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Abstract
The stack and the heap are two different parts of the memory
which a programming language usually requests memory
from. Both of them are used for reading and writing data,
but they are used for different purposes. The goal of this
paper is to describe the work of extending a compiler built
at a university course that only supports stack allocation,
to support arrays with heap allocation. A further goal is to
implement a garbage collection algorithm Reference-Sweep,
which is a combination of mark-and-sweep and reference
counting, and evaluate its performance.
It was a successful implementation of heap-allocated ar-

rays with manual memory allocation and the garbage collec-
tion algorithm Reference-Sweep. The evaluation shows that
when garbage collection is enabled in the SimpliC compiler
it is slower than the same program with manual memory
allocation. SimpliC with garbage collection’s performance
was worse than a similar Go program and as expected the
same was true when compared against a similar program
written in C. The paper creates a framework for future im-
plementation of other garbage collection algorithms and the
implemented Reference-Sweep algorithm can be evaluated
against other garbage collection algorithms.

1 Introduction
The main task of the Compilers course at Lund University
is to build a compiler from the ground up. This includes
scanning, parsing, name analysis, and type checking. At the
end of the course, the built compiler generates assembly
code. This paper uses the compiler built during the course
and extends it.
The language supported by the built compiler is SimpliC

which is created for educational purposes and the syntax
of SimpliC is similar to the programming language C, but
simplified. The specification of SimpliC states that it supports
control flow, binary expressions, functions, integer variables,
and basic I/O.[17].
The first goal of this paper is to use the previously built

compiler that only supports stack allocation and extend it to
support arrays with heap allocation and freeing of memory.
The array should support nested arrays as well. The second
goal is to implement a new garbage collection(GC) algorithm
which is a combination of mark-and-sweep and reference-
counting. The bubble sort algorithm was implemented in the
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programming languages below to assess the performance of
the implementation.

• SimpliC with GC disabled and enabled
• C compiled by GCC with no optimizations
• Go

2 Background
2.1 Attribute Grammar
Given production rules from a formal grammar that takes a
string and constructs a tree of nodes (also called "derivation
tree"[13]), the question becomes how one can further assign
more metadata and meaning to said tree. One such method
is through the use of attribute grammars. Here, the nodes
can have function-defined attributes, where each function
belongs to one of the grammar’s productions. By introducing
the attributes, information about the string can be extracted.
Knuth [13], introduces two new types of attributes, synthe-
sized and inherited. A synthesized attribute value is calcu-
lated with information from nodes below the node itself and
inherited attributes with information from nodes above it
[13].
Hedin [10] extended attribute grammar, by allowing at-

tributes to point to other nodes, called reference attributed
grammar(RAG). Attributes of the pointed node can be read
from the node that points to it and the data does not have to
be sent throughout the tree, it can be sent directly between
the two nodes[10].

2.2 JastAdd
A compiler can be created using JastAdd[11] and it is an
example of a meta-compiler[2]. An important part of JastAdd
is "an object-oriented representation of the abstract syntax
tree"[11]. JastAdd works by introducing new functionality
to the classes of the tree in different aspects and it supports
RAG.

2.3 x86 assembly
For our code generation, we target x86 assembly, relying on
existing assemblers and linkers to produce machine code. We
textually generate the assembly following the AT&T syntax.

Assembly refers to the textual representation of machine
code, or the instructions that are run by the host machine.
The assembly is target-dependent and varies between differ-
ent computer architectures. There exist two large groupings
of machine code in use today, CISC and RISC, of which x86
belongs to the CISC family [12].
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2.4 Memory management and Garbage Collection
To be able to perform any interesting computation you need
some way to manage and store data. For most programming
languages this is done using two areas of our memory called
the "stack" and "heap". The stack is reserved for any local
data used during the execution of a function call. The heap
is better suited for dynamic data.
For many programming tasks simply using the stack is

enough for our memory needs. We know ahead of time how
much memory we require and can therefore statically make
space for it on the stack. There are cases however in which
the required memory is not known ahead of time, and for
these situations, a programming language requires dynamic
memory management of some sort.

There are several ways in which a programming language
can decide to provide this facility but the most common tech-
niques are garbage collection and manual memory manage-
ment. Some examples of languages with garbage collection
include Python [4], Java [7], and Go [1]. There exists other
languages like Rust which exhibit much of the characteristics
of a language with manual memory management but where
memory is automatically managed. [5].

