
Usability of Alternative Semantic Highlighting
Features

Charlie Ringström
E18, Lund University, Sweden
ch5573ri-s@lu.student.se

Jonathan Frisk
D17, Lund University, Sweden

jo1875fr-s@lu.student.se

Abstract
Today most programmers use some kind of active program-
ming support when coding, such as auto completion and
function references. One of these features is semantic high-
lighting. For this project, this is implemented with a language
server that communicates with the text editor. This paper
explores three different ways to semantically highlight the
code. The first feature highlights Strings compared with the
== operator to indicate that the code might be flawed. The
other features highlights both for loop variables with unique
colors, and also each bracket pair a unique color. By using
the ExtendJ Java compiler, the proposed language server
communicates with the text editors using LSP. The for loop
variable highlighting and bracket coloring features were eval-
uated by showing code snippets to 12 test subjects, with or
without semantic highlighting, and the time to solve each
programming task was measured. For the two tests, the re-
sults showed a 5 % and a 13% reduction in time to solve each
programming task with the semantic highlighting enabled.
However, the standard deviation is too big to draw any con-
clusions. Additionally, it remains unknown how the results
would change in real life usage.

1 Introduction
Most programmers today would expect some kind of active
programming support when editing code in a modern text
editor. Examples of such support may be syntax highlight-
ing, function references and auto completion. While this
is great for the user, it is also quite difficult for both lan-
guage designers and text editor developers to implement.
In 2016, Microsoft launched an open standard to facilitate
this called the Language Server Protocol (LSP). Instead of
having each editor target each language server they can all
just implement the LSP protocol to make it work with any
LSP compatible language [7].

This project has the goal to develop new semantic
highlighting features and evaluate their usability by imple-
menting a language server (called ExtendJ-lsp [3]) using the
LSP protocol. Unlike most other code highlighting, ExtendJ-
lsp doesn’t highlight the code with regex pattern matching
as is typically done. The language server instead constructs
an Abstract Syntax Tree (AST) to semantically interpret

Course paper, EDAN70, Lund University, Sweden
January 22, 2022.

the code. Although regex based highlighting is quicker
and works well in most situations, semantic highlighting
can highlight the code contextually, and could for exam-
ple highlight a variable differently depending on its type.

This report also explores the option of using the Extendj
[10] Java compiler to process the code in ExtendJ-lsp.
Extendj is a Java compiler built with extensibility in
mind. This makes it easy to integrate new features into the
language server. The solution utilizes LSP4J [2] to implement
LSP in Java. The text editors chosen for this project where
Visual Studio code, and Neovim. To communicate with VS
Code, a custom extension was made, and for Neovim a small
configuration file was made.

Extendj-lsp has three different semantic highlighting
features. The first feature highlights nested for loop
variables with different colors. The second feature highlights
a String to String comparison if it’s done with == instead of
.equals() to indicate that the code might be flawed. The
third feature highlights brackets pairs with unique colors.

The features of the language server were tested on people
to evaluate its usefulness. To do this, a comparison was
performed to measure the time it took for the test subjects
to find a bug in a code samples with and without semantic
highlighting enabled.

The report is structured as follows. The background sec-
tion aims to describe the underlying concepts and termi-
nology behind the project. The Extendj-lsp language server
section aims to describe more in depth how the language
server works. The evaluation section describes in depth how
the project was evaluated. Following, we present the related
work, conclusions, future work and acknowledgements.

2 Background
2.1 Language Server Protocol (LSP)
Language Server Protocol (LSP) standardizes the
communication between language servers and text
editors, using JSON-RPC to transfer information.

The protocol specifies notification requests that
the text editor should respond to at certain events,
and vice versa. Some examples are: initialization of

1



Course paper, EDAN70, Lund University, Sweden Charlie Ringström and Jonathan Frisk

connection between server and editor, when user
opens a document, or when a user edits the document.

