand them this table on a printed piece of paper:

For each technique/tool also discuss:

Do you feel there is a scenario or tool we have missed above? If so, please add it! (they might mention code review or pair programming here perhaps)

2.4. Perception of CodeProber

If you took the compiler course, did you notice any differences between CodeProber in the compiler vs program analysis course?

2.5. Thoughts on labs

In the program analysis course labs you have had access to CodeProber every lab so far.

If you took the compiler course, then the similar question as before.

3. Cooldown

4. Closing

(Wait a while while they answer, then add the questions below)

Can you estimate how large portion of your time you spend interacting with the things you mentioned? For example, X% writing code, Y% in CodeProber, Z% reading lecture slides, etc.
Do you ever look at the code generated by JastAdd?
If/when you work with test cases, do you prefer writing them early (e.g "Test-Driven Development", TDD), late, or a mix of both?

Is there any difference in the workflow based on how far along you are in the lab? For example:
In the beginning, in the middle, and in the end?

If you took the compiler course, was there any difference in your workflow for those labs?

Table III: Development Tools

First table is about how much you use a tool/technique
Second table is about how you like using the tool/technique.

Please fill in the tables and think aloud

How much they are used when you develop software in general
Its main strengths and weaknesses

Back to CodeProber

What do you like most with CodeProber? Why?
What do you like least with CodeProber? Why?
What feature(s) would you want to add to CodeProber?

If yes, any thoughts on the difference?
(Main difference from their perspective is probably the predefined minimised probes)

What do you think about the labs?
Was your workflow different in the different labs? For example, did you use test cases more or less in certain labs, etc.

In case they need reminder of the different labs, they are:
1. JastAdd intro
2. Type Inference
3. Dead assignment analysis

4. Interval & array bounds analysis

What do you think about the labs?

Did you use CodeProber more or less in any of the labs?
In case they need reminder of the different labs, they are:

1. Scanning & Parsing (LL1)

2. Scanning & Parsing (LR)
3. Visitor pattern, basic properties
4. Semantic analysis (names & types)

5. Interpretation
6. Code generation

Anything you would like to add to this interview?
Topics we have missed/not spent enough time on

Do you have any questions to us?

Thank you for participating, here is your Coffee mug
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B Background Information Form

The first form filled in by the interviewees.

Table I: Background Information

Which program are you in? (D, C, ..)

Which year are you in at LTH?

How many years have you been
programming? Free time counts!

How would you compare your
programming skills to your classmates? Much

Worse Worse Identical Better Much
Better

Did you take the compiler course?

What made you apply to the program
analysis course (and compiler course, if
applicable)

(answer verbally)
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C CODEPROBER Feature Form

The second form filled in by the interviewees, two pages.
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D Tool/Scenario Form

The third form filled in by the interviewees.
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E Coding Scheme

The coding scheme extracted from the interview transcripts.

Cateogry 1 Category 2 Category 3 Category 4 Code Quotes
Background C1

Reason for selecting course C1.1
Found compiler course fun/interesting C1.1.1
Analysis course sounded fun/interesting C1.1.2

Wanted a more challenging course C1.1.2.1
Is part of the specialization C1.1.3
Interested in statically analysing programs C1.1.4

Compiler dev. experience outside course C1.2
Yes C1.2.1

As hobby C1.2.1.1
As work C1.2.1.2
Course (project course / master’s thesis) C1.2.1.3

No C1.2.2
Intro Using
CodeProber C2

Can create normal probe C2.1
Yes C2.1.1
No C2.1.2

Can create AST view probe C2.2
Yes C2.2.1
Yes, with some help C2.2.2
No C2.2.3
Problem with zooming C2.2.4

CodeProber features C3
Exploration C3.1

Iteratively following node references across
the AST C3.1.1

Checking that attribute reference goes to
correct node C3.1.2

Listing available attributes/properties C3.1.3
Explore nodes that aren’t visible in source
code C3.1.4

