
A Framework For Efficient Code Fixes Using Reference

Attributed Grammars

Charlie Mrad
D16, Lund University, Sweden
ch3045mr-s@student.lu.se

Abstract

Code fixes tools are essential for any developer and are often
a feature of the more popular IDEs available today. They pro-
vide an efficient way for a programmer to learn potentially
better ways to write their code and fix the potentially erro-
neous code automatically. The problem today comes from a
lack of efficiency in how quickly the code fixes can be found
and generated and how language analysing extensions for
IDEs are being developed. This paper proposes a framework
that can efficiently find potential errors in Java code using
IntraJ and provide quick-fix options. To avoid spending a
significant amount of time implementing and maintaining
LSP support for the framework Magpie Bridge is used. This
combination provides a solid foundation to quickly provide
an expandable array of code fixes. The initial evaluation
seems to outperform Soot on a similar test case. There is still
plenty of room for improvement on the proposed framework,
but it appears to hold up reasonably well as a starting point.

1 Introduction

Static source code analysis provide helpful assistance in the
software development process, allowing the programmer to
detect critical problems, e.g., security flaws, run time errors,
unintended behaviour. Recent studies [2, 3] have shown that
the analysis needs to be responsive, evident in its feedback
and results should be easy to access, i.e., collected in one cen-
tral place, such as the integrated development environments
(IDE). In this paper, the possibility of bringing the IntraJ [9]
framework for static analysis into IDEs is explored to im-
prove the user experience when developing in Java.

1.1 Introduction to IntraJ

IntraJ is a control-flow analysis tool for the Java language
that uses the language-independent framework IntraCFG [9]
to construct the control-flow graphs (CFGs). IntraJ super-
imposes the CFGs on top of the Abstract Syntax Tree (AST)
nodes of interest and is not tied to the underlying nested
structure of the AST. Overall, IntraJ provides an efficient
and precise way of constructing CFGs for Java programs
and can be used to create Java source code analyses. IntraJ
is built as an extension of the ExtendJ [4] Java compiler.
ExtendJ is written with JastAdd [6] and uses the Reference

Course paper, EDAN70, Lund University, Sweden
January 12, 2022.

Attributed Grammar formalism, enabling on-demand evalu-
ation and declarative specification. This allows ExtendJ to
be easily extended with new modules such as IntraJ being
a prime example. Similar to ExtendJ, IntraJis written using
RAGs, meaning that the analyses performed by IntraJ are
evaluated on-demand. Therefore, if an analysis is left unused,
it does not have to be calculated and will not slow down the
overall computation.
The static analyses IntraJ provides can be a valuable tool for
helping programmers during the development process, and
while IntraJ can provide useful information about analysis
results it is all done through a command line interface. This
is not ideal as the developer has to manually run commands
as well as read through and match analysis results with the
corresponding source code it refers too. That is where the
Language Server Protocol (LSP) can come into play in order
to facilitate the creation of extensions for IDEs and allow
IntraJ to display its results in the IDE text editor itself. This
is accomplished by deferring the IDE features related to lan-
guage support to external language-specific servers which
communicate with the IDE according to LSP specifications
[1].

1.2 Introduction to Magpie Bridge

While LSP does provide a manageable way to integrate lan-
guage support into multiple IDEs without requiring IDE
specific code, it does not eliminate the IDE integration work
entirely. Many IDE extensions still suffer from a significant
portion of the code base being dedicated to LSP communica-
tions which becomes especially evident for smaller projects
which can sometimes only have as little as 1

3 of the code ded-
icated to actual language analysis as illustrated in Table 1.
In order to attempt addressing this issue an LSP abstracting
framework called Magpie Bridge was developed that allows
users to simply set up their code to implement the Magpie
Bridge interface and initialize an LSP server which in turn
handles all the LSP communication for the extension [8].

