
Metavis: Visual debugger for MetaDL
Emil Blennow

E19, Lund University, Sweden
em8055bl-s@student.lu.se

Abstract

 Course paper, EDAN70, Lund University, Sweden
 Jan 9

This paper introduces a tool for visualizing static bug
reports generated by MetaDL. By utilizing a terminal
UI the analysis results from MetaDL become easier to
understand, debug and make use of. Taking inspiration
from other terminal based UI the tool aims to be easy
to learn and quickly usable.

1 Introduction
MetaDL [2] is a collection of tools for writing declara-
tive static bug checkers. The tool mainly targets Java, C
and Datalog programming languages and the analyses
are written in the MetaDL language which is an exten-
sion of Datalog.

MetaDL outputs the analysis result in a combination
of comma separated values (CSV) or JavaScript object
notation (JSON) files. These are great for parsing and
analyzing for computers but not as good for humans.
An example of the current outputs can be seen in List-
ing 1, Listing 2 and Listing 3.

1,png.c,438,12,438,12
2,png.c,438,7,438,20
3,pngmem.c,252,9,252,9
4,pngmem.c,252,4,252,12
5,png.c,427,4,427,27
6,pngmem.c,246,47,246,57
36,/usr/include/x86_64-linux-gnu/bits/uintn-
identity.h,35,10,35,10
...

Listing 1. Debug_Loc.csv

[
 {
 "name": "Assign",
 "file": "Assign.csv",
 "locs": [0, 1, 2, 3, 4],
 "locFile": "DEBUG_Loc.csv"
 },
 ...
]

Listing 2. debug.json

6373,18214,6373,17055,6373
6378,18319,6378,18239,6378
6414,6412,7675,7676,7677
6544,18218,6544,17215,6544

Listing 3. Assign.csv

To the trained eye the output files might be readable
and understandable but not without effort and when
having relations referring to multiple files it becomes
very hard to keep track of everything.

The process for understanding the files in Listings
1-3 is to start at the debug.json file and find what type
of relation you are interested in. Then you navigate to
the file, in this case Assign.csv make note of the nodes
on a line and then navigate to Debug_Loc.csv. From
here you find the corresponding nodes (first column)
and their file and the location in code the AST node
represents where the fields in Debug_Loc.csv are start
row, start column, end row, and end column.

According to a study conducted by Glen Wylie and
Alan Allport [5], humans have a harder time switching
between different tasks than just continue working on
the same. In their study, test subjects were subjected to
words and colors separately and asked to name what
they saw. When switching between stimuli, subjects
where on average slower to react and name the correct
thing they saw compared to when being subjected to
the same type of stimuli.

This effect can also be observed when trying to man-
ually parse these relations since they are number based
and need to be translated to source code locations. One
might even say the overhead is higher since there is
more work and context required to link the informa-
tion together.

2 Introducing m e t a v i s
Metavis tries to alleviate the confusion of these files by
introducing a terminal user interface (TUI) to visual-
ize the analysis results with the source code as context.
The tool was designed to be familiar to how a regular
editing environment while following the conventions
of similar terminal based UIs such as GitUI (https://
github.com/extrawurst/gitui) and lazydocker (https://
github.com/jesseduffield/lazydocker). The primary use
case of this tool is to help debugging and verifying that
analyses point towards the correct nodes and that they
are located correctly within the source code. Though

1

January 9, 2024.

Course paper, EDAN70, Lund University, Sweden Emil Blennow

this might be the main use case, the program can also
be used to consume the final analyses and aid debug-
ging and/or fixing the source code being analyzed. A
screenshot of the program can be found in Figure 1.

Figure 1. Metavis program

The following parts of this paper will detail some main
parts of the program, how they are implemented and
the program can be used.

3 Implementation
First and foremost the output from MetaDL must be
parsed, and all necessary connections must be made.
This report will use an example project provided in
the source repository at GitHub (https://github.com/
blennster/metavis).

3.1 MetaDL output
MetaDL outputs relations in CSV format where each
row in the CSV file represent a tuple as seen in List-
ing 3. Relations of MetaDL are typed and each column
in a CSV file can either be an integer, a string or an
AST node.

To differentiate which fields contains AST nodes and
integers, MetaDL outputs the debug.json (Listing 2)
file. The locs field defines which columns should be
parsed as AST nodes and not integers and the corre-
sponding location can be matched in the file defined
in locsFile.

The DEBUG_Locs.csv contains the id of the AST
node, the source file and the location within that file
(start row, start column, end row and end column).

3.2 Parsing the output
Metavis starts at the debug.json file and parses all
the files it references, taking care to de-duplicate when
parsing the location file and source file since they may
be referenced multiple times.

The results are then combined into a struct named
MetaInfo which contains all the raw analysis informa-
tion and methods for extracting information for indi-
vidual files or relations.

