
Finding and Resolving
Common Code Style Errors in Java
Mark Lundager

D19, Lund University
Sweden

mark_06_20@outlook.com

Andreas Berqvist
E18, Lund University

Sweden
andreas.bergquist92@gmail.com

Abstract
Verbose code with highly specialized if-statements con-
taining return-statements for the different cases of the
conditions is harder to maintain when compared to a single
return-statement containing the condition. It is commonly
referred to as a code style error. In this report we present
a tool which can be used as an extension in your IDE, and
performs on-demand analysis of your code to discover, and
repairs to your style violations. All while using the same
variables, constants and general structure of your original
code. There is no change in functionality of the written code.
It is also able to preserve the comments you may have in
your original code. With this tool we hope to help people
who are prone to these style errors to kick that habit.

1 Introduction
Verbose code is common amongst new programmers. As
a beginner, it is intuitive to write code which reflects the
programmer’s thought process. However, what a beginner
considers intuitive and self-evident may not always align
with the most clear and concise coding practices. An example
of this is the If Return Condition (IFRC) semantic style
issue [5]. Instead of checking a condition with an if statement
to then return either true or false in respective blocks, one
can simply return the condition since the condition itself
represents the value that we wish to return. The second
approach brings several benefits, including simpler code,
reduced complexity, and improved clarity. By returning the
condition directly, the code becomes more straightforward,
requiring fewer lines and making it easier for developers to
understand. In the coding industry where there are multiple
software engineers that are working on the same codebase, it
is vital to have a coherent code style and to avoid redundant
code as they are a prime example of Wayne’s Babich’s double
maintenance problem [1]. Regardless, it is not uncommon
for such practices to be ignored even if they are encouraged.
It is also difficult to motivate a reason for performing these
refactors if the code works as intended. Hence, it would
be ideal if a tool could refactor such instances of semantic
style issues to the improved ones in order to help beginners
improve more quickly and foster a better understanding of
clean coding practices.

Course paper, EDAN70, Lund University, Sweden
January 8, 2024.

In this project, we aim to develop a Java Code Style Im-
prover using the Declarative Referenced Attribute Grammar
JastAdd[3] in conjunction with the Java compiler ExtendJ
[2] to detect some of the more common semantic style is-
sues and refactor them. Due to the nature of JastAdd, this
linter will be an on-demand analyzer, meaning the user has
the choice which cases should be ran, and which should
not. Only computing what is necessary for the analyzes
being ran. This differs from other popular linters such as
Programming Mistake Detector (PMD), SonarLint, and
Checkstyle. Moreover, for a linter to be useful, it must offer
convenience. Otherwise, it would defeat its purpose. Conse-
quently, our tool will be implemented as an extension for In-
tegrated Development Environments (IDEs), such as Visual
Studio Code. This will be accomplishedwith Magpiebridge
which offers an interface to communicate with IDEs through
the Language Server Protocol (LSP).

2 Motivating Examples
Listed below are examples of verbose code and their respec-
tive proposed solution. One is the Empty If Body (EIFB)
style issue [5]. In which the programmer has a condition,
and the intended result is to only perform actions when the
condition does not hold. If inexperienced, this may result in
the programmer leaving the if-body empty and solely adding
code in the else-body. As illustrated in the code-snippet be-
low:

Listing 1. EIFB style error
public boolean eifb(int y, int x){

if( x < y ){

}else{

return false;

}

}

However, the same result can be achieved by simply replac-
ing the if-else statement with an if-statement check-
ing the inverted condition. This way, there is no redundant
statement with an empty block. This action has been per-
formed in the repaired code below.

Listing 2. EIFB style error repaired
public boolean eifb (int y, int x){

if(! ( x < y ) ){
1



Course paper, EDAN70, Lund University, Sweden Mark Lundager and Andreas Berqvist

return false;

}

}

Another examplewith is the previouslymentioned IFRC[5].
In this example, the only code contained in the if-, and else-
bodies is a return-statement either returning true or false
depending on the condition in the if-statement.

Listing 3. IFRC style error
public boolean ifrc(int y, int x){

if( x < y ){

return true;

}else{

return false;

}

}

Essentially, either the value, or the inverted value of the
condition is returned. Which is equivalent to returning the
condition, or the inverted condition. Consequently, thismakes
the else statement redundant.