Figure 1. Example of an LSP request

2.2 Semantic Highlighting
Semantic Highlighting is a way of highlighting code
semantically, added to LSP 3.16 in December 2020. Semantic
highlighting (usually) requires the language server to
build an abstract syntax tree to process the code. By doing
this, the language server could, for example, keep track
of which variable is a String, int or double and color
them accordingly, which wouldn’t be possible with regex
based highlighting. While semantic highlighting can do
more advanced highlighting than regex based highlighting,
it is less responsive and more resource intensive. Regex
highlighting is also more forgiving, and can colorize the
code even though the code has syntax errors, something
which many semantic highlighters cannot do. Because of
this, semantic highlighting and regex highlighting is almost
always used in conjunction with each other.

Data is sent from the language server as semantic tokens.
These contain information indicating where and how the
code should be colorized, as shown in figure 2.

2.3 Hover tooltip
Hover tooltips is a feature introduced in LSP when it was
first released in version 1.0. A hover tooltip usually contains
information about a code segment which the user hovers
their mouse over. As shown later, this feature is not fully
implemented in Extendj-lsp, and acts instead as proof that
the language server works on editors that does not support
semantic highlighting.

2.4 Extendj
ExtendJ-lsp uses the ExtendJ compiler to semanti-
cally process the code by building an Abstract Syntax
Tree (AST). ExtendJ is itself built using the JastAdd
[4] metacompiler. One of the advantages of JastAdd
is its use of Reference Attribute Grammars[8]. (RAG)

Figure 2. Semantic token information

These attributes can be written using AspectJ-style syntax.

RAGs have several properties that are useful when
writing a compiler. For example, instead of inheriting
from a Java class hierarchy, attributes can inherit from
nodes in the AST, which can change from program
to program. JastAdd attributes also utilizes memo-
ization, which reduces unnecessary code execution.

In JastAdd, both attributes and regular methods are placed
in aspects. One advantage of using aspects is that it that
related code can be placed into the same file, regardless of
what class they belong to. For example, if each primitive
datatype were to have a getType()method, one would need
to write a unique getType()method in each of these classes,
which can be problematic. This problem is circumvented
by using aspect programming, which would allow a pro-
grammer to keep every getType() method in the same file.
This is possible to do by other means as well, (visitor pattern,
for example) but they can be hard to read and requires a lot
of boilerplate code.

2.5 LSP4J
ExtendJ-lsp uses LSP4J [2] to acts as an intermediary
between LSP’s JSON-RPC messages and regular Java code.

For each defined LSP message, LSP4J provides a corre-
sponding method to it via its Java interface.

2



Alternative Semantic Highlighting Course paper, EDAN70, Lund University, Sweden

3 Extendj-lsp language server
3.1 Features
Extendj-lsp can do the following:

3.1.1 Semantic Highlight for for loop variables
In order facilitate finding bugs in for loops, Extendj-lsp
uses semantic highlighting to assign different colors to each
nested for loop variable depending on their depth.

Figure 3. For loop variable coloring

3.1.2 Semantic highlighting for brackets
Some programmers sometimes gets confused trying to iden-
tify bracket pairs when dealing with nested code. To facilitate
this, Extendj-lsp provides unique colors for each bracket pair.

Figure 4. Bracket color matching

3.2 Experimental Features
To test a wider range of features, but with less practical
usefulness, Extendj-lsp also has the ability to do the following
test features:

3.2.1 Semantic Highlighting for String equality
comparisons

Strings are equality checked in Java by using the equal()
method. Some inexperienced Java programmers might try

to equality check using the == operator instead, which com-
pares the object IDs of the Strings. To warn the program-
mer about this, Extendj-lsp uses an experimental feature to
highlight the String comparison that is recommended to be
changed. This feature is more commonly implemented with
a simple warning message in other language servers.

Figure 5. Bad String equality check highlighting

3.2.2 Hover tool tip placeholder
One requirement for the project was to prove that the lan-
guage server actually works on multiple code editors. Since
semantic highlighting is a relatively new feature, there is a
lack of code editors that supports this feature. To circum-
vent this, hover tool tips were added instead to demonstrate
the portability of the language server. As figure 6 shows, the
tooltip provides no useful information to the user, andmerely
acts as a placeholder, proving that the language server works
in Neovim.

