
JastAdd Bridge: Interfacing reference attribute grammars with
editor tooling

Johannes Hardt
Lund University

jo8482ha-s@student.lu.se

Dag Hemberg
Lund University

da6673he-s@student.lu.se

Abstract
Nowadays, programmers expect rich editor support when
writing code, such as type hints, code completions, and
warnings. While this is present in mainstream languages
and editors, lacking such tooling can be a pain point when
developing your own language. Our paper proposes an ex-
tension for the VS Code editor, JastAdd Bridge, that acts as
a translation layer between languages developed with the
JastAdd framework and the language server protocol (LSP).
We find that it facilitates rapid integration with editor tool-
ing while preserving flexibility in the way language authors
choose to interact with the programming environment.

Keywords: language, language server, lsp, jastadd,
codeprober, vscode

1 Introduction
IDEs (integrated development environments) are tools used
by many programmers. The purpose of an IDE is to help
developers efficiently write and debug code written in most
languages, providing debugging tools, diagnostics, quick-
fixes and refactoring options for common antipatterns,
among others. These functionalities are often not provided
by the editor itself, but by a language server, which compiles
and analyzes code and gives relevant information back to
the editor.

However, not all languages have an implementation of a
dedicated language server. Newer, smaller languages often
don’t have enough active users or developers who have
enough spare time to integrate a fully-featured server.
Those developing their own languages and compilers from
scratch face the same issue, since the language server is of-
ten a separate challenge to the language itself.

1.1 Motivation
The problem According to the StackOverflow de-
veloper survey [1], almost 74% of developers surveyed reg-
ularly used the IDE named Visual Studio Code (VS Code). VS
Code features extension support, giving developers an easy
way to add support for new languages. However, the same
survey also shows widespread support for other editors

such as IntelliJ IDEA and Vim, both of which support plu-
gins or extensions of their own. From this, an issue arises:
given different IDEs with plugin support and differ-
ent languages, separate integrations are needed, a
number which quickly grows as more editors and languages
are developed.

Thankfully, there is a solution to this problem: the language
server protocol [2], or LSP. LSP provides a standardized way
for language servers and editors to easily communicate with
each other, abstracting away most or all implementation de-
tails specific to any one editor language server. Instead of
integrating with one specific editor, language servers can
implement their plugins against LSP. Likewise, IDE devel-
opers can integrate against LSP without worrying about
language-specific details. This brings the total number of in-
tegrations required given IDEs and language servers
down to .

Figure 1. integrations turning into
through the use of LSP. Source: [13]

Language Server Protocol Developed by Microsoft, LSP
uses JSON-RPC-based messaging to send instructions and
information between the editor and the server. The client
(editor) continuously sends information to the server about
what the user is doing, e.g typing, saving, or requesting
some action be done such as quickfixing, and the server re-
sponds with some appropriate action (updating autocom-
plete suggestions, performing the quickfix, updating error
diagnostics, etc) or message. A diagram demonstrating an
example of this is shown in Figure 2.

Course paper, EDAN70, Lund University, Sweden
January 25, 2024.

Figure 2. Diagram of requests and responses sent back and
forth between the client and server through LSP. Source: [3]

LSP by itself is, as the name implies, a protocol, and as such
requires some actual implementation in order to be used.
One such implementation is LSP4j, which provides an API
to use LSP features in Java.

JastAdd While LSP makes it easier to integrate language
servers and editors, the landscape of programming is con-
stantly evolving, and new languages are constantly being
developed. Developing a new language is often analogous
to writing a compiler for that language using a meta-com-
piler, or compiler-compiler. Providing LSP support on a
more general level (e.g., from within the meta-compilation
system) further eases the process of integrating a new lan-
guage with an editor and provides a pleasant experience for
developers in that language.

For Java, one such meta-compilation system is JastAdd.
JastAdd features support for Reference Attribute Gram-
mars (RAGs), used for conveniently extending compilers
with functionality or language constructs without compro-
mising ease of computation. Using JastAdd, users can syn-
thesize methods onto existing classes or nodes in an AST,
and refer to those nodes in other synthesized methods. This
allows for features such as static analysis or code generation
to be added without manually modifying the source code
of a program. Users can also divide their code into modules
called aspects, where similar or related functionality is often
grouped together.