Listing 4. IFRC style error repaired
public boolean ifrc (int y, int x){

return x < y;

}

The final style violation from DeRuvo our tool detects
is the If Return True (IFRT)[5]. The IFRT-antipattern
consists of a if-body containing a return statement, no
else-block and immediately after the if-body there is a
return statement.

Listing 5. IFRT style error
public boolean ifrt (int y, int x){

if( x < y ){

return true;

}

return false;

}

For all intents and purposes, given that the two return
statements return two different boolean literals one may re-
place the entire violation with one return statement. Due to
their similarities, one may regard the IFRT-antipattern as a
special case of the IFRC-antipattern. Therefore, the repair
is identical to the IFRT style error. Due to time restraints,
there was no opportunity of correcting the indentation of the
code style improvements. We use the pretty print introduced
by ExtendJ which does not have support for indentation.
However, there are multiple extensions that solves this is-
sue. Therefore, extending the pretty print in ExtendJ was
determined out of scope.

3 Java Code Style Improver
Our solution, the Java Code Style Improver, is a tool designed
to identify verbose code in Java, and provide suggestions for
improvements based on these detections. The Java Code Style
Improver is available either as a standalone program or as an
IDE extension. This provides a convenient way for the user
to interact with the linter. By letting the static analysis being
integrated directly into the development environment, the
user does not have to go out of theway to utilize the tool. This
reduces the risk of a user not utilizing the tool due to the code
working. To integrate our tool as an extension, we opted for
Magpiebridge, an LSP framework, making the process quick
and straightforward. The Java Code Style Improver is based
on ExtendJ, an extensive Java Compiler developed using
JastAdd. Due to ExtendJ using JastAdd, it was simple to
extend the Java compiler by adding attributes which defined
the characteristics of the semantic style issues. For each
such issue, there is a corresponding JRAG-file, making the
analyzing systemmodular, allowing the user to decide which
patterns to look out for. To see the lines of code of each RAG-
file see Table 1, These RAG files also provide the improvement
suggestions using the information from the anti-patterns,
such as the relevant variables, values, and even comments
present in the code. This leads to no information loss when
one decides to refactor the code according to the proposed
fix. The overall architecture of our solution can be seen in
figure 1.

The first step to implementing the Java Code Style Im-
prover was analyzing the Abstract Syntax Tree (AST) gen-
erated by using ExtendJ to compile written code. This was
done with the help of Code-Prober[7] which facilitated the
process of identifying the troublesome sub-trees that re-
flected the code-style issueswewished to detect. Code-prober
is a tool which provides a graphical interface to interact with
the AST directly in real time. Using this information, we
were able to determine in which nodes we should introduce
new attributes. Additionally, it allowed us to understand
when a false-positive might emerge, a code-style improve-
ment which changes the behaviour of the code. This was
especially important as our approach to developing this tool
was to minimize fixes that would alter the behaviour of the
code. Changing the behaviour of a program is in our opinion
worse than missing a potential refactoring improvement.

To demonstrate the process, we can use the IFRC as an
example. In figure 2 we can see the AST representation of
the IFRC example code presented in listing 3. By looking at
this visual representation, it becomes clear that we have to
define an attribute for if-statement to determine whether
it itself violates the IFRC issue. We know that in order for
an IFRC issue to be present, there has to be an else block in
the if-statement. So we write an attribute which checks

2



Java Codestyle Improver Course paper, EDAN70, Lund University, Sweden

Figure 1. Architecture of Java Code Style Improver

whether this is the case. Then in a similar manner we con-
tinue looking and developing attributes for characteristics
which define IFRC. However the complexity increases as the
number of nodes increase.

Figure 2. IFRC AST structure

Table 1. The RAG-files for antipattern analysis and their
respective lines of code.

RAG-file Lines of code
IFRC 61
EIFB 50
IFRT 101

Long add. to short add. 70
Long sub. to short sub. 57
Long mult. to short mult. 57
Long div. to short div. 57

CommentChecker 52

3.1 Limitations
It was vital for the proposed solution to be able to discern if
an anti-pattern was genuine. Therefore we opted to limit the
search to unambiguous code patterns. Therefore the anal-
yser has a narrow scope of what constitutes an anti-pattern,
which in fact does lead to false negatives. Our decision to
choose this narrow definition of an anti-pattern is due to the
An example would be in the IFRC case where the if-body
and else-body does not solely consist of a return statement.