3.3 Terminal UI
A TUI is an application which uses simple text only
to render a user interface. These have many benefits
compared to regular graphical user interfaces in that
they can be very fast and efficient. Since most termi-
nals are already highly optimized, rendering the UI is
done fast and efficiently. It is also easier to work with
layouts since the smallest unit is a character and since
this is a text heavy interface no smaller unit is needed.
There is a minimal amount of clutter and the design
is streamlined to its simplest parts since the UI is only
text based.

3.4 Ratatui and immediate mode render-
ing
Ratatui (https://ratatui.rs) is the rust library used to
render the terminal UI. It uses immediate mode render-
ing for the UI. It is a special render paradigm where you
redraw the UI on every frame. This means that render-
ing can be delayed until something new needs to be
rendered which leads to more efficient code. It is also
very simple to get stared since you just need to set up
a loop and issue render calls. The drawbacks are that
the render loop and event loop needs to be set up by a
programmer which can be a lot of work and there is no
framework to help developers keep a sane and flexible
structure when building larger applications. [1]

3.5 Highlighting
For every line inside a file there can be one or many
nodes, and they may be nested within each other as
seen i Listing 4. Highlighting may also span several
lines and within these lines highlighting may also be
nested.

Listing 4. An example how highlighting may look

The Ratatui library only allows setting the style of text
before rendering it and not after. Therefore, every line
is checked if it contains any highlight and if it does,
every character will be checked if it is part of a high-
light. Nesting is checked by comparing the number of
highlights a position matches and coloring is based on
this number. Listing 5 details a pseudo algorithm for
how the highlighter works where the n_highlights()
method works in a similar way to the algorithm de-
tailed in Listing 6.

2

Course paper, EDAN70, Lund University, Sweden Emil Blennow

for line in file
 let line_to_render = ""
 if has_highlights(line)
 // Accumulator
 let acc = ""
 let prev_n = 0
 for (char, index) in line
 let n = n_highlights(index)
 if n != previous_n
 // Map an integer to a color
 let color = get_color(previous_n)
 // Get a styled span from string
 let span = new_span(acc, color)
 line_to_render.append(span)
 acc = ""
 prevous_n = n
 acc.append(char)

 // Get the last of the accumulator
 let color = get_color(previous_n)
 let span = new_span(acc, color)
 line_to_render.append(span)
 else
 line_to_render = line

 render(line_to_render)

Listing 5. Highlighter pseudo code

The algorithm in Listing 5 produces a result which can
be seen in Figure 2.

Figure 2.

3.6 The different panes
As seen in Figure 1, the program is divided into four
main panes. These can be selected using the shortcut
in the brackets within pane title. Switching can also
be done using <Tab> and <Shift-Tab> also known as
back tab. The file selector can be summoned by press-
ing f. The currently focused pane is highlighted with a
thicker green.

3.6.1 Relations
The relations pane represents the different analysis
items present within a project. These contain one or
many rows of one or many tuples. This pane helps with
usability for large projects since having all tuples in

one list. This list can be very long and not very friendly
to navigate but grouping by relations alleviates this.

3.6.2 Tuples
Tuples are the main driving force of the program.
They represent one or more nodes that contribute to
a named analysis. Navigation within this pane causes
the source view to jump to the selected node within a
list. Nodes within one row can be navigated by using
the left- or right arrows and since analyses can re-
fer to nodes across files the source view will load the
correct file and jump to the location of the node. To
not surprise the user as much when a different file is
loaded, the list displays what files are included within
one diagnostic as seen in Figure 3

Figure 3. Tuple spanning multiple files

3.6.3 Source
The source view displays the analyzed source code
with the selected nodes rendered as highlights. This
view can be navigated in a similar way to how most
other text editors work. It will preserve column selec-
tion when navigating up and down and will highlight
items within the diagnostic view when the cursor is
placed on a node contained within the item.

Evaluating which nodes are under the cursor is sim-
ply done with a containment check as filter detailed in
Listing 6. The containment check is also used in List-
ing 5 at the n_highlights() function call.

3

Course paper, EDAN70, Lund University, Sweden Emil Blennow

let nodes
let c_col = cursor.location().x
let c_row = cursor.location().y
for diagnostic in diagnostics
 let loc = diagnostic.location
 let in_range = false
 if (loc.start_line <= c_row &&
 c_row <= loc.end_line)
 if loc.start_line == loc.end_line
 in_range = loc.start_col <= c_col &&
 c_col <= loc.end_col
 else if loc.start_line == c_row
 in_range = loc.start_col <= c_col
 else if loc.end_line == c_row
 in_range = c_col <= loc.end_col
 else
 in_range = true

 if in_range
 nodes.append(diagnostic.node_id)

Listing 6. Range filtering for nodes under cursor

3.6.4 Information
The information view displays all the analysis contri-
butions for the current cursor position within the code.

3.6.5 Files pop-up
For easy jumping between files, a file picker was added.
This can be used to easily jump to an interesting file
within the project without having to find a diagnostic
pointing towards that file. An example of this can be
seen in Figure 4.

Figure 4. File picker

3.6.6 Goto line
To easily navigate to a specific line, the user can input :
and a pop-up will show where the user enters a number
and the cursor will jump to that line within the current
loaded file. This binding is only active when the user
has the source view focused.