1.2 Problem description
As of now, there isn’t any way to quickly integrate lan-
guages or tools specified with JastAdd with code editors.
An existing tool, C o d e P r o b e r [14], allows for inspection
of the generated AST, provided you give it the path to
a JastAdd compiler. While this is helpful for developing
a language with JastAdd, it doesn’t provide the tooling
that is expected in modern software development. Another
drawback is that users cannot choose their editor, since
CodeProber provides its own web-based editor.

2 Solution
We propose a VS Code extension that provides language
server protocol (LSP) [2] support in JastAdd-based lan-
guages. This extension can be configured with a path to
a .jar file built with JastAdd, and can then provide editor
interactions for the provided tool. The language server acts
as an API between common LSP interactions and a set of
JastAdd attributes. These attributes allow the writer of a
JastAdd tool to specify how different interactions should
work with their specific language.

One goal of our extension is to significantly decrease the
amount of effort for enabling editor interactions for your
language. For smaller projects, the amount of effort writing
the LSP server and editor extensions might not be worth the
benefits. Similar approaches have been tried before, for ex-
ample, the MagpieBridge framework [12]. By providing an
abstraction layer (similar to ours) on top of the LSP, it allows
simplified integration of static analysis tools with editors.

2.1 Implementation
Supporting the LSP for an editor consists of implementing
two separate parts: a client, i.e. an application that interfaces
with the code editor (VS Code for our extension), and a
server, as shown in Figure 3. The client is closely coupled
with the host editor and can access functionality specific to
the editor. In our case, we show prompts when the exten-
sion is misconfigured, store settings in the VS Code settings
page, and launch the server when VS Code detects the ap-
propriate extension.

Figure 3. Architectural overview of the client-server struc-
ture of the extension

The server is more general and should work with other
clients. It receives requests from the client over some kind
of connection (e.g. sockets, pipes, stdin / stdout), handles
them, and sends back a response. Our extension uses the
L S P 4 j implementation of the LSP [9]. The library provides
classes with methods that can be overridden to handle in-
coming requests.

Code analysis is delegated to the CodeProber library men-
tioned above. Using reflection, it can build an AST by in-
voking the user-provided compiler on some source code.

2.2 Attributes
The extension uses some predetermined JastAdd attributes
to allow users a way of configuring editor interactions for
their use cases. To avoid name clashes, all attributes are pre-
fixed with lsp_.

The supported interactions of this extension are as follows:
• Hover
• Diagnostics
• Quickfixes (“Code actions”)
• Go to definition
• Run lens / “Run ▶” button (“Code lens”)

When implementing some interactions, the extension needs
more information than can be provided by a primitive type
(e.g. both the message and severity for diagnostics). There-
fore, some attributes are expected to accept or return objects
that fit a certain shape. We describe the attributes and their
APIs below. All images shown in the following subsections
are results of LSP integrations created using the extension.

2.2.1 Hover
Hover support (the tooltips shown when hovering the
mouse pointer over some token, as shown in Figure 4) is
provided using the String ASTNode.lsp_hover() attribute.
The ASTNode signature can also be replaced with a more
specific node type, such as IdUse or FuncDecl.

Figure 4. Tooltip shown after hovering over a symbol

When the user hovers over some character in a file, a
textDocument/hover request, containing information such
as the hover position and file name, is sent from the client
to the server. Using the position provided in the request, the
server finds the AST node at that position and attempts to
invoke the lsp_hover() method on it. The resulting string,
if the attempt succeeds, is then sent back to the client for
interpretation and displaying. If the attempt does not suc-
ceed, i.e., the attribute isn’t implemented on the node at the
given position, then no tooltip is shown in the client.

2.2.2 Diagnostics
Diagnostics, colloquially known as “squiggly lines”, are a
highly useful way to quickly provide information at a glance
about errors, warnings, hints or info regarding the code.