Liveness C3.2
Changing text in CodeProber to cause updates C3.2.1

To understand what causes a problem C3.2.1.1
Rebuilding compiler to cause updates C3.2.2

More often than changing the text, due to
working on one example C3.2.2.1

Hovering C3.3
Differentiating multiple probes C3.3.1
Used when confused about where the probe is C3.3.2

Creating probes from node references C3.4
Did not know clicking on node name would
open a new window (only used nested probes) C3.4.1

Didn't know you could create nested probes C3.4.2
AST View C3.5

When it's used C3.5.1
More in the first labs C3.5.1.1
More in the beginning of each lab C3.5.1.2
Almost always open C3.5.1.3

Why it's used C3.5.2
To understand structure C3.5.2.1
To explore attributes for different nodes C3.5.2.2
Didn't take the compiler course and using the
AST view a lot C3.5.2.3

Alternatives C3.5.3
Looking at abstract grammar instead C3.5.3.1
Instead using normal probes to explore
children C3.5.3.2

Dumping AST to text form C3.5.3.3
Unclear about its use C3.5.4
Used more in compiler course C3.5.5

Had to build AST yourself there. In analysis
course, the AST is already correctly built C3.5.5.1

Minimising probes C3.6
Confusing UI/UX C3.6.1

Arrows C3.7
Mostly used in one lab C3.7.1
Looking at the textual/probe output C3.7.2
Too cluttered C3.7.3
Zooming in to look at the arrows more clearly C3.7.4
Helped build understanding C3.7.5
Insert empty lines to see arrows more clearly C3.7.6
More useful in labs 2 and 3 C3.7.7

Squiggly lines C3.8
Habit from editor C3.8.1
Adding an error to check if it appears in error
probe C3.8.2

To check that we implement the right things C3.8.3
Better than probes windows.. C3.8.4

..because often you are interested in a specific
node/place, not a list of nodes/places C3.8.4.1

Stopping long running C3.9
Restart CodeProber instead in terminal C3.9.1
Is useful, fits with circular attributes (infinite
loop tendency) C3.9.2

Never had issues with long running probes C3.9.3
Quicker than restarting in terminal C3.9.4
It doesn't really do anything C3.9.5

Search probe C3.10
Hard to know it was possible C3.10.1
Not seen before, but seems useful C3.10.2

Can replace many probes on the screen C3.10.2.1
Not useful C3.10.3

Often want to know just a single value C3.10.3.1
Actually used it C3.10.4

Tracing C3.11
Not seen before C3.11.1

..but it seems useful C3.11.1.1
Not used / useful C3.11.2

Too little information C3.11.2.1
Too much information C3.11.2.2
Buggy C3.11.2.3

Seems similar to a debugger C3.11.3

p2 p3 p4 p6
p2 p4 p5 p9
p8
p2 p5 p7 p9
p0 p1

p1 p9 p10
p2 p5
p3 p4 p6 p7 p8

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p1 p2 p3 p4 p5 p8 p10
p0 p6 p7 p9

p3

p0 p2

p3

p1 p7 p7

p0

p5 p7
p0 p1 p2 p3 p4 p6 p8 p9 p10
p7
p0 p1 p2 p3 p4 p5 p7 p8 p9 p9 p10 p10

p1 p3 p4 p5 p6

p0 p1 p2 p2 p3 p5 p6 p7 p8 p10
p2 p4 p9
p7
p2 p7 p7 p9 p9

p7 p10 p10

p6 p8
p0 p1 p2 p3 p5 p5 p6 p9 p9 p10
p0
p2

p1 p2 p5 p8 p8
p5 p5 p8

p8 p8 p8

p0
p1 p2 p3 p5

p3 p4

p0 p2 p10
p4
p7 p7

p6 p7

p0 p3 p4 p5 p6 p7 p8 p9 p10
p1 p3
p0 p10
p1 p2 p5 p6 p8 p10
p3 p4 p5 p7 p8
p3 p4 p4 p5 p7 p9