Figure 6. Hover tool tip placeholder in Neovim

3.3 Implementation
3.3.1 Overview
The language server consists of multiple parts which is de-
scribed in figure 7.

3.3.2 Implementation of Extendj-lsp
To implement Extendj-lsp, ExtendJ was added as a depen-
dency in a seperate submodule, inspired by the ExtendJ
example analysis project [1]. Custom attributes are added to
the AST by adding .jrag files. Subsequently, when building
the submodule, custom AST class attributes becomes
available for the language server to use after parsing a file.

To implement the semantic highlighting features using
ExtendJ, following was performed:

The three semantic highlighting features in this report
(for-loop, brackets, string equals string) implements a Set

3



Course paper, EDAN70, Lund University, Sweden Charlie Ringström and Jonathan Frisk

Figure 7. Overview of architecture for a Language Server
connected to the text editor with LSP. To the right is the
Language Server. It handles both LSP communication by
using LSP4J as well as static analysis by using ExtendJ. To the
right is the text editor that has a LSP client and an extension.
Shapes filled in orange are developed specifically for this
project, whereas the transparent shapes are dependencies.

collection attribute in the AST called semanticTokens().
All semantic highlighting features contributes with new
tokens to the Set when a specific condition is met. The
tokens are objects of a custom data class that contain
information about the semantic token.

The implementation for each feature are shown in figure
8, 9, and 10. All code is implemented in JastAdd’s .jrag files.
Additionally, to simplify the code, node data from the AST,
such as line and column number, is written in this report as
nodeInfo.

Figure 8. Implementation of for-loop coloring. This collec-
tion attribute adds a token with color information to the
semanticTokens() set in the Program root node. The color
is decided by calculating the depth of the for-loop nesting.

Figure 9. Implementation of bracket coloring. This collec-
tion attribute adds a token with color information to the
semanticTokens() set in the Program root node.

3.3.3 Implementation of Hover Tool Tip
Since hover tool tip is implemented as a placeholder, nothing
is computed in the AST. Instead, a hard coded string is sent
as the tool tip text.

Figure 10. Implementation of String equality check color-
ing. This contributes a semantic token if an == token has a
String object on its left and right side. getColor() returns a
predefined color as an int.

3.3.4 Implementation of LSP4J in Language Server
Extendj-lsp uses LSP4J in order to convert JSON-RPC
messages to simple Java method calls. In order to implement
it, two main parts are needed. Firstly, an instance of
ServerCapabilities for the server, and secondly, an instance
of TextDocumentService, which are interfaces defined in
LSP4J.

A ServerCapabilities instance is defined and returned
when the client calls initialize over LSP, which calls the
initialize method defined in the LSP4J interface.

Figure 11. Creation of a ServerCapabilities object.

A TextDocumentService instance is created upon ini-
tialization. It has methods overiding the didOpen, didChange,
hover, semanticTokensRange methods in TextDocumentSer-
vice. A text document is parsed and analyzed when didOpen
ordidChange is called. For example, when the text editor/IDE
sends a semantic highlighting request, semanticTokensRange
methods gets called respectively. With the attributes defined
in the AST, these semanticTokensRange() returns seman-
tic highlighting tokens, which LSP4J translates to LSP replies.

In order to send the data, the methods semanticToken-
sRange() and hover() returns a CompletableFuture<T> which
can be cancelled in the future, which minimizes unnecessary
computations.

4 Evaluation
4.1 Usability of Semantic Highlighting features
In order to evaluate the usability of the semantic high-
lighting features, two tests were given to a number of test
subjects. They were instructed to complete two tests, shown
in figure 13 and 14 with semantic highlighting enabled or
disabled randomly. These tested loop variable feature (figure

4



Alternative Semantic Highlighting Course paper, EDAN70, Lund University, Sweden

Figure 12. A simplified example of the LSP4J method seman-
ticTokensRange(), overridden from TextDocumentService.