Garbage collection is defined as the automatic reclamation
of memory [15]. It is then an implementation detail how this
is achieved. The programmer requests memory from the
language runtime which at some point will try to check if
that memory is still used or whether it should be retrieved.
There are multiple algorithms for how this checking and
retrieval should occur. We are going to look at two of them:
"Reference Counting" and "Mark & Sweep".

2.4.1 Reference counting
The core idea of garbage collection is that the memory associ-
ated with some object should be reclaimed when there is no
way to access that memory. In the case of reference counting
this means that we keep track of how many references a
certain object has. When we take a reference to it, the count
is increased, and when the reference disappears the count is
decreased. This happens either by the reference falling out
of scope or by the object containing it being reclaimed. This
can in turn trigger further decrements of other reference
counts. When the count further reaches zero, we know that
no one is referencing the object, and it can be reclaimed. [15]
An advantage of this approach is that most operations

done by the garbage collector are inter-weaved with ordinary
program execution, with each operation only managing a
small amount of resources. This means that any latency
perceived will also be small. [15]

A disadvantage with reference counting is that its criteria
for liveliness is only local. Reference counting only checks if
there exists a neighbor in the reference graph and not if that
neighbor is reachable e.g from the stack. Any construction
of any "circular references" [15] are therefore prone to cause

memory leaks. This means the memory used by the objects
will never be reclaimed which could cause our program to
run out of memory.

2.4.2 Mark & Sweep
Another approach used by many garbage collectors is called
Mark & Sweep. Here the GC periodically halts the execution
to perform a marking phase during the still live objects are
marked. This can be done by walking down the stack, identi-
fying each reference into the heap, following that reference,
and then "marking" it (e.g setting some ’live’ bit to 1). The
GC then iterates over the items on the heap which it has
allocated memory for and checks to see whether they are
still live or not. If they are not, they are reclaimed. [15]
One disadvantage of the Mark & Sweep approach is the

linear nature of how we determine liveliness and how we
reclaim memory. When counting live references from the
stack the cost of doing such grows with the stack size. The
same holds true for the reclamation phase. [15]

2.5 Advantages of GC over manual memory
management

Garbage collection eliminates the need for the programmer
to manually keep track of the liveliness of their objects. This
has a number of benefits both in terms of security and de-
velopment costs.

One advantage is that more mental effort can be placed
on the business logic rather than keeping track of when to
reclaim an object’s resources. In most development tasks this
probably increases development speeds and reduces cost.
Another advantage is that garbage collection practically

exterminates one of the largest sources of security vulnerability-
inducing bugs. An often-cited report from Microsoft states
that around 70% of the yearly CVEs reported are memory
safety issues. [3]

3 Solution
3.1 Grammar
The grammar of SimpliC was extended to support arrays
and the array variable holds a memory address. It was done
by extending the abstract grammar of identifier declaration
to hold an integer value PointerLevel, which indicates the di-
mensions of an array. An integer variable has a PointerLevel
of zero.

3.1.1 Name and type analysis
The name analysis from the initial SimpliC implementation
worked with arrays, due to the extension of identifier decla-
ration. The name analysis checks that a variable or an array
is declared before it is used.

A new type "Array" was introduced and it contains an inte-
ger called PointerLevel, same functionality as in the identifier
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1 public class Heap {
2

3 private Map<Integer, int[]> heap = new HashMap<>();
4

5 public int calloc(int size) { }
6

7 public void free(int address) { }
8

9 public void write(int address, int index, int value) { }
10

11 public int read(int address, int index) { }
12 }

Figure 1. Interpreter heap interface

declaration. The type analysis had to be extended with sup-
port for this new type and previous assumptions of SimpliC
had to be removed. A variable’s type is associated with the
type of its declaration and therefore every variable has a
reference to its declaration. The type analysis is done by
checking that the type of a variable is compatible with the
type of the expression.

3.2 Interpreter
For the Interpreter our addition of arrays requires us to
introduce something equivalent to a "heap". We want some
way to request enough memory to hold a given number of
elements and an API through which we can interact with
that memory. We also want the API between the internals of
the interpreter and our heap to only require knowledge of
language-specific constructs rather than Java-specific ones
(evaluation of e.g retrieving an element from a SimpliC array
should not require knowing that the array is backed by a
Java array).
Our heap implementation consists of a Java class which

is then propagated throughout the interpreter, see Figure 2.
Any interpreter internals that interact with this heap only
communicate with it through the constructs of indices, val-
ues, and addresses without knowing how any of the memory
is backed. This achieves loose coupling.