1.3 Contributions

This paper ultimately provides an implementation of an ex-
tendable source code analysis plugin for Java using IntraJ
to attain Java-specific control-flow information and Magpie
Bridge to simplify the use of LSP and reduce the amount
of code required significantly. The plugin is intended to

1



Course paper, EDAN70, Lund University, Sweden Charlie Mrad

<<interface>>
CodeAnalysis

doAnalysis(T compUnit): void
getResults(): AnalysisResults

<<abstract>>
AnalysisFramework

setup(Modules files, String classPath, String libPath, String progPath): void
run(): int
analyze(Module file, URL url, CodeAnalysis analysis): AnalysisResults

IntraJNPAnalysis

doAnalysis(CompilationUnit compUnit): void
getResults(): AnalysisResults

IntraJDAAnalysis

doAnalysis(CompilationUnit compUnit): void
getResults(): AnalysisResults

SootNPAnalysis

doAnalysis(Body compUnit): void
getResults(): AnalysisResults

IntraJFramework

setup(Modules files, String classPath, String libPath, String progPath): void
run(): int
analyze(Module file, URL url, CodeAnalysis analysis): AnalysisResults

SootFramework

setup(Modules files, String classPath, String libPath, String progPath): void
run(): int
analyze(Module file, URL url, CodeAnalysis analysis): AnalysisResults

StaticServerAnalysis

framework: AnalysisFramework
analysisList: Collection<CodeAnalysis>

analyze(Modules files, AnalysisConsumer consumer, boolean rerun): void
setClassPath(MagpieServer server, Modules files): void

framework
1

analysisList

0..*

Figure 1. Design structure of the source code

Tool Analysis Plugin Overhead (%)

SPLift 1317 3317 71.6
CogniCrypt 11753 18766 61.5
PMD 117551 33435 22.1

Table 1. Brief table derived from Linghui Luo et al. paper on
Magpie Bridge [8]. Shows the worst examples of LSP code
overhead. The Analysis and Plugin are expressed in LoC.

accommodate future work to extend the analysis capabil-
ities by adding analysis types, JastAdd files for IntraJ and
other analysis frameworks. The resulting extension brings
the IntraJ control flow analysis framework into a more
user-friendly and accessible format that can be employed
whenever an IDE has LSP support compatible with Magpie
Bridge, without requiring the work overhead that comes
with implementing LSP support for the extension itself. How-
ever, for this paper, only Visual Studio Code is tested and
evaluated.
Also demonstrated is the increased efficiency gained from
using Magpie Bridge by counting lines of code and com-
paring to the aforementioned values in Table 1, which im-
plement LSP support of their own. Additionally, the perfor-
mance difference between IntraJ and Soot is showcased,
Soot being another analysis framework that does not use
reference attributed grammars [7]. This is done by measur-
ing the time for the completion of an analysis from when it
starts executing in the extension until it is finished and all
the results are handed over to Magpie Bridge. These mea-
surements are done on the ANTLR 2.7.2 project, specifically
the ANTLRParser.java file. This is done to illustrate both how

the extension performs on a sizable test case, and that the
extension works on source code not written with the plugin
in mind. Summarizing, the contributions of this paper are
the following:

• A tool for finding precise analysis results efficiently
using IntraJ and providing options for quick code
fixes.

• The implementation of an extendable framework for
creating static analysis extensions for multiple IDEs
through Magpie Bridge.

• Evaluation of the execution time performance of In-
traJ compared to Soot, a framework that does not use
reference attributed grammars to perform its analyses.

• Demonstration of some of the utility of Magpie Bridge
and how it affects LSP code overhead.

The rest of the paper is structured as follows. The first
Section describes the implementation itself, how it works
and the code structure. Section 3 discusses the evaluation
process with the results of the performance evaluation and a
look at the amount of code overhead generated for LSP com-
munication. Finally, related works are discussed in Section 4.