8) and the brackets feature (figure 9).

In the first test the test subjects were instructed to find a
small bug in an otherwise working piece of code. As can be
seen in figure 13, one of the loop variables has been changed
from a j to an i.

Figure 13. The test subjects were instructed to find a big in
this code. (wrong variable used in one of the for loops)

As expected, most test subjects first tried to find logical
errors in the code. The idea was to let the semantic
highlighting guide them to find the error more easily.

For the next test people were instructed to locate the the
first while loop’s ending bracket.

Figure 14. Code of brackets test.

Unfortunately, this test was somewhat confusing for many
of the participants, so some of the tests had to be excluded
because of that.

4.2 Results
The tests were conducted both psychically and over the
internet, and all participants knew how to program in
Java. Six people tested the test in figure 13 with semantic
highlighting and six people tested without. Four people did
the test in figure 14 with semantic highlighting, and four
did without semantic highlighting.

The results (seen in figure 15) shows that the average time
for the triangle test is 2:37 min for semantic highlighting
and 2:45 min for the people without semantic highlighting.
Additionally, for the Brackets test, the results was 0:57 min
with semantic highlighting whereas the other got 1:06 min
without.

A comparison between highlighted and non-highlighted
shows that semantic highlighting decreased the time with
5% for the Triangle test and with 13 % for the Brackets test.

The standard deviation for the triangle test with semantic
highlighting was 1m 46, and without semantic highlighting it
was 1m 58s. For the brackets test with semantic highlighting
the standard deviation was 30 seconds, and without semantic
highlighting it was 44 seconds.

For comments on the results, see the conclusions section.

5 Related work
There are other projects which uses Extendj to make a lan-
guage server for LSP. Examples of these are Joakim Ericson’s
language server,[5] and Fredrik Siemund & Daniel Toves-
son’s language server.[6] Both language servers use the LSP
protocol in a more traditional way, and uses information
provided by the Extendj compiler to highlight errors in the
code.

6 Conclusion and Future Work
The test results seemed to be in favor of to the semantic
highlighter, and people generally completed the tests
quicker with highlighting enabled. However, the evaluation
is far from perfect and no conclusions can be scientifically
drawn, based on the hypothesis test [9]. The reason is the
large standard deviation of test times, in conjunction with

5



Course paper, EDAN70, Lund University, Sweden Charlie Ringström and Jonathan Frisk

Figure 15. Results for the Triangle test (left) and Brackets
test (right). The blue bars represents data from test subjects
that used semantic highlighting and the orange represents
without semantic highlighting.

the small sample size of test subjects.

Another issue is that the tests are designed to prove that
the language server can be useful in some situations. But
highlighting too much of the text can also be detrimental.
Unnecessary highlights can detract the programmer’s
attention from more important information.

In a real-world scenario, an Extendj-lsp user would know
what features their LSP has, and might therefore know what
to look for when fixing bugs. When asked, several of the
test subjects didn’t even notice that the for loop variable
colors were different.

A potential flaw is that the test in figure 14 was somewhat
contrived, and most programmers use line breaks to make
their code easier to read.

Another probable issue is how Extendj-lsp highlights
bad String comparisons in java (figure 5) by highlighting
it. A more suitable way to do this would be to use a simple
warning message instead.

This project uses LSP’s semantic highlighting feature
in a rather unorthodox manner. This can be seen in the
specification itself, which currently does not have any
way to hard code colors. Instead, LSP has different token
types and modifiers, such as Class, Struct and Readonly.
Extendj-lsp instead picks a semantic token type which
happens to look right with the default VS Code theme.
While this method of highlighting code works, it may not

be optimal.

Extendj showed promising signs to be a good backend
for a language server. One reason was because of how easy
it was to add new features. This project may be helpful
for future LSP developers in order to widen the scope of
potential candidates of backends for an LSP. Based on
this, future work may be interesting in order to compare
ExtendJ-lsp with the current well known language servers.

