Robot Comment Fixed Detector

Patrik Fjellstedt

D19 Lund University, Sweden
pa2747fj-s@student.lu.se

Abstract

Today there exists a lot of tools to analyze existing code to generate
useful feedback for the programmer. When these tools are used
with code review tools, such as Gerrit, this feedback is also known
as robot comments. Generating feedback upon code review is a
useful workflow to prevent bugs and improve code quality before
accepting changes into a project’s main branch. A problem that
arises with the use of such tools though is the amount of generated
comments and their accuracy for them to be useful. This points
to a need for a pre-processing step where some comments could
be filtered out before presenting them to the user. We focused our
attention on one such tool, ErrorProne, which is a static analysis
tool for Java that helps to identify errors during compilation. Using
this tool we tried to detect whether a robot comment was fixed
between its head version and the revised version.

1. Introduction

Program analysis tools can give useful warnings and errors, but
it can be difficult to interpret what is solved and how useful the
information is from the tools. In the worst case the tools produce
so much output that working with them becomes impractical. This
was noted in previous work, such as Ljungberg et al. [2], where they
found that some analyzers reported so many results it hampered the
developer’s work, as well as ignoring up to 90 % of the generated
comments. They also mentioned their use of a way to filter out
duplicated robot comments based on line numbers and error types
to reduce the output generated. We use this strategy as a baseline in
our exploration of a detector system in this paper.

In the paper by Avgustinov et al. [3] they tracked code violations
over time and tried to match them to specific users to give useful
feedback to the developers about common mistakes they make.
This identification can be as simple as checking the line number
that an error was at between the versions, akin to the MEAN
approach to filter out duplicated comments. In addition to this, their
identification approaches included a way to hashing the code line
where the error occurs in the two versions and comparing them.
This approach is also used in our system where we refer to it as just
“hash”.

This paper tries to build on the identification approach from Av-
gustinov et al but forgo the matching of developers and instead

Course paper, EDAN70, Lund University, Sweden
January 10, 2024

10

11

Joakim Svensson

D20 Lund University, Sweden
j03337sv-s@student.lu.se

focus on how we can emphasize identifying if a robot comment
between versions has been fixed or not. To do this we built a detec-
tor system containing three detectors and compared their results.
In addition to a baseline and hash-based detector, we developed a
detector based on the Abstract Syntax Tree (AST) version of the
source file to see if we could improve the hash-based version.

1.1 Motivating Example

To motivate the proposed solution, we look towards a simple ex-
ample that shows how we can automatically detect and reduce the
amount of robot comments that get forwarded to the reviewer. In
the listing below a case is presented where an error has not been
fixed between the main file, which we call head, and a checked-in
changed version which we will call revision. Instead, the user only
inserted a comment into the file, pushing the error down by one
line. Here it would be useful to filter out this error and note to the
reviewer that the error has not been fixed since nothing has been
changed.

// SubStringErrorHead.Java
package epf;

public class SubStringErrorHead {
public static void main(String[] args) {
String s = "Hello World";
// This should generatee an error.
String error = s.substring(0);
error.concat("\n");
System.out.println(s + " " + error);

Figure 1. Head version of file.

// SubStringErrorLineMove.Java
package epf;

public class SubStringErrorLineMove {
public static void main(String[] args) {
// Inserted comment.
String s = "Hello World";
// This should generatee an error.
String error = s.substring(0);
System.out.println(s + " " + error);

Figure 2. Revision, inserting a comment.

1.2 Used tools

In this project we used one static analysis tool, ErrorProne [4]. To
use the output from ErrorProne a layer between the static analysis
tool and the proposed detector system was developed. This would
allow for more tools to be used in the future without making it
dependent on the tool itself. ErrorProne checks the compilation for
typical errors in the code that would compile but have unintended
behavior and has obvious replacement code also typically called
anti-patterns. Examples could be an if statement always being true
(self equals), using a method substring with 0 as an argument i.e.
always returning the same string (SubstringOfZero), etc. These
errors are noticed during compilation and the easiest way to use
ErrorProne is through a build system. With the help of either of
these three build tools Gradle, Bazel, and Maven you can invoke
the ErrorProne and produce the desired output.