This perfectly displays how quickly defining the characteris-
tics for style issues becomes complex. In order to determine
whether such an if-statement presents an IFRC issue, we
would need the ability to know if the code contained in the
blocks have side effects. More specifically, whether a state-
ment produces a side-effect. This problem is related to Purity
Analysis, which is the problem of determining the side effects
of methods [6]. This is a known difficult problem and would
have to be a project of its own. In addition not every edge-
case was considered for every antipattern. Instead we chose
to go the sound route[4], with a functional tool performing
several analyses rather than a highly specialized tool cover-
ing every case of a single antipattern. Therefore, in order to
enforce our approach of avoiding as many false positives as
possible, we implemented very strict requirements to discern
whether a style issue is presented. An example would be the
requirement of no other statements than a return statement
in both blocks of an if statement for the IFRC issue.

4 Evaluation
The evaluation was performed on 27 repositories from the
course Compilers (EDAN65) at Lunds Tekniska Högskola
(LTH). These repositories contained all the necessary code
to solve all issues presented in the course. This includes code
such as visitor implementations, Test code, name analysis,
type analysis and code generation. This was done by creating
a script which checks for all Java files within a repository,
compiles them and then runs the analysis. This was per-
formed once. Then we collected the amount of code style
issues detected by the Java Code Style Improver.

Table 2.Analysis and number of triggers for each antipattern

Antipattern Triggers
IFRC 2
EIFB 0
IFRT 0

Long operation to short operation 0

As shown in Table 2, out of 27 repositories, only 2 code
style violations were found. Since the compiler course is an
advanced programming course, students are more likely to

3



Course paper, EDAN70, Lund University, Sweden Mark Lundager and Andreas Berqvist

be familiar with concepts and code practice. Consequently,
the result of solely detecting 2 IFRC instances does not come
as a surprise. In one way, this demonstrates that the even
experienced programmer can use linters in order to learn.
This does not come as a surprise as just because one may
have experience with one programming language, does not
necessarily mean that those skills translates to another pro-
gramming language. An example would be Python and As-
sembly. The few detections can also be attributed to the very
strict analysis and the few code style issues implemented. In
order to better understand the practicality of The Java Code
Style Improver, further evaluation would have to be carried
out on code produced by beginners.
In addition to the evaluation of the repositories of the

compiler course, manual testing were performed on all the
different style issues. This was done to ensure that the refac-
toring suggestions did not change the behaviour of the code.
We did this by experimenting with code which should be
detected and introducing small changes to that code. During
this testing, we were unable to find any instances of the tool
suggesting a fix which changed the behaviour of the code.
Due to the nature of coding, we cannot claim that we have
tested every scenario but this shows some promise to our
approach of avoiding false positives.

5 Related work
5.1 AI assisted coding
As technology advances rapidly, the landscape of learning
to program is undergoing a shift. AI-assisted coding tools,
such as ChatGPT, GitHub Copilot, and OpenAI Codex, are
redefining the way developers approach programming tasks.
The traditional model of learning to code by manually writ-
ing every line from scratch may not seem as important any-
more with the help of these tools. This makes linters such
at the Java Code Style Improver seem less useful. Tools like
GitHub Copilot are not as limited as static analyzers which
are crafted manually [8].

5.2 Linters
A linter is a static code analysis tool, which are used to flag
errors. There are various linters, some examples are Check-
style, Programming Mistake Detector (PMD) and Sonarcube.

Checkstyle is a highly configurable tool designed to assist
programmers in adhering to a set coding standard. This
standard can be designed from a preset list of checks. These
checks can range from limiting the numbers of parameters
in a method to having a set character-limit per line1.

PMD primarily focuses on unused variables, empty catch
blocks, unnecessary object creation. It has a set of rules one
can use, as well as support for writing ones own rules2.

1https://checkstyle.org/, visited 20 December 2023
2https://pmd.github.io/ , visited 20 December 2023

SonarLint is a product sold by the sonar company. It fea-
tures over 5000 rules and provides real-time feedback3. Due
to it being proprietary, there is no room for users to write
their own rules.