To provide support for diagnostics relating to sta-
tic code analysis for languages built using JastAdd,
the user must implement the attribute Set<Diagnostic>
Program.lsp_diagnostics()¹. Diagnostic is an interface

¹the names Diagnostic and Program are not definite, but instead re-
fer to an interface and the root node of the AST, respectively. Users can
name these anything, provided that all abstract methods are named
as shown in the interface and that the method is implemented on the
root node. This also applies to the Edit interface shown later in the
paper, as well as all future references to a Program node.

that should contain information about the severity, location,
and a message to the user. To support a wide range of im-
plementations, we only require that some getters are im-
plemented to access this information, which are shown in
Listing 1.

interface Diagnostic {
 String message();
 int severity();
 int startLine();
 int startColumn();
 int endLine();
 int endColumn();
}

Listing 1. Methods that the extension assumes are imple-
mented when using the lsp_diagnostics() attribute.

message() is the actual message provided to the user about
what issue the diagnostic represents. The four methods
startLine(), startColumn(), endLine() and endColumn()
combine to specify where in the file the diagnostic has oc-
curred, and severity() signifies what type of diagnostic
this is (error, warning, info or hint). An example of a diag-
nostic can be seen in Figure 5.

Figure 5. Diagnostic with severity indicating an error

When a user saves, opens, or closes a document, the client
notifies the server of this. The server responds by telling the
client to refresh or clear its own list of diagnostics. The client
sends a textDocument/diagnostic request to the server,
making the server invoke the lsp_diagnostics() attribute,
from which it can build a DocumentDiagnosticReport to
send back to the client.

Syntax errors Diagnostics coming from static analysis of
code, like the one shown in Figure 5, rely on the AST hav-
ing been built correctly. However, in many cases where di-
agnostics are useful, such as indicating missing semicolons

or unbalanced parentheses, this is not the case, since these
errors all stop the compiler from building the AST.

To solve this issue, the extension also uses CodeProber to
parse messages sent to stdout or stderr from the com-
piler during the scanning or parsing stages and convert
them into Diagnostics, which are then added to the list of
Diagnostics making up the DocumentDiagnosticReport.

2.2.3 Quickfixes
Quickfixes (textDocument/codeAction in LSP) are actions
the user can take to quickly resolve diagnostics, either
through text insertion, replacement, or refactoring. In VS
Code, these usually appear as an icon of a lightbulb when
the cursor is placed within a range in which a quickfix
would affect the code. Pressing this lightbulb or using the
dedicated keyboard shortcut (Ctrl / Cmd + . by default in
VS Code) brings up a menu where all quickfixes or actions
are displayed, and choosing one of these actions executes it
without the need for further user input.

Providing quickfix support in JastAdd-based languages
does not mean implementing a new attribute on AST nodes,
but rather extending² the definition of the Diagnostic in-

²In our extension, quickfixes are an optional component of diagnos-
tics represented as Set<Edit>. This differs slightly from the actual im-
plementation of codeActions in LSP, where each action instead con-
tains a list of related diagnostics which would be resolved if the action
were to be applied. Since one of the focal points of our extension is
ease of use, the decision was made to remove some of the flexibility
provided by the LSP standard in favor of simplicity.

terface, as well as implementing a new Edit interface, as
shown in Listing 2. This also means that diagnostics need
to be fully implemented in order for quickfixes to function
properly.

interface Diagnostic {
 // previously declared methods omitted
 Set<Edit> edits();
 String codeActionTitle();
}

interface Edit {
 String replacement();
 int startLine();
 int startColumn();
 int endLine();
 int endColumn();
}

Listing 2. Additional methods in the Diagnostic and Edit
interfaces assumed by the extension to be implemented for
quickfixes.

The Edit interface provides information about what
should happen when the quickfix is applied. Similarly to
Diagnostic, the Edit interface should contain the methods
startLine(), startColumn(), endLine() and endColumn()
to signify the text to be replaced. replacement() is the text
to be inserted in place of the text affected by the range.

The codeActionTitle() attribute in Diagnostic is the mes-
sage displayed when showing available quickfixes for some
diagnostic. The edits() attribute is the set of Edits which
are applied when resolving the diagnostic. In many cases, a
single Edit can be enough to resolve an issue—but in more
complex cases it can still be useful for a quickfix to contain
multiple Edits. For example, in a language with a module
structure, one quickfix could be to replace qualified usage
with an import, see Listing 3.