3.3 Heap allocation using manual memory
management

We implement heap allocation by wrapping the C functions
calloc and free. This is done by creating a C file with two
functions called yoink and yeet which wrap the calloc and
free function calls. The signature of our yoink function is
simplified such that element size is omitted with the only re-
quired argument being the number of elements. This allows
us to simplify the language semantics with an array of num-
bers being of equal size to an array of addresses. It is decided
that each position takes 64 bits(8 bytes). The wrapper func-
tion calls calloc using the provided number of elements and

an address is returned. When calling the wrapper function
around free, the address to be freed is sent as an argument,
and nothing is returned.

When assembling and linking the final binary, a few changes
needed to be made for a valid program to be created. Since
we now link with glibc we needed our build step to gener-
ate an entry point into the program that would dynamically
load the required library functions. This means that we could
no longer generate a _start label ourselves in the assembly
generation step of our compiler (which would result in a
conflict). The start label was removed and instead, the main
label was declared as global.

The following tutorial[9] was used to connect our C library
and the compiler-generated assembly code. The C library is
linked to the compiler’s generated assembly code and run
using gcc with the below commands.
$ gcc our_c_lib.c compiler_output.s -o program
$ ./program

Linking to C code also required us to adhere to its call-
ing convention. The calling convention of SimpliC is that
arguments are pushed on the stacked in reverse order. How-
ever, this is not the same as when calling C functions with
arguments, which was learned from the tutorial. The tutorial
states that the first argument should be placed in the rdi
register, the second argument in another register, and so on
[9].

3.3.1 Stack alignment
When calling a C function, the stack has to be aligned, which
means that the value of the stack pointer must be equal to
16 ·𝑛 + 8 for some 𝑛 [9]. To guarantee that this convention is
upheld when calling the C functions in our library we imple-
ment two assembly procedures that check the value of the
stack pointer, altering it if necessary. Before and after calling
the free and malloc wrapper functions these procedures are
run. The first one checks if the stack pointer has the correct
value and if it is not correct, it subtracts 8 bytes from the
stack pointer. If the stack pointer was updated the register
r15 is updated with a 1. Later on, after the wrapper function
call is complete the second function checks if there is a 1
in the r15 register, if so then 8 bytes are added to the stack
pointer and r15 is updated to a 0, otherwise not.

3.4 Garbage Collection
The garbage collection algorithm that is implemented in the
paper uses elements borrowed from both reference counting
and mark-and-sweep, which we named Reference-Sweep.
The incremental marking of reachable objects from Refer-
ence Counting and the liveliness check and reclamation pass
from Mark and Sweep are combined into a GC algorithm
that allows for a simpler implementation. Firstly, during
program execution, the garbage collection algorithm counts
the number of pointers from the stack to an object on the
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1 struct array_t

2 {

3 int is_integer;

4 int live;

5 unsigned int stack_counter;

6 int length;

7 };

Figure 2. Structure of one instance in heap

heap, i.e. stack reference counting. Only the direct pointers
are counted. This means that only array declarations and
reassignments are counted.
When the program tries to request memory, but there

isn’t enough free memory left, the second phase of the GC
algorithm occurs. At this point, the GC already knows which
objects on the heap are reachable from the stack and only
needs to check which heap objects are reachable from other
heap objects. The GC algorithm can immediately iterate
through all the heap objects reachable from the stack and
then recursively calculate which other objects are reach-
able. This phase is called the mark phase. The third phase is
the sweeping phase, where the algorithm sequentially goes
through the objects on the heap and collects all object that
is not live. The garbage collection is complete.

3.4.1 Structure of heap
The garbage collection is implemented in the same C file
as yeet and yoink, extended with multiple functions. Fur-
thermore, yoink was extended to include the PointerLevel as
an argument, in order to keep track of whether the array
contains memory addresses or integer values.
Using conditional compilation using a C macro, the be-

haviour of yoink is different between when garbage collec-
tion is enabled versuswhen it is not.When garbage collection
is enabled and the program requests memory, an additional
array_t struct as seen in Figure 2 is allocated on the heap in
addition to any memory requested by the program. Using
pointer arithmetic a pointer to the requested memory is con-
structed and returned back to the program. This address is
also saved in a global array for later reference by the mark
and sweep phases. Using two additional functions that we
implemented, this conversion from an array pointer into a
pointer to requested memory and vice versa can easily be
performed.