2 The extension

The extension implemented is primarily targeted at perform-
ing static analyses on Java code. It is possible to extend it
to support any language if supported by both the analysis
framework being used and Magpie Bridge but currently this
has not been done. The extension framework implemented
in this paper is designed to be fairly flexible. It consists of
mainly two parts, one core extension framework component
and one extendable custom analysis component. Figure 1
gives a brief overview of the general structure. The way it

2



Efficient Code Fixes Course paper, EDAN70, Lund University, Sweden

works is by defining an analysis framework and a set of
code analyses to go along with it. The code analyses and
analysis framework are represented by the CodeAnalysis
interface and AnalysisFramework abstract class. It is then
the job of a Magpie Bridge server analysis to define the
interaction with Magpie Bridge and this is represented by
ServerAnalysis which can be seen in Figure 1 as well. The
method for extending the analyses is determined by if the
analysis framework needed is already supported or not. If it is
supported then all that is needed is to write another class that
implements the CodeAnalysis interface and add an instance
of that class to the static analysisList in ServerAnalysis.
However, if the framework is not supported the a class that
extends AnalysisFramework has to be written and as of the
time of writing, some minor adjustments are still needed in
StaticServerAnalysis to use the new framework. After
that the analysis itself can be added just as if the framework
was supported initially.
If IntraJ or ExtendJ is used as AnalysisFramework it is pos-
sible to write additional JastAdd files for the extension that
are copied over and included in the respective framework
before building. This is how the string equality analysis is
implemented for IntraJ; a JastAdd file1 was written that
adds an additional warning message for equality checks and
a new type of warning message was added that provides
more complete source code positional information. This was
then leveraged to create a string equality analysis that finds
these warnings and displays them.

2.1 Performing an analysis step-by-step

Performing an analysis and displaying the results in the IDE
starts with Magpie Bridge and ends with Magpie Bridge.
The first step is to activate one of the predefined analysis
triggers. This tells Magpie Bridge to fetch information about
which files to analyze and sends them through to the Server-
Analysis. The ServerAnalysis the uses the supplied Analysis-
Framework and all active analyses (defined as CodeAnalysis
types) to perform the complete analysis. This procedure fol-
lows three steps as follows.

• First the AnalysisFramework is set up with any initial-
ization that is required. For IntraJ this means calcu-
lating all the arguments for compilation and createing
a new instance of IntraJ.

• Second the AnalysisFramework is run, performing any
calculations it needs to do in order to run the analysis.
IntraJ needs to be run with the arguments from the
following step to build up the graph representation of
the code required for analyses.

• Lastly the ServerAnalysis iterates all enabled analyses
and runs the AnalysisFramework dependent analysis
with the currently active framework. For IntraJ all

1JastAdd files need to be in ./src/jastadd for the pre-build copy step to
work.

that is needed is to find the relevant compilation units
and invoke the relevant analysis method which may
return warnings that are then converted to analysis
results.

3 Evaluation

Evaluation of the extension has been performed on the met-
rics of source lines of code compared to other analysis ex-
tensions and analysis speed for IntraJ and Soot [7] using a
null-pointer analysis.

3.1 Source lines of code

The number of lines of code excluding comments and blank
lines are what will be used as the source lines of code (SLOC)
metric. The implementation as of this writing contains a
total of 1183 SLOC out of which 187 lines are purely used for
evaluation, bringing the total SLOC used for analysis down
to 996 lines. Further out of that number 75 lines come from
a slightly modified file (MySourceCodeReader.java) from the
Magpie Bridge code base that serves as a temporary fix for
an issue until Magpie Bridge is updated. This brings the
total down further to 921 SLOC. This includes code for two
IntraJ analyses, one ExtendJ analysis and one Soot analysis.
IntraJ provides a null-pointer analysis and a dead assign-
ment analysis, ExtendJ provides a String equality analysis2,
and Soot also provides a null-pointer analysis but based on
the Soot framework instead for the purposes of comparing
to IntraJ.
Additionally there is no code specifically meant to handle
LSP communication since all of it is handled by Magpie
Bridge. However, the code used to communicate with Mag-
pie Bridge still had to be written which took up 375 SLOC.
To compare with the values from Table 1 that is an overhead
of 40.1%, in other words 40.1% of the the code written for this
extension is used for LSP communication, indirectly through
Magpie Bridge. See Table 2 for the updated version that
compares this extension with the rest of the entries from
before. These results puts this extension below both SPlift
and CogniCrypt in terms of overhead. PMD is the only one
performing better in that regard still. Note however that
the code base for PMD is very big and from looking at the
original table [8] there looks to be a pattern where smaller
projects suffer from worse overhead.