Gradle is a build tool to make projects have more consistency
in what order things are executed and how they are executed. This
way there is no need for long user manuals as the build tool will
build it according to the instructions with things like a specified
Java version and tools on top of the compiler like ErrorProne and
a testing framework like JUnit running bundles of tests to ensure
functionality in the code. The problem with build tools like Gradle
is that the first execution takes a long time and it isn’t always fast
after the first build either. It can be a minor inconvenience to wait
for 3 minutes+ for a build tool to run a larger project which is the
setback of these tools. The benefit is that it streamlines the process
of execution and makes the burden on the project creator and user
a lot smaller while forcing checks to be run every time something
is changed making sure there are no unintended side effects but at
the cost of time.

Finally, to implement a detector based on the AST of the source
file Extend]J [5] was integrated into the build chain to produce an
AST output for the files being analyzed. Extend] is a Java compiler
but the compiler provides information on a tree of nodes that builds
the code, the AST which can be interesting as a tool to analyze the
code. ExtendJ has support for Java versions up to 8 so it compiles
Java code up to Java 8.

For more details on the tools used and the implementation see
the source code [6].

1.3 Research Questions

To improve the workflow of using robot comments we seek out
answers to the following research questions(RQ):

* RQ1 How do we create metadata that can be used to evaluate if
a robot comment has been solved?

* RQ2 How can we implement a detector that use this metadata
to evaluate if a robot comment has been solved ?

* RQ3 Can we use tools, like the Extend] compiler, to generate
more in-depth information, like an AST, in order to get more
context about where a robot comment is generated in order to
improve our detector?

* RQ4 Out of a baseline, hash and AST detector which one
performs the best ?

Through our experiments we found that developing a middle layer
for static analysis tools was useful to separate the detector system
from a specific tool. Also the most useful detector out of the three
we experimented with the hash based seems to be the most generic
and useful out of the three.

2. Implementation/Solution
2.1 Base of solution

The solution consists of output from program analysis tools to gen-
erate useful errors from Java projects or small example programs.
As ErrorProne is a tool that is integrated with build tools like Bazel
or Gradle, we used Gradle to build our project and took the output
from that build to analyze what happened in said project. Once we
got an output file we created a script that would generate an output
file and then read that information to do our analysis by reading in
that file in a Java program. In that Java program, we would then
run the main analysis on the information by comparing the errors,
in the form of checking what error ErrorProne generated, on what
line number it occurs on, and in what file it is in.

2.2 ErrorProne example and test files

The small Java programs were taken from the examples of Error-
Prone for simple examples of Java programs illustrating errors like
SubstringOfZero. ErrorProne had instructions on how to easily cre-
ate basic programs with the errors in them on their webpage [11].
So we created folders with different alterations and line number
changes to a test Java file with errors from the site. This generally
consisted of a head file, one fixed file, one unfixed file, one with the
line number of the error moved and one with an additional error.

2.3 Using ErrorProne to generate information

The next step was using the Gradle build file to incorporate Error-
Prone in the compilation of the project. So we added dependencies
and specified what version of ErrorProne to use so it would be com-
patible with Java 8 to integrate with Extend]. We then saved the
output of the Gradle file in an output file. The next step was then
to extract the relevant information from the said file to be able to
use the information we wanted from ErrorProne. Error type, line
number error occurred on and file the error happened in, this file
was then the base of the detectors.

2.4 Base script to build project

Once we had this in place we built a small script to help test our
program. It consisted of recompiling Java files, saving the Gradle
output to a file running the reformatting program on that output,
and then running the detectors.

2.5 Implementation and improvement on detectors

The detectors are based on reading in these files and saving the error
data above. At the core, all the different detectors compare the old
file (head file) to all the updated files and try to figure out if it’s
fixed or not based on the error information. One of these detectors
is based on the AST.

2.6 Extending script to support AST building

For the AST detector to be implemented we decided to work on
the JavaDumpTree output for easier integration with the other
code. So we updated the script to generate an AST with the help
of a cloned template project for static analysis [12] and the jar
file for the said project was used to run Java -cp “template.jar”
“org.extendj.JavaDumpTree” fileName which we used to generate
an AST for each of the files in the script.

2.7 AST detector implementation and further work

The AST was then used to find variable names and check if the
tree structure had the same line numbers for the errors. Then we
manually added checks based on trends in the AST to see if that
tree looks like expected or identifies a certain combination of nodes
for error checks. The AST was also introduced as an extra version
of error generation for the code to notice missed typical errors. The

AST detector is a lot less general as it was harder to make it apply
to several errors without taking the case into account and therefore
hard-coding a lot of situations which ended up being out of the
scope of the project.

