
Detecting and Fixing Common Code Style Issues in
Java

Alexander Magnusson

D18, Lund University, Sweden

al0173ma-s@student.lu.se

Abstract
Code style is an important aspect of programming. While

two different pieces of code may perform the same task

logically one might be simpler to read and understand than

the other. Code written in an unnecessarily complex way

might show that the author might not have fully understood

a certain concept. In addition to reducing the complexity

of the code itself, adhering to a common code style help

multiple developers collaborating on the same code base

understand code written by others quicker.

1 Introduction
In real world applications there are hundreds of develop-

ers working on the same codebase it is essential to have a

coherent code style to allow for efficient maintainability of

the code. Code style can be as simple as choosing between

tabs or spaces for indentation: syntactic style. To more com-

plex refactoring based on semantics such as refactoring the

if-statement in Figure 1. There exist similar tools, such as

Checkstyle for Java [1]. The focus of this paper will be on

semantic style, which concerns how certain features of a

programming language is used.

While code style is an important concept there is a ten-

dency for it to be ignored as long as the program works

correctly. In university courses it is often encouraged to fol-

low conventions for code style, but it is rarely followed up on.

Comments on code style are often seen as recommendations

rather than requirements, which are easily ignored unless

trivial to fix [2]. Seeing how adhering to code style is often

only a recommendation, spending time and energy modify-

ing a logically correct program might feel unmotivated and

hence ignored. It is therefore motivated to develop an inte-

grated and automated tool for detecting and fixing common

code style problems. Reducing the friction in finding and

fixing code style violations increases the probability that the

programmer will follow the conventions.

Therefore the goal of this project is to develop a tool that

detects and suggests fixes to common code style violations

in Java. The tool will be in the form of a VSCode extension

built upon the Magpiebridge framework [5] using Reference

Attributed Grammars extending the ExtendJ compiler [3].

Course paper, EDAN70, Lund University, Sweden
January 11, 2023.

MagpieBridge wraps the Language Server Protocol and pro-

divdes an interface for the communication between Code

Style Improver and the text editor. The proposed tool will

be evaluated in the form of a Proof Of Concept, where the

tool is applied on interesting examples.

The contribution of this paper is the development of the

analyses that detect code style violations and compute sug-

gested fixes, as well as integrating them into the framework.

One big difference between Code Style Improver and other

tools such as Checkstyle is that Code Style Improver pro-

vides real-time feedback and allows the user to select exactly

which analyses should be enabled [1].

1.1 Components - JastAdd, ExtendJ, MagpieBridge
JastAdd is a Meta-compiler framework designed to aid de-

velopers building compilers. JastAdd is based on an object-

oriented approach to the Abstract Syntax Tree. JastAdd

support the Reference Attribute Grammars and it is imple-

mented in Java [4]. The functinality built using JastAdd can

be divided into aspects representing modules that can easily

be modified or extended [4]. ExtendJ is an extensible Java

compiler, it allows developers to modify the compiler, adding

new features. The ExtendJ compiler makes use of JastAdd

when working with Reference Attribute Grammars, evalu-

ating attributes on-demand enabling the analysis to be per-

formed in real time [3]. MagpieBridge is a Language Server

Protocol framework that intends to simplify the creation of

language servers by providing an interface between the lan-

guage server and the client. This allows developers to focus

on implementing the language and client specific features.

One important feature is the modularity of the framework,

it enables developers to modify the language server without

having to rewrite it entirely. Using this approach reduces

the overhead needed to connect Code Style Improver with a

text editor [2].

2 Motivating Examples
The examples below show a pair consisting of a code style

violation and a proposed improvement. Violations of code

style like in the examples below might indicate that the

programmer has not sufficiently understood the concepts of

the programming language.

1



Course paper, EDAN70, Lund University, Sweden Alexander Magnusson

Listing 1. Before refactoring.
if(condition == true) { ... }

Listing 2. After refactoring.
if(condition) { ... }

Figure 1. A common mistake for someone who do not fully understand boolean statements.