Before

// some code
Foo.Bar.baz();

After

import Foo.Bar.baz;
// some code
baz();

Listing 3. Possible application of using multiple Edits in a
quickfix

This quickfix would require two Edits: one for removing
the path from the function call, and one for inserting the
import statement at the top of the file.

Unline diagnostics, quickfix (textDocument/codeAction)
requests are sent from the client to the server whenever the
cursor changes position. The server then manually filters
out all available quickfixes from the cached AST to the ones
applicable at that cursor position, after which it sends them
back to the client to interpret.

Figure 6. Example of a quickfix

2.2.4 Go to definition
“Go to definition” actions make it possible for users to
quickly jump to declarations or definitions of variables,
functions, or other language constructs from some usage
elsewhere in the program. With our extension, users can
achieve this functionality by implementing the ASTNode
ASTNode.lsp_definition() method.

A typical implementation of this could be some
VariableUse node, representing the usage of a previously
declared variable, implementing the attribute, and returning
the AST node representing the declaration of that variable.
An example demonstrating what this looks like in VS Code
is shown in Figure 7.

Figure 7. "Go to definition" implementation

textDocument/definition requests are sent either once
the user holds Ctrl or Cmd (when using Windows / Linux
or Mac, respectively) and hovers over some symbol, or in-
vokes the action manually by pressing the dedicated key-
board shortcut (F12 by default on VS Code) or right-click-
ing the text and pressing “Go to definition”. The server then
finds the node at that position and attempts to invoke the
lsp_definition method on that node. If successful, it sends
a Location, used to represent a position in a text file, based
on the position of the node returned from the method, to
the server.

2.2.5 Run lens
The Run lens is a specific application of the textDocument/
codeLens LSP request, meant to evaluate the written pro-
gram from some given entry point when activated. To use
this functionality, users must implement two methods in
JastAdd: ASTNode Program.lsp_main(), for locating the
actual entry point, and public void Program.lsp_run()
for determining what happens when the run lens is acti-
vated.

Figure 8. Run lens

Analogously to the two methods, there are two different
LSP requests handling this functionality. To show the run
lens, the textDocument/codeLens request is sent on each
document save, making the server attempt invocation of
lsp_main() on the AST root node. If successful, the position
of the entry point node is computed and sent back to the
client. Pressing the “Run ▶” button invokes the sending of a

workspace/executeCommand request for a command called
jastaddBridge.run, which the server receives, upon which
it attempts to invoke lsp_run() on the root node.

2.3 Extension configurations
Our extension also features some additional features and
configurations:

• “Partial” and “purge” options for caching to help in de-
bugging

• “Hot reloading”, or automatically updating the used com-
piler once rebuilt

• 3 different tracing options for debugging (“verbose”,
“messages” and “off”)

• The ability to override the JAVA_HOME environment vari-
able only within the extension for supporting different
Java versions

We’ve tried to ensure that the extension works as expected
in different configurations. Errors are clearly reported both
as native VS Code notifications with action buttons and in
the debug log with additional information. This is both for
unexpected runtime errors and common misconfigurations,
such as having an incorrect JAVA_HOME environment vari-
able set.

3 Evaluation

3.1 Method
We chose to evaluate our solution by writing LSP integra-
tions for existing tools using the features the extension pro-
vides. These tools included 3 SimpliC compilers, built in the
EDAN65 Compilers course at LTH, as well as CalcRAG, a
small language used in the EDAN65 course as an introduc-
tion to reference attribute grammars and static analysis.

To aid in the integration process, we also used a library with
pre-built Diagnostic and Edit classes with useful helper
methods, which is also available to other users of our ex-
tension.

3.2 Result
For each compiler we evaluated, we implemented a
Codeprober_parse method in its main class, needing
around 10 lines of code. The reason for this was to provide
an separate entry point for CodeProber to avoid clashing
with other output from the “regular” main method when
parsing syntax errors³ (see [4]). Also required was a sim-

³Upon later reflection, this addition was likely not needed, since
CodeProber falls back to using the main method provided that there
is an Object CodeProber_root_node or Object DrAST_root_node at-
tribute in the main class.

ple class for handling parsing errors, containing a message
string and start and end positions. This class was the same
in all the tools we used in the evaluation, and consisted of
about 15 lines of code.