p2
p9
p9
p0 p1 p2 p2 p3 p4 p6 p8 p9 p10
p3

p3 p6

p0 p5 p7

p5

p0 p2 p4 p5 p6 p8 p9 p10
p1 p2 p5 p7

p0 p4

p3
p4
p6
p0 p3 p7
p1 p3 p6
p1 p2 p2 p4 p5 p6 p8 p10

p3 p10
p9
p0 p3 p5 p6 p7 p8
p1
p3 p5 p6
p8
p4
p0 p10
p2
p4



128 Study of the Use of Property Probes in an Educational Setting

Actually used it C3.11.4
Other features C3.12

Normal editor features C3.12.1
Same shortcuts as in VS Code C3.12.1.1
Syntax highlighting C3.12.1.2

Capture output for print statements C3.12.2
“Backing file” support - sync CodeProber’s
content with text file on disk C3.12.3

Sharing state as a URL C3.12.4
Sticky highlighting - mostly for sharing
screenshots with others C3.12.5

Search/filter in the property list C3.12.6
Workflow C4

Editor Choice C4.1
VS Code C4.1.1

Main editor C4.1.1.1
It has syntax highlighting for JastAdd C4.1.1.2
Java plugin isn't good C4.1.1.3

IntelliJ C4.1.2
Main editor C4.1.2.1
It has a good debugger C4.1.2.2
Doesn’t have JastAdd plugin C4.1.2.3

Emacs C4.1.3
Main editor C4.1.3.1

Information gathering C4.2
Starting with reading C4.2.1

…lab instructions C4.2.1.1
…the handout code C4.2.1.2

Looking at the generated JastAdd code C4.2.2
To understand compile errors C4.2.2.1
Initially because lack of trust/understanding in
JastAdd. Now does it less C4.2.2.2

If e.g control-clicking a class name in IDE, it
will jump to the generated code, not the
original definition

C4.2.2.3

Use of lecture slides C4.2.3
Using them C4.2.3.1
Not not using them C4.2.3.2

Using CodeProber to understand codebase C4.2.4
Estimate of time spent in CodeProber vs other C4.2.5

Majority of time in IDE and CodeProber C4.2.5.1
Concrete (approximated) numbers C4.2.5.2

Look at quizzes in Moodle C4.2.6
Use of CodeProber C4.3

Iteratively writing code and checking output
in CodeProber C4.3.1

Relation to testing C4.3.2
Writing less test cases due to CodeProber C4.3.2.1
Develop tests in CodeProber first, possibly
converting to unit test once it behaves as
expected.

C4.3.2.2

Use mostly in… C4.3.3
Beginning and end of lab C4.3.3.1
End of lab C4.3.3.2

Using CodeProber more in this course because
we get a codebase from the start C4.3.4

Using it more when stuck / understanding less C4.3.5
Initially use print, use CodeProber if that
doesn’t work C4.3.6

Keep CodeProber running all the time C4.3.7
Use it more and more over the span of the
course C4.3.8

Already had established workflow from prior
experience, not using CodeProber very much C4.3.9

When tests are written C4.4
Mainly early C4.4.1
Throughout the entire process C4.4.2
Mainly late C4.4.3
Never / only if required C4.4.4

The size/scope of a lab doesn’t require you to
write test cases, as much as a “big” project
does.