Listing 3. Before refactoring.
String[] coll = { "a", "b", "c" };
for (int i = 0; i < coll.length; i++) {
System.out.println(coll[i]);

}

Listing 4. After refactoring.
for(String s : coll) {
System.out.println(s);

}

Figure 2. If the only use of an index is to access elements in an array, it is clearer to use an enhanced for-loop.

3 Code Style Improver
The code style improver is a tool that enables detection and

fixing of common code style violations in Java. The proposed

solution uses ExtendJ, an extensible Java compiler [3]. Using

ExtendJ it is possible to create a semantic analysis extension

for the purpose of our tool. The analysis is done on the AST

using RAGs. By incorporating the compiler extensions with

the MagpieBridge framework it is easy to add an analysis

into a text editor or an IDE [5].

There is a big advantage of having the analysis in the edi-

tor, namely the fact that the feedback is in the same place

as the code it refers to. When the tool detects a code-style

violation a visual warning will highlight the relevant lines

with a message explaining the reason behind the warning

and a suggested quick-fix allowing the developer to fix the

code with a simple keyboard command or IDE interaction.

This creates a system with a quick feedback loop, the devel-

oper writes code, receives instant feedback and if a problem

is detected it is trivial to apply the fix.

There are two main problems solved by the tool. Firstly

there is the problem when the developer does not know that

the code they are writing could be written in a better way.

The detection helps the programmer to become aware of

the problem. The second part is actually fixing the problem.

Some code style violations might be trivial enough that when

one is made aware it is easy to fix with minimal effort, for

instance the example in Listing 1. Another example is a for-

loop using indices to iterate thorugh an array, which can be

refactored to an enhanced for-loop as seen in Listing 2. This

is a more complex operation, that requires limiting the types

of for-loops we can refactor and it comes with edge cases

that needs to be considered. A novice programmer unaware

of the concept of enhanced for-loops might not understand

how to perform the refactoring only from a warning message

and will therefore also benefit from help applying the fix. An

experienced programmer aware of the alternative will still

benefit from getting help from the tool the same way that

they would benefit from regular code completion.

3.1 Challenges
The main challenges developing Code Style Improver were:

• Dealing with complex checks where there exists a lot

of cases to consider. For the for-loop check this means

that the scope of cases that the tool can handle had

to be tightened, the challenge is then to decide how

much the problem can be simplified while still being

general enough to be useful.

• Generating new code is another big challenge, it is

important to ensure that the new code is properly

indented. Especially important is the case when gener-

ated code introduces new variables, it must be ensured

that the newly introduced variables do not conflict

with other variables in the namespace.

3.2 Architecture
The architectural overview in Figure 3 shows a high-level

overview of the components of the tool. From left to right,

there is the input code that is to be analyzed. The input

flows into Code Style Improver. ExtendJ and JastAdd al-

lows one to extend the compiler with new attributes used

to detect possible code style violations. The next level con-

tains warnings and quick-fixes, when a violation is detected,

a warning is constructed containing an error message, the

location and actual value of the faulty code. Additionally a

suggested quick-fix is computed and bundled with the warn-

ing. This package with the warning and quick-fix is then

sent towards the text-editor. There is an interface between

the Code Style Improver and the text-editor, which consists

of MagpieBridge that in turn wraps the LSP, or Language

Server Protocol. On the far right is the output after applying

the quick-fix.

2



Java Code Style Improver Course paper, EDAN70, Lund University, Sweden

Figure 3. Architectural overview.

3.3 Implementation
The code style improver is implemented by modifying the

AST using RAGs. Using the grammar it is possible to an-

alyze code to find structures that might be potential style

violations. We can add attributes for these structures to de-

tect and fix the violations. The starting framework contains

a type warning, which is the kind of message passed to

the IDE. Warnings contain information computed in the

attributes, such as information where the faulty code is lo-

cated, a human-readable error message to show in the IDE,

additional information to be shown in the IDE and it may

also contain a fix for the violation as seen in the example in

Listing 5.