3. Evaluation
3.1 Setup and base detector

To evaluate our detectors the following experimental setup was
used. First, we created a set of simple files with the errors, our head
versions with a set of revisions where the error would have either
been fixed or not. Then we ran the ErrorProne static analyzer on the
test set to produce ErrorProne output for our files. This produced
the necessary metadata about the files we wanted to analyze and
could be done separately from the detectors. This output was then
fed into a metadata builder that extracted the ErrorProne errors for
a file, and their line numbers and hashed the line on which the error
occurred. This data is then used for the baseline and hash-based
detectors. To evaluate a robot comment the detector outputs the
following:

* Yes, if the error had been fixed.
* No, if the error was still present.

This answers our initial research question RQ1 that a metadata set
was producible for our detectors from standard ErrorProne output.

With this metadata output, we could then implement the follow-
ing three detectors, each trying to improve on the previous imple-
mentation:

* Baseline detector, comparing line numbers.
* Hashing detector, compares hash ids of the error line.

* AST detector, using the AST output from Extend]J for additional
context around the error.

3.2 Baseline detector

The baseline detector simply compared the head version’s line
number with the revision file for the same type of error, like the
MEAN approach to detect duplicated errors. If it was unable to
find a related error type it determined that the error had been fixed.
Otherwise, if the same error appeared on the same line in the
revision file it would note that this robot comment was the same
and produce a no.

3.3 Hash-based detector

In order to improve the baseline number detector a hash-based
approach was implemented. The code line where the error occurred
was hashed and stored in the metadata file and then compared with
the new revision file if the same type of error was found in the
file. If two errors of the same type had the same hash code the
detector would output a No, since it could then determine that the
same error was present in both files. In this case, compared with the
baseline detector the error was no longer tied to a line number in the
code and solves the introductory motivating example of inserting a
comment.

3.4 AST detector

The AST has information about values stored in variables and the
related context. So we decided to, on an error by error basis, im-
plement support for handling errors with extra AST analysis. This
detector will if it doesn’t support the error noticed in ErrorProne
just send out maybe solved on all errors relating to it. If there are
no errors all of the detectors will put out the same answer as Er-
rorProne doesn’t see an error in the file. It currently looks for the
variable names so if the only thing about the hash that has changed

is the naming convention or an extra space it will fairly clearly point
out for some errors that this is the case. The information is stored
in different places and the interesting information to give back to
the user will be different on a case-by-case basis for the errors.

4. Results

Here we list the output of the detectors on our test data.

4.1 Baseline detector

As we can see from the figures the baseline detector is only capable
of detecting errors that have not moved or that no longer appear
between head and revision. This makes it unsuitable for files where
the number of lines changed between head and revisions. Since
most files that incur a revision change is the result of adding or
removing lines in practice leads us to suspect that such a detector
is impractical.

4.2 Hash-based detector

The hash detector improves on the baseline version, especially
when the line moves. Since we hash the error line, if the same hash
is detected on a different line it would still have the same hash
value. Since we pair hash with error type the detector is capable of
notifying that the error is still present. This makes it generic and
can be applied to any type of error with no additional work, as can
be seen from the different figures.

4.3 AST detector

The AST detector required more work than we anticipated and
was only tested for one of the errors, namely the SubStringOfZero
which can be seen in Figure 3. It performs just as well as the hash
detector. The real benefit from this type of detector comes through
the additional test case where an alteration in the testing set was
introduced. The alteration was introducing an indirection for the
value O that was passed to the function substring through a variable.
The ErrorProne tool was unable to determine that this was still an
error but by looking at the AST we could find the value of a variable
that was used for the function and tell the user that the error was in
fact still present. However, this type of work was time consuming
and was not generic but used contextual information from the type
of error that was investigated leading us to believe that such work,
although very powerful, being to expensive to implement.

5. Related Work

One way to handle robot comments would be to manually compare
the comments. They would check what errors the build tool gener-
ates and if the test management tool runs on the build. This would
not be replaced by automating part of the comparison but the goal
of the solution would be to create less work and make the process of
code review shorter by filtering out useless information. The main
problem the tool has to solve is making sure it saves time for the
user by creating a better output of errors than the initial tool with
more useful information.

One such work that is currently in use is SonarQube which is
a continuous code inspection platform that allows users to have
their source code checked for errors [10]. This platform checks for
more than robot comments from static analysis tools, like security
vulnerabilities, coding standards defined by the maintainers etc.
The work presented in this paper could potential be useful for such
a platform to automatically remove non-useful robot comments in
their bug reporting subsection.