To improve Extendj-lsp in the future, more LSP features
could be added to it, such as jump to definition and warning
messages. As previously mentioned, this LSP uses semantic
highlighting in a rather unorthodox manner, and a more
traditional semantic highlighter could instead be added.

Acknowledgements
Thanks to Anton Risberg Alaküla, for his enthusiastic and
helpful approach as our supervisor.

References
[1] 2021. analysis-template. (2021). https://bitbucket.org/extendj/

analysis-template/src/master/
[2] 2021. Eclipse LSP4J. (Apr 2021). https://projects.eclipse.org/projects/

technology.lsp4j
[3] 2022. extendj-lsp. (2022). https://bitbucket.org/edan70/

lsp-charlie-jonathan/src/master/
[4] Torbjörn Ekman and Görel Hedin. 2007. The Jastadd Extensible Java

Compiler. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’07). Association for Computing Machinery, New York, NY,
USA, 1–18. https://doi.org/10.1145/1297027.1297029

[5] Joakim Ericson. 2018. 2018-languageserver-joakim. (2018).
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/
2018/Reports/Ericson.pdf

[6] Daniel Tovesson Fredrik Siemund. 2018. Language Server Protocol
for ExtendJ. (2018). https://fileadmin.cs.lth.se/cs/Education/edan70/
CompilerProjects/2018/Reports/SiemundTovesson.pdf

[7] N. Gunasinghe and N. Marcus. 2021. Language Server Protocol and
Implementation: Supporting Language-Smart Editing and Programming
Tools. Apress. https://books.google.se/books?id=zeuezgEACAAJ

[8] Görel Hedin. 2000. Reference Attributed Grammars. Informatica
24, 3 (2000), 301 – 317. http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edsswe&AN=
edsswe.oai.lup.lub.lu.se.42369945.8949.4506.a212.280893694207&
site=eds-live&scope=site

[9] R. Peck and J.L. Devore. 2011. Statistics: The Exploration & Analy-
sis of Data. Cengage Learning. https://books.google.se/books?id=
NYcIAAAAQBAJ

[10] Jesper Öqvist. 2018. ExtendJ: Extensible Java Compiler. In Confer-
ence Companion of the 2nd International Conference on Art, Science,
and Engineering of Programming (Programming’18 Companion). As-
sociation for Computing Machinery, New York, NY, USA, 234–235.
https://doi.org/10.1145/3191697.3213798

6

https://bitbucket.org/extendj/analysis-template/src/master/
https://bitbucket.org/extendj/analysis-template/src/master/
https://projects.eclipse.org/projects/technology.lsp4j
https://projects.eclipse.org/projects/technology.lsp4j
https://bitbucket.org/edan70/lsp-charlie-jonathan/src/master/
https://bitbucket.org/edan70/lsp-charlie-jonathan/src/master/
https://doi.org/10.1145/1297027.1297029
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/Ericson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/Ericson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/SiemundTovesson.pdf
https://fileadmin.cs.lth.se/cs/Education/edan70/CompilerProjects/2018/Reports/SiemundTovesson.pdf
https://books.google.se/books?id=zeuezgEACAAJ
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.42369945.8949.4506.a212.280893694207&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.42369945.8949.4506.a212.280893694207&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.42369945.8949.4506.a212.280893694207&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.42369945.8949.4506.a212.280893694207&site=eds-live&scope=site
https://books.google.se/books?id=NYcIAAAAQBAJ
https://books.google.se/books?id=NYcIAAAAQBAJ
https://doi.org/10.1145/3191697.3213798

	Abstract
	1 Introduction
	2 Background
	2.1 Language Server Protocol (LSP)
	2.2 Semantic Highlighting
	2.3 Hover tooltip
	2.4 Extendj
	2.5 LSP4J

	3 Extendj-lsp language server
	3.1 Features
	3.2 Experimental Features
	3.3 Implementation

	4 Evaluation
	4.1 Usability of Semantic Highlighting features
	4.2 Results

	5 Related work
	6 Conclusion and Future Work
	References