Let us consider the example in Listing 1. The first if-

statement consists of an expression within the parenthesis

followed by a block of code. In this case the expression is of

the type EQExpr, which in turn consists of two expressions

separated by the equality operator, "==". New attributes are

created in order to detect the potential violation. Firstly there

is a boolean synthesized attribute called isTrueLiteral,
that checks whether any of the operators actually equals

true. There is a collection attribute that collects warnings

when isTrueLiteral evaluates to true. As Listing 1 shows,

the first if-statement can be simplified by only keeping the

operand that is not a true literal. Therefore, there is a syn-

thesized attribute of type Expr that returns the operand that

is not equal to true. Working with the AST it is possible to

generate new strings by replacing nodes in the tree. In this

case the EQExpr is replaced by an Expr, the operand that was
supopsed to be kept. The AST tree has now been fixed and

the string containing the improved code can now be passed

to the IDE as part of the warning message.

Listing 5. Example of a warning message sent to the IDE

when detecting the type of violation shown in Listing 1.

EQExpr contributes warning(
getCompilationUnit().pathName(),
String.format("'%s' simplifies to '%s'",

this.prettyPrint(),
this.newPrettyPrintedEqTrue()),

Analysis.AvailableAnalysis.IFEQTR,
this.newPrettyPrintedEqTrue(),

Figure 4. Warning message as shown in the IDE.

Figure 5. Suggested quick-fix as shown in the IDE.

getRelatedInfo())
when this.isTrueLiteral()
to CompilationUnit.IFEQTR();

4 Evaluation
The tool was evaluated by two different approaches. The first

approach is systematic tests, at every build a test suite will

run checking that the tool produces the correct logical results

for the given test cases. The second approach is manual

testing of the tool using VSCode. The tool is manually tested

on a subset of the test cases that were used in the systematic

testing. In addition to testing that the tool is logically correct

it tests if the warnings and fixes are correctly computed and

displayed visually in the editor.

4.1 Constraints and Edge Cases
When evaluating the tool it is important to think about the

constraints and edge cases concerning the problems that the

tool is applied on. Some of the problems are by themselves

more or less complex which influences the number of edge

cases needed to taken into account and to which degree the

covered cases of the problem must be constrained. The two

examples provided in Figures 1 and 2 provide two problems

with constrasting complexity illustrating the difference. The

example shown in Figure 1 is simple, it concers few compo-

nents of the language, it applies only to EQExpr, which in

turn means that the applicable operands must be Boolean.
3



Course paper, EDAN70, Lund University, Sweden Alexander Magnusson

Examples of edge cases to consider are what happens if both

operands are true-literals, or if all true-literals are covered,

not just the string true.
In contrast the example of refactoring a for-loop to an

enhanced for-loop as per the example in Figure 2, comes

with a much wider array of possible cases. There are a couple

key factors explaining why. For one, for-loop such as the one

in Figure 2, makes use of a larger portion of the language

compared to an EQExpr, each additional part of the language

comes with edge cases on its own, but the combinations of

different language constructs add further edge cases to take

into account. Secondly, the nature of the problem is more

general, iterating through a container is a broader problem

compared to checking if one of two operands of an EQExpr
has a specific value. Lastly, a big difference between the two

examples is that when refactoring the for-loop a new local

variable is introduced. It is therefore important to consider

possible conflicts associated.

Due to the sheer volume of cases allowed by the language

it is necessary to constrain the number of cases covered.

One constraint that has been placed on the problem is that

the refactoring is only possible when the index variable is

only used for array access in the same collection that is

used to determine how many iterations of the loop is to be

performed. If the index variable is used for anything else it is

not possible to refactor to an enhanced for-loop. Examples of

edge cases to consider are what happens if the value of the

index variable uses another convetion than indexing from

zero, or what happens if the value of the index variable is

offset by some integer value at the indexing of the collection.