3.2 Analysis execution time

The analysis execution time is measured by running repeated
analyses on the same source files a multitude of times. After
each run the time taken is recorded and another run initi-
ated if needed. A sample size of 10000 measurements per
evaluation stage was used. Important to note is that the mea-
surements are taken 200 iterations into each run in order
to avoid measuring the start-up times and instead measure
2Simply checks if .equals(..) or ’==’ is used for string operands in Java

3



Course paper, EDAN70, Lund University, Sweden Charlie Mrad

Figure 2. Execution time results for each stage of the evaluation. From left to right you have the base, compile and analyze stage.
N in the titles stands for the number of measurements being plotted after outliers that are more than 3 standard deviations
away from the average have been eliminated. For each figure the shorter black line represents the median, the black star
represents the average, the thin colored box shows one standard deviation from the average in either direction, the thick
colored box with the notches represents the first and third quartiles whilst the notches represent the 95% confidence interval
around the median.

Tool Analysis Plugin Overhead (%)

SPLift 1·317 3·317 71.6
CogniCrypt 11·753 18·766 61.5
Our extension 546 375 40.1
PMD 117·551 33·435 22.1

Table 2. Updated version of Table 1, now including the ex-
tension implemented in this paper.

steady-state times, which should be more representative of
actual usage of the extension over a period of time. The only
source file used to run the evaluation is ANTLRParser.java
from ANTLR 2.7.23. The analysis is specifically performed
on Visual Studio Code, as this is the only IDE this exten-
sion has been tested on. Soot [7] was chosen to compare
against IntraJ due to Soot being a well known and estab-
lished analysis framework and to try and illustrate some
of the performance differences between using a reference
attributed grammar (IntraJ) and not doing so. The computer
used to run the evaluation is a Lenovo Thinkpad T460s and
it has the following hardware specifications.

• CPU: Intel Core i5-6300U, 2.4 GHz
• OS: Windows 10 Pro 64-bit
• RAM: 16 GB DDR4
• Graphics: Intel HD Graphics 520
• Storage: 128 GB SSD, SAMSUNG MZNTY128HDHP-
000L1

3https://www.antlr.org/

The evaluation happens in three stages, dubbed Base, Com-
pile and Analyze. The Base stage runs no framework func-
tionality at all and is the same across both IntraJ and Soot.
What is measured in Base consists of all background code
that supports the analysis, most notably the calculation of
the analyzed projects source paths, library paths and class
path. This calculation will take a long time first time it is run
due to Magpie Bridge initiating a project service. Therefore
the project service initiation is done separately before eval-
uation begins in the interest of keeping the measurements
fair for both frameworks. The Compile stage runs every-
thing from the Base stage and also runs all the setup code
required for the framework to run analyses. For IntraJ this
means parsing the relevant code into an abstract syntax tree
(AST) and inserting the control-flow attributes where they
are needed. In the case of Soot a conversion from the internal
representations (IR) used by Wala to the Jimple IR used by
Soot is required. The time measured for the Compile stage is
only the framework setup code, specifically setup(...) and
run() methods from the AnalysisFramework class in Fig-
ure 1 The Analyze stage runs everything from the Compile
stage and additionally runs a null-pointer exception analysis.
For IntraJ the built-in null-pointer analysis is used while for
Soot a custom made forward analysis is used. This custom
made analysis is based on a sample implementation made
by Navid Salehnamadi4 and may not be optimal, however
given how simple the analysis is it is hard to imagine how to
improve on execution time without changing the underly-
ing Soot code or something similar. The time measured for
the Analyze stage is only the time it takes from starting the