C4.4.4.1

Feels annoying to have to write them when
you feel “done” and the code already works C4.4.4.2

Didn't work C4.4.4.3
Workflow changes C4.5

Write more code in the beginning, debug
things towards the end C4.5.1

In compiler course C4.6
Used CodeProber / used it more C4.6.1
Didn't use CodeProber / used it less C4.6.2

Had built the compiler from the ground up,
knew how everything worked, less need for
CodeProber

C4.6.2.1

Wasn’t available C4.6.2.2
Some of the tasks better handled as test cases,
like the parsing tasks (=dumpTree tests) C4.6.2.3

Many new things to learn about compilers,
was too much to add CodeProber on top of
that

C4.6.2.4

Wrote more test cases C4.6.3
Wrote tests earlier in the labs C4.6.4

Developing Tools/
Scenarios - Language
tooling

C5

Printf debugging C5.1
Positives C5.1.1

Shows which code is actually executed and
what order C5.1.1.1

It's always an option, low barrier to use C5.1.1.2
Lets you extract very specific information C5.1.1.3

Negatives C5.1.2
Doesn't feel natural to print in the course C5.1.2.1
Bad for longer projects with feedback loops C5.1.2.2
Hard to use due to unpredictable evaluation
order from JastAdd C5.1.2.3

Must format messages well / make sure
toString is implemented C5.1.2.4
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Need to guess where the bug is (where to
introduce print statements) C5.1.2.5

Not good with loops C5.1.2.6
Doesn’t help with regression testing C5.1.2.7
Is primitive C5.1.2.8
Must clean up afterwards (remove the printf) C5.1.2.9

Breakpoint/step debugging C5.2
Positives C5.2.1

Good for longer projects with feedback loops C5.2.1.1
Shows which code is actually executed and
what order C5.2.1.2

Like it because you can see how variables
change/watch expressions C5.2.1.3

Can evaluate code while the debugger is
stopped C5.2.1.4

Can help you understand the code generated
by JastAdd C5.2.1.5

Negatives C5.2.2
Haven't learnt step debugging enough C5.2.2.1
Can be hard to setup & run C5.2.2.2
A bit difficult with JastAdd due to all
generated code C5.2.2.3

Didn't know it was possible with JastAdd C5.2.2.4
Isn't always supported (well) C5.2.2.5

Using JDB (CLI Java Debugger) C5.2.3
Test cases C5.3

Positives C5.3.1
Good for regression C5.3.1.1
Good for longer projects with feedback loops C5.3.1.2
Can show intended use of the code C5.3.1.3
Requires you to think about what you want
from your codebase (when doing TDD at
least)

C5.3.1.4

Negatives C5.3.2
Don't like writing them C5.3.2.1
Adds some maintenance cost to codebase C5.3.2.2
Can be hard to extract information from a test
failure C5.3.2.3

There are bad test cases that can be misleading C5.3.2.4
CodeProber C5.4

Used instead of normal test cases C5.4.1
AI C5.5

Positives C5.5.1
Can get an answer very quickly C5.5.1.1
Generate test cases C5.5.1.2
Asking for documentation C5.5.1.3
Can find errors in your code C5.5.1.4
Good for routine tasks you’ve done many
times before C5.5.1.5

Negatives C5.5.2
Not good with JastAdd C5.5.2.1
Not good with advanced code C5.5.2.2
Not the quality you want C5.5.2.3
Can't trust AI C5.5.2.4
Quicker to read the documentation instead of
asking the AI C5.5.2.5

You don’t learn anything / don’t become a
better programmer C5.5.2.6

Other tools C5.6
grep / git grep C5.6.1

Used for finding available attributes C5.6.1.1
Ask TA C5.6.2

Developing Tools/
Scenarios - General
development

C6

Printf debugging C6.1
Using printf more often C6.1.1
Doesn’t work well with multithreaded code or
when doing performance analysis C6.1.2

Breakpoint/step debugging C6.2
More useful when no JastAdd caching/etc
unpredictability C6.2.1

Doesn’t work well / is hard to use with
multithreaded code C6.2.2

Test cases C6.3
Write more tests C6.3.1
Use them only if the course requires it C6.3.2