Once these features were implemented, integrating LSP fea-
tures into the compilers required about one to two lines
of code per feature for “hover”, “go to definition” and “run
lens”, while diagnostics required about 4 to 5 lines of code
per reported diagnostic. Implementing diagnostics simply
meant copying the already-implemented error analysis con-
tributions and adapting them to fit the provided interface
for JastAdd LSP diagnostics. Using our pre-built library for
Diagnostic and Edit classes also meant that implementing
quickfixes only required an additional few lines per imple-
mented diagnostic report.

3.3 Discussion
The evaluation shows a noteworthy reduction in required
code compared to the alternative approach of individually
supporting each programming language, as that alternative
would entail creating a slightly less generalized version of
the entire project, tailored to each specific language. We feel
our solution is more accessible and easier to comprehend
than the intricacies that come with LSP, especially given
the lack of comprehensive documentation for both LSP and
LSP4j.

However, as the authors of the extension we inherently
have a deeper understanding of its workings from the out-
set compared to the average user. While efforts have been
made to make the extension easily accessible through clear
documentation in the extension description, there remains
a concern about the potential lack of clarity for users ap-
proaching the extension for the first time, especially since
no formal user study was conducted to assess the practical-
ity and usability of the extension.

An additional point of concern is the absence of feedback
when misspelling or using the wrong name for an attribute.
With users only realizing something went wrong when the
intended integration is not functioning as expected without
any clear indication as to the cause, successful integration
could be perceived as more challenging.

In an attempt to address usability concerns, external indi-
viduals were consulted during the development of the ex-
tension. Their preference for our extension over the simi-
larly functioning MagpieBridge was noted; however, it is
crucial to acknowledge that this observation was made dur-
ing a guided implementation session, and thus was not in-
cluded in the formal evaluation process.

4 Related work
While LSP is a solution to the problem described
above, it may be too complex to implement for smaller
projects. In [10], the authors shed some light on the engi-
neering practices used in LSP implementations, by study-
ing the source code of 30 open-source LSP codebases. While
they provide valuable concerns and detailed practices for
efficiently implementing LSP, they also note that “further
modularizing LSPs is still an open research problem”.

Attempts have been made to build upon the protocol to
provide a more lightweight interface. In [15], the authors
build upon the Truffle framework [5] to add API methods
that facilitate integration with LSP. Similar to JastAdd, im-
plementing a language with Truffle entails generating an
abstract syntax tree, where meta-information can be added
in the form of “instrumentation nodes” [16]. Truffle and the
LSP extension proposed by [15] are aimed at providing lan-
guage support and runtime analysis for dynamic languages,
which come with some drawbacks. The authors note that
the static information available in dynamic, untyped lan-
guages is very limited. To obtain more information about
some source file, the approach they take is to execute parts
of it. A complication that arises is that the analysis must
now be sandboxed since users do not expect their editor to
hang if it reaches some code that doesn’t terminate, for ex-
ample [15].

Our approach instead builds upon the JastAdd meta-com-
pilation system, which uses reference attribute grammars,
instead of instrumentation nodes to annotate nodes in the
AST with additional information [11]. This approach is flex-
ible, in that compiler writers can both modify behavior and
add language constructs, directly on the abstract syntax
tree [6]. Using JastAdd allows our API to be small, as users
only have to add some predefined JastAdd attributes to their
compiler, with no need for dependencies. Another benefit is
that restricting editor integrations to specific language con-
structs is simple since you choose where in the AST you add
attributes such as lsp_hover().

MagpieBridge is perhaps the project that is the most simi-
lar to ours [12]. It allows writers of static analysis tools to
provide editor integrations using LSP, without implement-
ing the protocol themselves. Like our implementation, Mag-
pieBridge is written in Java and uses the LSP4j library to
interface with LSP. The main difference is that while Mag-
pieBridge is an abstraction upon LSP, users are still expected
to bundle an extension with their analysis code and write
some amount of boilerplate to set up a connection to their
analysis server.