When refactoring the for-loop a new variable is introduced,

it is important to consider possible conflicts that could arise.

5 Related work
There are other projects that are similar, such as Checkstyle

[1]. Checkstyle is an open-source static analysis tool for

Java. It automates the task of adhering to a predefined code

style. Checkstyle contains a set of checks. An example is

the check BooleanExpressionComplexity that checks if

a boolean expression contains at most the specified max

amount of boolean operators.

Similar to Code Style Improver, Checkstyle uses a modu-

lar approach where it is possible to extend the tool with more

checks. Checkstyle also works with the AST in order to

perform the analysis. One difference though is that Check-

style uses the visitor pattern, while Code Style Improver

takes an aspect oriented approach.

Another key difference between Checkstyle and Code

Style Improver is the fact that the latter provides real-time

analysis when a file with a .java extension is opened or saved.

Checkstyle is run as a command line tool or as an Ant task.

6 Conclusion and Future work
Code Style Improver has room for improvement and expan-

sion. In the future it can be improved to better support the

for-loop so that it support all Java collections, in addition

to arrays that are supported right now. There is also the

possibility of adding new types of analyses. A concrete ex-

ample for analyses is to take the Java version of the user into

account, so that the tool would not suggest refactorings that

are only available in newer versions, but it could also suggest

refactorings that are new to the current version in the event

that a user upgrades to a newer version of the language that

contain new features. If one were to create a more complete

product rather than the prototype of today, there are two

main considerations. Firstly the amount of analyses avail-

able. As of right now there are too few analyses to provide

any value to a user. It would also be wise to consider the

target audience and concentrate and tailor the type of anal-

yses. As an example, the eqals-true example in Figure 1

is trivial enough that it would really only help a novice pro-

grammer, while it would not be much help to a professional

programmer who knows better. On the other hand more

complex refactorings might not be that useful to a novice

whose main objective is to learn, if they do not understand

why a certain refactoring was performed. To conclude, Code

Style Improver has a lot of potentital. The protype prestented

in this paper represent a very small subset of the possible

analyses. While the examples presented do not provide much

value alone they hint about the possibilities.

Acknowledgments
Thank you to Idriss Riouak for all your help and feedback.

References
[1] Checkstyle. 2022. Checkstlye. (2022). https://github.com/checkstyle/

checkstyle
[2] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B.

Rowe, and Nasser Giacaman. 2018. Understanding Semantic Style

by Analysing Student Code. In Proceedings of the 20th Australasian
Computing Education Conference (ACE ’18). Association for Computing

Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/3160489.
3160500

[3] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java

compiler. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and applications (OOPSLA
’07). ACM, New York, NY, USA, 1–18. https://doi.org/10.1145/1297027.
1297029

[4] Görel Hedin and Eva Magnusson. 2003. JastAdd - an aspect-oriented

compiler construction system. Science of Computer Programming 47, 1

(2003), 37–58. https://doi.org/10.1016/S0167-6423(02)00109-0
[5] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. MagpieBridge: A

General Approach to Integrating Static Analyses into IDEs and Ed-

itors (Tool Insights Paper). In 33rd European Conference on Object-
Oriented Programming (ECOOP 2019) (Leibniz International Proceedings
in Informatics (LIPIcs)), Alastair F. Donaldson (Ed.), Vol. 134. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 21:1–

21:25. https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

4

https://github.com/checkstyle/checkstyle
https://github.com/checkstyle/checkstyle
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1016/S0167-6423(02)00109-0
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

	Abstract
	1 Introduction
	1.1 Components - JastAdd, ExtendJ, MagpieBridge

	2 Motivating Examples
	3 Code Style Improver
	3.1 Challenges
	3.2 Architecture
	3.3 Implementation

	4 Evaluation
	4.1 Constraints and Edge Cases

	5 Related work
	6 Conclusion and Future work
	Acknowledgments
	References