AI C6.4
Use AI less C6.4.1

Perception of
CodeProber C7

Positives C7.1
UI/UX C7.1.1

Easy to click around and interactively explore C7.1.1.1
Easy to visualise things C7.1.1.2
Easy to use C7.1.1.3
Quick to setup and start C7.1.1.4
Works very well with tree structures and
attributes (aka with JastAdd) C7.1.1.5

Retains state on reload C7.1.1.6
Can access properties without recompiling
(compare to having to recompile after adding
print statements for example)

C7.1.1.7

Liveness C7.1.2
When changing input program C7.1.2.1
When changing/updating compiler C7.1.2.2

Would feel lost without CodeProber / it is
ingrained into the workflow C7.1.3

Similar function as a breakpoint/step-
debugger C7.1.4

Similar function as printf debugging C7.1.5
Speeds up development C7.1.6
No compile-time dependency C7.1.7

Negatives C7.2
UI/UX issues C7.2.1

Too many windows C7.2.1.1
Issues with zooming C7.2.1.2
Can be a bit click intensive C7.2.1.3
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Unclear if the information in CodeProber is
up-to-date C7.2.1.4

Unclear if it is the compiler or CodeProber
that is buggy C7.2.1.5

Hard to know in what probe the print will be
in C7.2.1.6

Doesn't show what happens internally in
attributes C7.2.1.7

Too much information, hard to find what you
are looking for C7.2.1.8

Some properties not visible in UI (did not
click ‘show all properties’) C7.2.1.9

Learning curve C7.2.1.10
Not obvious which elements in the UI are
interactable C7.2.1.11

Technical issues C7.2.2
Freezes/crashes C7.2.2.1
Problems with WSL C7.2.2.2
Can't start with giving it a (backing-)file in
WSL C7.2.2.3

JSON parsing error in terminal C7.2.2.4
The concept of probes doesn’t transfer to other
styles of compilers (pass-based) C7.2.3

Suggested improvements C7.3
Need a “back button” to undo incorrect
operations in the UI C7.3.1

Being able to see what version of the compiler
is used C7.3.2

Better support for resizing windows C7.3.3
Refresh jar file-button C7.3.4
See all standard output in one window, not per
probe C7.3.5

Add step-debugger support C7.3.6
Show attribute kind in UI (syn / inh / etc) C7.3.7
Connect probe to implementation (source file
and/or doc comment) C7.3.8

File system integration C7.3.9
Be able to copy stack trace of long-running /
stuck evaluation C7.3.10

Timestamp messages in terminal C7.3.11
Handle Ctrl/Cmd+S, don’t show save dialog C7.3.12
Add/improve documentation C7.3.13
Show attribute definition C7.3.14

Strength and likes most C7.4

Weakness and likes least C7.5
Courses C8

Opinions about the labs in program analysis
course C8.1

Like it C8.1.1
Nice to understand how an IDE works C8.1.1.1
Learn a lot C8.1.1.2

Helping each other C8.1.2
Difficult C8.1.3

Time-consuming C8.1.3.1
Frustrating C8.1.3.2
Hard if you haven't taken the compiler course C8.1.3.3
Slow to get started C8.1.3.4
Especially lab 3 C8.1.3.5

Good continuation of the compiler course C8.1.4
Many ways to solve the labs C8.1.5
A lot of debugging C8.1.6
Not that much advanced JastAdd features C8.1.7
Good that they contain instructions for
CodeProber in the beginning C8.1.8

Not sure what you learn from them C8.1.9
Lab 2 and 3 were too similar C8.1.10

Opinions about the labs in compiler course C8.2
Like it C8.2.1
More straightforward/guidance about what to
do C8.2.2

Difficult C8.2.3
Frustrating C8.2.3.1
..but easier than analysis course C8.2.3.2

Opinions about the labs in both courses C8.3
The labs don’t “hold your hand” so much, can
be frustrating/difficult C8.3.1

Not much IDE support / developer tools for
JastAdd C8.3.2
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