As mentioned, we don’t contribute any source analysis - it
is handled by the CodeProber library. CodeProber is a tool
for visualizing property probes [14], initially built to support
tools written with the JastAdd system. In our language
server, it is used in three ways:
• Locating the AST node on a particular location in a source
• Extracting location information from an AST node
• Intercepting syntax errors in stdout or stderr to report

as diagnostics

The graphical interface CodeProber provides can be helpful
while developing a compiler with JastAdd, as well as while
implementing the attributes to integrate with our language
server. Having written some code in the editor, probes can
be created by right-clicking on it, which reveals all overlap-
ping AST nodes and the attributes defined on them.

5 Conclusion
We have developed a language server, JastAdd Bridge,
that can be used for implementing editor support for lan-
guages created with the JastAdd meta-compilation system.
The language server can communicate with any editor im-
plementing the language server protocol, making it useful
for a variety of tools. Additionally, we contribute an exten-
sion for the popular editor Visual Studio Code, which both
integrates the editor with our language server and exposes
some common configuration options of the server to the VS
Code settings panel. Currently supported integrations allow
users to:
• propagate both parsing and compilation errors to the ed-

itor interface “diagnostics”
• optionally add fixes to these errors that can be resolved

by clicking the button “quick fixes”
• customize what information is shown when hovering

over code “hover tooltips”
• execute a main function directly in the editor “run button”
• following the use of some variable to its declaration “go

to definition”

Compiler developers using our extension specify which
of these integrations they want to enable using special
JastAdd attributes we have specified. These attributes
are then read using runtime reflection when the server
performs analysis. Extending some compilers (built with
JastAdd) to support our editor integrations, we found
that this approach is both flexible and requires a minimal
amount of additional code.

5.1 Future work
Expansion to other editors One clear direction going for-
ward for the project is support for additional editors with

LSP support, such as NeoVim, IntelliJ IDEA, or Atom. The
server aspect of the extension is intended to be fully modu-
lar, with the only requirement for support for other editors
being new client-side code specific to each editor.

Some modifications to the language server would help make
it more compatible with other editors. Currently, the server
assumes that an editor implements all functionality that the
server uses. This may not be the case, and LSP has a way for
editors and language servers to negotiate what functional-
ity will be used between them, based on what they both sup-
port (capabilities, see [7]). Furthermore, language servers
commonly implement multiple “communication channels”,
to be compatible with more editors [8]. JastAdd Bridge
currently only supports communication over a WebSocket.

Multi-file support At the time of writing, the extension
only supports working in a single file at a time, meaning
actions such as “go to definition” cannot be meaningfully
used across files. As software projects often span multiple
files, enhancing the extension to support more than a single
file would extend its usefulness to larger and more complex
compiler projects.

Responsiveness Currently, the language server reparses
code when the opened file is saved. This approach was sim-
ple to implement but can feel somewhat unresponsive, as
feedback such as syntax errors is not shown until the cur-
rent file is saved. A better solution would be to incremen-
tally update an internal cached version of the current doc-
ument on every keystroke.

It is common for extensions that implement a “run button” /
“run lens” to launch a new integrated terminal with the
output of executing the current file. Our extension instead
shows it in the VS Code “output” tab, which has some draw-
backs.
1. The output tab can become cluttered, as parsing errors

are also printed here.
2. The output tab isn’t shown when pressing the run but-

ton, it instead has to be opened manually, which can give
the impression that the code was not executed.

More LSP features The language server protocol supports
a multitude of different editor features, and in our exten-
sion, only 5 of these have been implemented. For example,
some features common among other language servers are
semantic syntax highlighting, code completion, and renam-
ing, all of which provide a better coding experience for the
user.

6 Acknowledgments

• Anton Risberg Alaküla, for being an enthusiastic and in-
credibly helpful project supervisor, and for developing
CodeProber, without which this project would not have
been possible.

• Oskar Stenberg, Esbjörn Stenberg, Daniel Adu-Gyan,
Max Sjölin, Elsa Cervetti Ogestad, and Patrik Gyllvin for
providing their SimpliC compilers to us to help evaluate
the usability of our program.