6. Conclusion

Being able to reduce the amount of robot comments can lead to an
improved experience for code reviewers by reducing the amount of

1.00

0.75

0.50

0.25

0.00

W Baseline W Hash [AST M Truth

No No No No No No No

Fixed LineMove NotFixed Alteration

Figure 3. Single Error of Substring for the different detectors.

W Baseline M Hash M Truth

Yes Yes Yes

Fixed LineMove NotFixed

Figure 4. Single Error of ArrayHashCode for the different detectors.

M Baseline W Hash W Truth

Yes Yes Yes Yes Yes Yes Yes Yes

No No No No No No No No No No

Vo, Vo

IBEFixed IBELineMove IBENotFixed XorPowerFixed XorPowerLineMove XorPowerNotFixed

Figure 5. Multiple Errors of XorPower for the different detectors.

non helpful robot comments that can be generated. In our work we
have experimented with three detectors to produce output whether
or not a robot comment has been fixed or if they are the same
between revisions. In summary for our initial research questions,
we found the following answers:

* RQ1 Yes, we could produce a metadata set of the original
output for our detectors.

RQ2 We found that the baseline strategy of looking at only line
numbers led to imperfect precision at best whereas a hash ap-
proach improved this to some extent but still had some weak-
nesses.

RQ3 Yes, the information generated from the AST was useful
in specific cases and could do things ErrorProne could not and
improved the detector.

RQ4 From our experiments we found the baseline detector to
be mostly unusable and the hash detector to be the most useful
detector in practice. Altough the AST detector can use context
surrounding the error line to produce powerful feedback this
type of work is time consuming and not practical.

6.1 Threats to Validity

This work is only a proof of concept where time became a limit-
ing factor. Here are some suggestions for future work that could
improve this detector system:

6.1.1 Larger dataset

In this initial work, our dataset is fairly small and only tests a
handful of robot comments produced by ErrorProne. To strengthen
the validity of this tool a larger test set of more robot comments
would be good.

6.1.2 More static analyzers

We focused our efforts on using the output from ErrorProne, and
whilst extending the amount of robot comments that this produces
would be good adding more static analyzers to our metadata output
would be an interesting continuation

7. Acknowledgments
We extend our thanks to Emma Soderberg for all help and feedback.

References

[1] Sadowski, C. et al. (2015) ‘Tricorder: Building a program analysis
ecosystem’, 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering [Preprint]. doi:10.1109/icse.2015.76.

[2] Ljungberg, A. et al. (2021) ‘Case study on data-driven deploy-
ment of program analysis on an open tools stack’, 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP) [Preprint]. doi:10.1109/icse-
seip52600.2021.00030.

[3] Avgustinov, P. et al. (2015) ‘Tracking static analysis violations
over time to capture developer characteristics’, 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering [Preprint].
doi:10.1109/icse.2015.62.

[4] Error Prone. Available at: https://ErrorProne.info/ (Accessed: 09
November 2023).

[5] Extend]. Available at: https://Extend].org/ (Accessed: 29 November
2023).

[6] Robot Comment Fixed Detector. Available at:
https://git.cs.Ith.se/nex/robot-comment-detector (Accessed: 29 Novem-
ber 2023).

[7] Gerrit code review - robot comments. Available at: https://gerrit-
review.googlesource.com/Documentation/config-robot-comments.html
(Accessed: 06 December 2023).

[8] Aftandilian, E. et al. (2012) ‘Building useful program analysis tools
using an extensible Java compiler’, 2012 IEEE 12th International Work-
ing Conference on Source Code Analysis and Manipulation [Preprint].
doi:10.1109/scam.2012.28.

[9] quist, J. (2018) ‘Extend]: Extensible java compiler’, Conference
Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming [Preprint]. doi:10.1145/3191697.3213798.

[10] Code quality tool & secure analysis with SonarQube. Clean Code:
Writing Clear, Readable, Understandable & Reliable Quality Code.
Available at: https://www.sonarsource.com/products/sonarqube/ (Ac-
cessed: 03 January 2024).

[11] Errorprone bugpatterns. Available at:
https://errorprone.info/bugpatterns (Accessed: 03 January 2024).

[12] Static analysis template on gitbucket. Available at:
https://bitbucket.org/extendj/analysis-template/src/master/ (Accessed:
03 January 2024).