4 Evaluation
Usability was evaluated with one usability target: all
features within the program should be discoverable
and usable without the user having to ask for help or
reading a manual. Additionally, there should not be
any unexpected behaviors and the program also imple-

ment most of the expected behaviors based on users
previous knowledge.

I tested the usability by placing a computer with the
program running in front of users and asking them
to use the program. Some background about what the
overall goal of the program was described beforehand.

The user was then observed and to see that all fea-
tures was used and some simple informal questions
where asked such as “what did you think of the pro-
gram?” and “was there anything that felt unnatural/un-
expected?”.

This testing is based on the methods described by X.
Ferre et al. [3] and was evaluated continuously during
development.

Three users where part of this testing, an expert user,
an programmer with some TUI experience and a non
programmer.

The expert user was part of the design of the pro-
gram user interface and guided what felt usable and
not. The main complaint was that some parts of the
program behaved unexpectedly but these complaints
where resolved.

The programmer that used the program got up to
speed easily since he had some experience with sim-
ilar programs and keyboard navigation in programs.
He found that some expected keyboard bindings such
as backtab were missing but these were later imple-
mented.

When the non programmer who did not have any
TUI experience was asked to test the program and felt
that the lack of mouse support was a limitation for
their ability to use the program and did not really un-
derstand why the interface was text based.

Performance is good with no massive spikes of CPU
usage, low memory usage and fast rendering. Input re-
sponse is instant and there is no loading delays with
one caveat that when compiling in debug mode there
can be slowdowns in some cases but these are not
present in release mode. Robustness was improved by
handling missing source files instead of crashing.

5 Related work
Terminal based UIs are still very common with devel-
opment tools since many other tools utilize a CLI and
a TUI provides a more intuitive way to interact with
these tools. TUIs are also great for portability since
basically every machine has a command line interface
and therefore can render the UI without external de-
pendencies. Some other examples of TUIs are htop,
vim, lazygit and the GDB TUI mode.

The TUI mode found in GDB is the most similar to
this work. It offers a syntax highlighted source view,
registers assembly and a command window. It also fea-

4

Course paper, EDAN70, Lund University, Sweden Emil Blennow

tures mouse scrolling in the views for easier naviga-
tion.

An often used tool at LTH when working with com-
pilers and program analysis is CodeProber [4]. It can
be used similarly as this tool by analyzing code but is
restricted to Java implementations. It also focuses on
a different type of analysis where it is often the com-
piler being analyzed but MetaDL and Metavis is more
focused on the Datalog program that runs the analysis
and the source code.

Metavis follows some ideas from Codechecker
https://codechecker.readthedocs.io/en/latest/ but on a
smaller scale. Codechecker reads analyses from many
static analysis tools such as Cppcheck, ESLint and
golint and displays these in a web GUI with the respec-
tive code. Codechecker is used for displaying the final
output of analyzers while Metavis focuses on the in-
termediate steps also to help debug the analyses itself.

6 Conclusion and future work
The current implementation is functioning well but
there is always room for improvements.

Some possible improvements are:
• Mouse support
• Implement a fuzzy finder to search and select files
• Easier selection of a specific node
• Improve the source view with better scroll into view

behavior and syntax highlighting
• Allow searching text in files
• Scrollbars to indicate scrollable views
• Improve the performance when selecting relations
• Allow different directories for the source files and

analysis outputs

7 Acknowledgments
I would like to thank Alexandru Dura for continuously
evaluating and guiding development of this tool and
my classmates for usability testing and especially Axel
Froborg for excellent feedback.

References
[1] Immediate mode rendering in ratatui. Retrieved

December 16, 2023 from https://web.archive.org/web/
20231216235836/https://ratatui.rs/concepts/rendering/

[2] Alexandru Dura, Hampus Balldin, and Christoph Re-
ichenbach. 2019. MetaDL: Analysing Datalog in Data-
log. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Workshop on State Of the Art in Program Analy-
sis (SOAP 2019), 2019. Association for Computing Ma-
chinery, Phoenix, AZ, USA, 38. https://doi.org/10.1145/
3315568.3329970

[3] X. Ferre, N. Juristo, H. Windl, and L. Constantine. 2001.
Usability basics for software developers. IEEE Software
18, 1 (2001), 22–29. https://doi.org/10.1109/52.903160

[4] Anton Risberg Alaküla, Görel Hedin, Niklas Fors, and
Adrian Pop. 2022. Property Probes: Source Code Based
Exploration of Program Analysis Results. In Proceed-
ings of the 15th ACM SIGPLAN International Conference
on Software Language Engineering (SLE 2022), 2022. As-
sociation for Computing Machinery, Auckland, New
Zealand, 148. https://doi.org/10.1145/3567512.3567525

[5] Glenn Wylie and Alan Allport. 2000. Task switching
and the measurement of 'switch costs'. Psychological Re-
search 63, 3 (August 2000), 212–233. https://doi.org/10.
1007/s004269900003

5