• Mark Lundager and Andreas Bergquist, for taking the
time to try out implementing our extension into their
EDAN70 project.

References
[1] Stack Overflow Developer Survey 2023. Retrieved

November 17, 2023 from https://survey.stackoverflow.
co/2023/

[2] Official Page for Language Server Protocol. Retrieved
November 10, 2023 from https://microsoft.github.io/
language-server-protocol/

[3] What is the Language Server Protocol?. Retrieved
January 10, 2024 from https://microsoft.github.io/
language-server-protocol/overviews/lsp/overview/

[4] Lu-Cs-Sde/Codeprober. Retrieved January 8, 2024
from https://github.com/lu-cs-sde/codeprober/tree/6e
9bc54f82609241fdd498b6565fffa43d837726

[5] Truffle Language Implementation Framework. Re-
trieved December 1, 2023 from https://www.
graalvm.org/latest/graalvm-as-a-platform/language-
implementation-framework/

[6] JastAdd.Org. Retrieved January 8, 2024 from
https://jastadd.cs.lth.se/web/documentation/concept-
overview.php

[7] LSP Specification - Capabilities. Retrieved January
10, 2024 from https://microsoft.github.io/language-
server-protocol/specifications/lsp/3.17/specification/
#capabilities

[8] LSP Specifications - Considerations. Retrieved
January 10, 2024 from https://microsoft.github.
io/language-server-protocol/specifications/lsp/3.17/
specification/#implementationConsiderations

[9] 2023. Eclipse-Lsp4j/Lsp4j. Retrieved November 17,
2023 from https://github.com/eclipse-lsp4j/lsp4j

[10] Djonathan Barros, Sven Peldszus, Wesley K. G. As-
sunção, and Thorsten Berger. 2022. Editing Support
for Software Languages: Implementation Practices in
Language Server Protocols. In Proceedings of the 25th

International Conference on Model Driven Engineering
Languages and Systems, October 23, 2022. ACM, Mon-
treal Quebec Canada, 232–243. Retrieved December
1, 2023 from https://dl.acm.org/doi/10.1145/3550355.
3552452

[11] Görel Hedin and Eva Magnusson. 2003. JastAdd—an
Aspect-Oriented Compiler Construction System. Sci-
ence of Computer Programming 47, 1 (2003), 37–58. Re-
trieved from https://www.sciencedirect.com/science/
article/pii/S0167642302001090

[12] Linghui Luo, Julian Dolby, and Eric Bodden. 2019.
MagpieBridge: A General Approach to Integrating
Static Analyses into IDEs and Editors (Tool In-
sights Paper). In 33rd European Conference on Ob-
ject-Oriented Programming (ECOOP 2019) (Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 1–25. Retrieved from http://
drops.dagstuhl.de/opus/volltexte/2019/10813

[13] Malintha Ranasinghe. Understanding the Language
Server Protocol. Retrieved January 10, 2024
from https://medium.com/codex/understanding-the-
language-server-protocol-lsp-5957a571bf0f

[14] Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and
Adrian Pop. 2022. Property Probes: Source Code Based
Exploration of Program Analysis Results. In Proceed-
ings of the 15th ACM SIGPLAN International Confer-
ence on Software Language Engineering, November
29, 2022. ACM, Auckland New Zealand, 148–160. Re-
trieved November 10, 2023 from https://dl.acm.org/
doi/10.1145/3567512.3567525

[15] Daniel Stolpe, Tim Felgentreff, Christian Humer,
Fabio Niephaus, and Robert Hirschfeld. 2019. Lan-
guage-Independent Development Environment Sup-
port for Dynamic Runtimes. In Proceedings of the 15th
ACM SIGPLAN International Symposium on Dynamic
Languages, October 20, 2019. ACM, Athens Greece,
80–90. Retrieved December 1, 2023 from https://dl.
acm.org/doi/10.1145/3359619.3359746

[16] Michael L. Van De Vanter. 2015. Building Debuggers
and Other Tools: We Can "Have It All". In Proceedings
of the 10th Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs
and Systems, July 04, 2015. ACM, Prague Czech Re-
public, 1–3. Retrieved December 1, 2023 from https://
dl.acm.org/doi/10.1145/2843915.2843917