The metadata struct allows us to store bookkeeping details
right next to the related memory. The is_integer member in
Figure 2, is 1 if the array stores integer values and it is used to
distinguish arrays containing references to other arrays and
arrays containing integers. It is used to stop the recursive
reachable check, in the mark phase of garbage collection.

Live is also used during the marking phase, to indicate if the
array is reachable from the stack. It also serves as a check to
whether we have already visited it during another recursive
step. The stack_counter counts how many pointers there are
from the stack to some array on the heap is updated during
program execution. The member length is for indexing the
array and is used when finding array objects referenced from
other array objects.

3.4.2 Stack reference counting & depth
To be able to count the stack reference, the garbage collection
algorithm has a function called update_counter, which decre-
ments and increments the stack pointer of the old and new
address respectively. Given an address that is zero (NULL
pointer), the address is ignored. The previously mentioned
function is called when a variable of type array is declared
or assigned a value. To support repeated re-declarations of a
variable in a loop, the initialization of local variables on the
stack had to be changed from subtracting the stack pointer
to pushing value 0 to the stack.

To correctly increment and decrement the referencesmade
during program execution, we introduced a notion of "func-
tion depth". We keep track of and associate each reference
made from the stack with what essentially is the number of
function frames constructed so far. We do this by implement-
ing a linked list that contain both the reference (memory
address) and the depth at which it was made. Before a func-
tion is called, and before its arguments are evaluated, the
depth is increased. After the function returns, the depth is
decreased and all the references that were made during the
previous depth level have their stack counter decremented.
This means that we then know all references that were made
during that specific function invocation, which now should
be decremented. We also simplify the handling of functions
returning references (e.g a function returning the address
to an array that it has constructed) by disallowing them
in context were the value is not immediately bound to a
variable.

3.4.3 Reclaiming memory
The garbage collection is potentially run during a SimpliC
calloc call, if the current size of the heap and the requested
allocated space exceeds the arbitrary heap max size. The first
part of reclaiming memory is the marking reachable object
as live. The algorithm goes through the array of memory
addresses and calls a recursive function mark_reachable if
the stack counter in the associated array_t struct is larger
than 0. The function marks the object as live and recursively
calls itself on the reachable objects. The recursion stops if
the object are already marked as live or if the array contains
integer values(PointerLevel equal to 0).

The last phase of "sweeping" is done by sequentially going
through the array of memory addresses again and freeing the
memory if is not marked as live. The linked list of references
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with their depth levels is then iterated through, and any node
that now points to invalid memory is freed and removed as
well. The live objects are updated to not being live anymore,
to prepare for the next garbage collection.

4 Evaluation
The figures 3 and 4, show the heap memory usage over the
number of instructions with the same program using man-
ual memory allocation and garbage collection respectively.
The program sorts an array of 500 values in reversed order
using bubble sort. The garbage collection algorithm has an
arbitrary heap maximum size which in Figures 3 and 4 was
set to 15 kB. This amount was chosen to control the number
of times the garbage collection is run.

Figure 3. Bubble sort with manual memory allocation run
10 times

Figure 4. Bubble sort with garbage collection run 10 times

Figures 3 and 4 show a successful implementation of man-
ual memory management and the garbage collection algo-
rithm Reference-Sweep.
To evaluate the performance of our SimpliC implemen-

tation, we implement a bubble sort algorithm in SimpliC
with GC disabled and with GC enabled. We also implement
an as equivalent as possible of an implementation in C and
Go (using. This is such that we are able to compare Sim-
pliC’s performance with other programming languages with

manual memory management and languages with garbage
collection.

The bubble sort programs read data from stdin. First, they
read how many times they should sort the input, followed
by the length of the input. Then, in a loop, the code reads
the values to be sorted and populates them in an array. After
that, copies the input into another array, sorts that array
using bubble sort, and lastly, prints the sorted array.
On top of this, an evaluation script that executes each

program M times for varying input sizes (N) is implemented.
This allows us to retrieve the average execution times per
program and by extension, per sort of the input array for
many different lengths of the arrays.