4https://github.com/noidsirius/SootTutorial

4

https://github.com/noidsirius/SootTutorial


Efficient Code Fixes Course paper, EDAN70, Lund University, Sweden

analysis thread which runs the analysis until that thread has
finished.
The results of the comparison for each stage outlined above
is visualized in Figure 2. Seemingly IntraJ perfoms much
faster with the Analyze stage median execution time being
around 0.5 ms whilst Soot measures in at around 4 ms. How-
ever, the biggest performance load for Soot seems to come
from the Compile stage and after further investigation and
profiling the code using JProfiler 12.0.4 it turns out that the
majority of the Compile stage is spent converting the Wala
IR into Jimple. Further it turns out that the bad performance
is mostly due to a large number of instantiations of tempo-
rary objects done in the Wala source code. In other words,
this is not intrinsically due to how Soot operates but due to
the fact that Magpie Bridge requires a conversion to use
Soot analyses.

The Base evaluation stage displayed to the left in Figure 2
is largely the same for both IntraJ and Soot as expected
since this stage is independent of any analyses and analysis
frameworks. Both frameworks the Base stage results have a
median of about 50 ms which means that the supporting ex-
tension code outside of the framework and analysis specific
code takes around that long to execute.

4 Related work

Previous attempts at bringing the various errors and warn-
ings from ExtendJ into the IDE using LSP have been made
in the past as part of similar projects to the one presented
in this paper [5, 10]. These older attempts managed to im-
plement LSP support to display diagnostic messages over
the code in-editor and showcased how their extensions then
could display ExtendJ errors and warnings in a handful of
IDEs. The extension implemented for this paper performs a
similar function in that it displays some warnings, however
for the purposes of this paper no ExtendJ native warnings
or errors are considered5. The biggest difference between the
work done in those previous attempts and this one is the use
of Magpie Bridge to abstract the LSP support away from
the extension itself. This has provided many benefits such as
out-of-the-box ready LSP features that can be used without
needing to know the technical details of LSP and simplified
extension building for multiple IDEs that can be provided by
Magpie Bridge and does not require the developer to figure
out how to build for a particular IDE. For example, the Vi-
sual Studio Code extension building script used to build the
extension was provided by Magpie Bridge, and the quick
fix IDE prompts were part of the Magpie Bridge analysis
result handling code. Another addition that sets this work
apart from the previous is that the results displayed can be
powered not only by ExtendJ but also by IntraJ, Soot and
other analysis frameworks or compilers.

5The string equality check is not being considered native as it stems from
an extension made to ExtendJ