6 Conclusion
In this project we have developed The Java Code Style Im-
prover, a linter for Java available as an extension in IDEs.
This was done by extending ExtendJwith attributes defining
code style violationswith JastAdd and utilizing Magpiebridge
as the LSP interface to communicate with the IDE:s.
Since the evaluation was performed by running the tool

on code written by experienced programmers it is difficult
to assess the effectiveness of the linter. However, since the
tool was still able to detect code style issues in such code,
it means that the potential benefits of linters may not be
limited to beginners. It is also important to note that even
if one may have experience in developing code, there are
various programming languages which vary in coding prac-
tices. Meaning an experienced developer being introduced
to a new programming language may still find a linter useful.
Additionally, we were unable to write code which produced
false positives, showcasing our intention of avoiding false
positives.

6.1 Future work
The Java Code Style Improver can be improved and expanded
upon. One could add additional antipatterns so that the tool
becomes more extensive in its analysis. An example for an
antipattern would be for the for-loop. Depending on the
contents of a for-loop, it can be converted to a for-each-loop
without changing or breaking the code.

Additionally, one can enhance the existing checks such as
the IFRC issue by implementing an attribute for every state-
ment node which defines whether it produces side effects.
An approach to this implementation would be to introduce
an attribute for the abstract AST node "statement". This at-
tribute would be of boolean value and return false by default.
Then step by step iterate through the different statement
nodes and writing code to determine whether each node of
type statement produces side-effects. A potential risk with
this improvement is introducing false positives which we
aimed to avoid.
Finally, one may consider modifying the prettyprinting

to have support for indentation. As it currently stands, the
linter does not conform to standard practices in regards to
indentation. Since the information is available from the AST,
it is possible to implement a fix for this issue.

3https://www.sonarsource.com/products/sonarlint/, visited 20 December
2023

4

https://checkstyle.org/
https://pmd.github.io/
https://www.sonarsource.com/products/sonarlint/


Java Codestyle Improver Course paper, EDAN70, Lund University, Sweden

Acknowledgments
Wewould like to thank Idriss Riouak for the starting skeleton
code, the Magpiebridge integration and guidance.

References
[1] Wayne Babich. 1986. Software Configuration Management - Coordination

for Team Productivity. Addison-Wesley Publishing Company.
[2] Torbjörn Ekman and Görel Hedin. 2007. The Jastadd Extensible Java

Compiler. SIGPLAN Not. 42, 10 (oct 2007), 1–18. https://doi.org/10.
1145/1297105.1297029

[3] Görel Hedin and Eva Magnusson. 2003. JastAdd—an aspect-oriented
compiler construction system. Science of Computer Programming 47, 1
(2003), 37–58. https://doi.org/10.1016/S0167-6423(02)00109-0 Special
Issue on Language Descriptions, Tools and Applications (L DTA’01).

[4] Ben Livshits. 2015. In Defense of Soundiness: A Manifestp. Commun.
ACM (2015).

[5] Andrew et al. Luxton-Reilly. 2018. Understanding semantic style by
analysing student code. (2018).

[6] David J. Pearce. 2011. JPure: A Modular Purity System for Java. In-
ternational Conference on Compiler Construction (CC) (2011). https:
//doi.org/10.1007/978-3-642-19861-8_7

[7] Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and Adrian Pop.
2022. Property Probes: Source Code Based Exploration of Program
Analysis Results. In Proceedings of the 15th ACM SIGPLAN International
Conference on Software Language Engineering (Auckland, New Zealand)
(SLE 2022). Association for Computing Machinery, New York, NY, USA,
148–160. https://doi.org/10.1145/3567512.3567525

[8] Muhammad Ali Babar Triet H. M. Le, Hao Chen. 2020. Deep Learning
for Source Code Modeling and Generation: Models, Applications and
Challenges. ACM Comput. Surv. (2020). https://doi.org/10.1145/3383458

5

https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1145/1297105.1297029
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1007/978-3-642-19861-8_7
https://doi.org/10.1145/3567512.3567525
https://doi.org/10.1145/3383458

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Java Code Style Improver
	3.1 Limitations

	4 Evaluation
	5 Related work
	5.1 AI assisted coding
	5.2 Linters

	6 Conclusion
	6.1 Future work

	Acknowledgments
	References