We compare the execution speed of one sort attempt in our
SimpliC implementation of bubble sort against itself (with
and without GC) and equivalent implementations in C and
Go (using go version 1.21.6). The choice of these languages
allow the benchmarking methods to be identical between
languages. This can be seen in Figure 5

Figure 5. Different implementations of bubble sort in lan-
guages with and without automatic memory management

5 Related work
5.1 ZGC
A modern implementation of a GC that is also used in pro-
duction is the ZGC garbage collector. ZGC is a new garbage
collection algorithm in OpenJDK[16]. It uses three pauses
during one clean-up. During the first pause, it recognizes the
current objects and will not consider new objects allocated
after this pause during this clean-up, and pushes the root
pointers to a stack. After the pause the marking begins, it is
done by multiple threads and they mark objects live. Then,
a second pause is used to check that the marking is com-
pleted by the threads. After this, the algorithm selects pages
in the heap that do not contain a lot of live objects, so-called
evacuation candidates(EC) set. Now is the last pause and it
consists of marking all pointers as bad. During the pause,
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it also moves objects pointed by root pointers from the EC
set to other pages and marks all root pointers as good. Then
the final part begins, threads concurrently move live objects
from the EC set to other pages. The pages in the EC set are
now cleared and the clean-up is complete[16]. As previously
mentioned under 2.4.2, one drawback with mark and sweep
is that the phase of reclaiming memory grows with the size
of the heap. However, Yang and Wrigstad[16] explain that
as the heap grows larger, ZGC tries to maintain short pauses
when garbage collecting.

5.2 Boehm GC
An often-cited modern C implementation of a GC is the
Boehm-Demers-Weiser conservative garbage collector. [8]
This GC is written to be used as a replacement for the POSIX
memory management functions. The library is used not only
to implement programming languages with a GC but also
for its improvement in ergonomics. Application authors who
are programming in C but who want the convenience of a
GC can use the library over the ordinary malloc and free.
An example of a project that has chosen to go this route is
Inkscape. [6]

5.3 Silver
Another attribute grammar framework is Silver, developed
at the University of Minnesota[14]. Silver is "an extensible
attribute grammar specification system"[14]. Van Wyk et
al.[14] explain that JastAdd and Silver have implemented
different concepts in attribute grammar.

6 Conclusion
In this report, the extension of SimpliC with heap alloca-
tion and automatic memory management is described. An
introduction to relevant areas and technologies is given. A
garbage collector using elements from both reference count-
ing and mark and sweep is successfully implemented and its
performance in comparison to SimpliC with manual memory
management as well as other languages with and without
GC is done.

We find that our implementation of bubble sort performs
worse than an equivalent implementation in C and Go, which
was anticipated. A surprising find is that the difference be-
tween SimpliC with and without garbage collection is not
that large, though this could be because of limitations in our
benchmarks rather than actual performance characteristics.
A reasonable explanation for the (relative) poor perfor-

mance of our GC implementation can be found in how we
interface with the C library, as well has the ad-hoc generation
of assembly code. For every interaction with the C library,
the assembly code is required to call a routine that makes
sure the stack is aligned. The overhead of this has not been
measured but it is reasonable to say that a large portion of
the executed instructions for any SimpliC program with be

from these routines. Some of this could be mitigated by better
analysis (such as computing stack alignment statically).

Another explanation for the poor performance of the GC
in particular is in our choice to combine Reference counting
withMark and Sweep.While our approach does give us some
nice properties (with the most important one probably being
how it simplifies our implementation) we are essentially
paying for both the cons of each approach simultaneously.
The incremental work done by the reference counting part
of our GC introduces a large constant on top of any other
operation. While this somewhat speeds up the mark and
sweep phase the cost of this step is still high.

6.1 Future work
The work of implementing a garbage collection for SimpliC
creates a basic framework for the implementation of other
garbage collectors, with methods such as generational and
copying garbage collection. This enables the comparison
of the performance of the implemented Reference-Sweep
garbage collection with the performance of other garbage
collectors in the same programming language of SimpliC.
Another future implementation would be to extend the Sim-
pliC language with the support of heap-allocated structs.
Then, a garbage collection algorithm’s performance could
be compared between structs and arrays.
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