5 Conclusion

From the evaluation results we can draw two main conclu-
sions. First, the SLOC count results seems to indicate that the
workload for implementing LSP support is indeed smaller
when using Magpie Bridge. This is not strong evidence
for this feature of Magpie Bridge as not enough cases are
considered and this project is not of commercial scale by
any means. But with more research and application of LSP
abstracting frameworks such as Magpie Bridge the picture
might become clearer.
Secondly, the execution time of IntraJ does seem to be
smaller than that of Soot. Focusing only on the Analyze
stage results, they seem to paint a promising picture of In-
traJ efficiency in performing static intraprocedural analysis.
It is however important to bear in mind that these results are
derived from evaluating the performance on a single project
(ANTLR 2.7.2), on a single file within said project (ANTLR-
Parser.java), using only a single analysis (Null-pointer anal-
ysis). There is no guarantee that IntraJ will remain faster
when more files, projects and analyses are considered. An-
other important distinction between IntraJ and Soot is that
unlike IntraJ, Soot allows for more than just intraproce-
dural analysis. In addition to intraprocedural analysis Soot
provides functionality to do interprocedural analysis as well
as transforming the byte code for optimization purposes. Yet
another consideration to be made is that the speed difference
observed between Soot and IntraJ is definitely attributable
to RAGs on-demand evaluation feature. More controlled tests
would be needed to determine this.
Finally as an additional note it should be mentioned that the
Compile stage execution times could potentially be improved
for IntraJ. Right now the Compile stage code runs IntraJ
on the full project, classpath, source files, and libarary files
included. For the purposes of intraprocedural analysis tech-
nically only the file to be analyzed needs to be examined,
however this would most likely produce compilation errors
wiht IntraJ. If those compilation errors are ignored and the
AST is built with all CFG attributes present, then IntraJ
should still be able to run the analyses required. Doing this
could improve the Compile stage times for IntraJ consider-
ably and more importantly it would decouple the Compile
stage code execution time from the project size, instead only
depending on the individual file size to be analyzed. This
could be part of some future work done on this extension.
Other work that can still be done would include extending
the analysis suite to support more types of analyses, extend-
ing the number of supported analysis frameworks, including
a AnalysisFramework reference in CodeAnalysis so that
the StaticServerAnalysis class does not have to know
about the AnalysisFramwork and can thus perform analy-
ses regardless of which framework they belong to since all
framework related information is embedded in the analysis
class. Also for the evaluation, there is a lot of work to be

5



Course paper, EDAN70, Lund University, Sweden Charlie Mrad

done still; evaluating on other projects and files and doing
more controlled tests that can better determine where per-
formance differences arise would be the two most prominent
places to start.

Acknowledgments

I would like to thank my supervisor Idriss Riouak for his
patient guidance and help with troubleshooting.

References

[1] Hendrik Bünder. 2019. Decoupling Language and Editor-The Impact of
the Language Server Protocol on Textual Domain-Specific Languages..
In MODELSWARD. 129–140.

[2] Lisa Nguyen Quang Do. 2019. User-centered tool design for data-flow
analysis. Ph.D. Dissertation. University of Paderborn, Germany.

[3] Lisa Nguyen Quang Do, James Wright, and Karim Ali. 2020. Why do
software developers use static analysis tools? a user-centered study
of developer needs and motivations. IEEE Transactions on Software
Engineering (2020).

[4] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java
compiler. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems, languages and applications.
1–18.

[5] Joakim Ericson. 2018. Language Server Protocol for ExtendJ. (2018).
[6] Görel Hedin and Eva Magnusson. 2003. JastAdd—an aspect-oriented

compiler construction system. Science of Computer Programming 47, 1
(2003), 37–58.

[7] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011.
Soot-a Java bytecode optimization framework. In Cetus Users and
Compiler Infrastructure Workshop. 1–11.

[8] Linghui Luo, Julian Dolby, and Eric Bodden. 2019. MagpieBridge:
A General Approach to Integrating Static Analyses into IDEs and
Editors (Tool Insights Paper). In 33rd European Conference on Object-
Oriented Programming (ECOOP 2019) (Leibniz International Proceedings
in Informatics (LIPIcs)), Alastair F. Donaldson (Ed.), Vol. 134. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 21:1–
21:25. https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

[9] Idriss Riouak, Christoph Reichenbach, Görel Hedin, and Niklas Fors.
2021. A Precise Framework for Source-Level Control-Flow Analysis.
In 21st IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM.

[10] Fredrik Siemund and Daniel Tovesson. 2018. Language Server Protocol
for ExtendJ. (2018).

6

https://doi.org/10.4230/LIPIcs.ECOOP.2019.21

	Abstract
	1 Introduction
	1.1 Introduction to IntraJ
	1.2 Introduction to Magpie Bridge
	1.3 Contributions

	2 The extension
	2.1 Performing an analysis step-by-step

	3 Evaluation
	3.1 Source lines of code
	3.2 Analysis execution time

	4 Related work
	5 Conclusion
	Acknowledgments
	References

