
Evaluation of ARM Assembly Generation for a
Graduate Compiler Course Compiler
Per Filip Hedén

D18, Lund University, Sweden
fi6468he-s@student.lu.se

Fritjof Bengtsson
D18, Lund University, Sweden

eko15fbe@student.lu.se

Abstract
This paper presents an evaluation of using ARM assembly
instead of x86 for code generation in a basic compiler, writ-
ten in a introductory compiler course at LTH. The new ARM
assembly generator specifically targets Raspberry Pi hard-
ware 1. The evaluation is based on the assembly languages
usability for students learning about compilers. First a code
generator for ARM was implemented. Then the language
was extended with functions for interacting with GPIO hard-
ware. Final conclusions from comparing x86 and ARM pro-
grams generated by the compiler was that they were almost
identical. However, the Raspberry Pi gives students the op-
portunity to more directly interact with the hardware which
other studies has found to be increasing student engagement
and results.

1 Introduction
An important step in learning how software works and in-
teracts with the hardware of a computer is learning about
the compiler. Jalal Kawash et al. suggest using a Raspberry
Pi for teaching students about compilers. Using a Raspberry
Pi led to students comprehending the course material better.
In addition, they received higher grades for the course [7].

Our paper compares building an assembly generator for a
Raspberry Pi using ARM to a previously built x86 assembly
generator, to evaluate which works better for teaching pur-
poses. The specific Raspberry Pi model used in this project
was a Raspberry Pi 3 B+, which can be seen from above in
figure 1.

The starting point for the project was a compiler developed
using JastAdd [3], and where parsing, semantic and name
analysis were already implemented.
To determine if the ARM instruction set was suitable for

the Compilers course, the complexity of the generated ARM
code was analyzed and especially how it compares to the
x86 counterpart.

1.1 Research Questions
• How can we get our EDAN65 compiler to produce
ARM assembly code?

1https://www.raspberrypi.com

Course paper, EDAN70, Lund University, Sweden
January 24, 2022.

Figure 1. Picture of the Raspberry Pi 3 B+, the system used
in this project. (Image by Gareth Halfacree, press sample by
Raspberry Pi Foundation, used under Creative Commons Li-
cense)

• Can we add instructions for using GPIO on a Rasp-
berry Pi and run simple SimpliC programs that use
this feature?

• HowdoesARMassembly compare to x86 in the EDAN65
compiler, is the code still understandable? Could it be
suitable for the course to change in the future?

2 Background
2.1 EDAN65 and SimpliC
EDAN65 is an introductory course in compiler implementa-
tion taught at Lund University for graduate students. During
the course students use the JastAdd [3] meta compilation
system to create their own compiler for a language called
SimpliC, which is a subset of the C programming language.
In the course students create a code generator for the com-
piler which targets x86 machines as the final step in the
compilation pipeline [4].

2.2 ARM & RISC
ARM computers are a type of RISC computers. RISC stands
for Reduced Instruction Set Computer, and what it means is
not that RISC includes very few instructions, but instead that
every instruction is conceptually simple and often uses only
one clock-cycle. Longer, more complex instructions are not
implemented in the hardware and is instead implemented in
software [6].

1



Course paper, EDAN70, Lund University, Sweden Per Filip Hedén and Fritjof Bengtsson

Figure 2. Code for multiplying 2 by 3 in both x86 and ARM
assembly

2.3 CISC
The other popular computer architecture is CISC, or Complex
Instruction Set Computer. In this instruction set there are
no limitations on the instructions, and highly optimized
hardware instructions can be implemented for more complex
functionality. Some such instructions could have to be split
into multiple operations on RISC hardware [6].

2.4 Computers Today
Today, the most common computer people use everyday,
the smartphone, is usually a RISC machine [10]. Not only
portable power-efficient computers use RISC architecture,
even some of the most powerful computers in the world
use reduced instruction set architectures [8]. This said, CISC
computers are also in use today, mostly for high performance
where energy efficiency is not as much of a concern and
in some supercomputers. It is worth to mention that RISC
and CISC have grown more similar over the years and that
the differences are not large today as when RISC was first
introduced.

3 Implementation
3.1 Writing basic ARM assembly
Just like in most other programming languages there exists
multiple ways to write a program solving a given problem.
The code generation in this project mostly follows the ARM
assembly guidelines and examples presented in the book
Introduction to Computer Organization: ARM Assembly Lan-
guage Using the Raspberry Pi [9] in combination with the x86
syntax used in EDAN65. This means that ARM conventions
are not always used, as the ARM code was translated line
for line from the x86 version completely unoptimized. An
example of this is that even though programmers in ARM
have access to many general purpose registers and can use
these for faster argument passing, we pass arguments on the
stack as is done the EDAN65 compilers generated x86 code.
For small programs with basic functionality, the assem-

bly instructions are almost identical. This makes it trivial
to translate between x86 and ARM for these types of pro-
grams. As one can see from the example in figure 2, for basic
operations there is practically no difference between the
instruction sets.

One thing that could differ is the amount of bytes for
storing the integer values. In the x86 version of the com-
piler integers were assumed to use 8 bytes, while their ARM
counterpart used only 4 bytes. This can be changed by the
programmer while retaining functional code.
In the original x86 code generation, assembly was gener-

ated for a basic print and read functions. This code was not
written by students of the course but was instead given to
them. In our ARM version of the code generation we used a
similar approach, having the compiler generating two helper
functions read and print, but instead of using the system
calls read and write we used the C library functions scanf
and printf. This was done because the x86 read and print
helper functions were quite long, about 25% of the original
code generation source code, and it was therefore deemed
outside of this projects scope.

The implementation of the ARM assembly generator was
done by using Robert G. Plantz book to translate the gener-
ated code line by line, at least for more basic operations. For
the more advanced operations we used the book first, then
for programs that crashed we compared this assembly code
to the unoptimized assembly code generated by GCC 2 using
the -S and -O0 flags. Finally we debugged anything still not
working using GDB 3.

3.2 Implementing new SimpliC language features
for GPIO on the Raspberry Pi

With the additional feature ofGPIO ports on the Raspberry Pi
system board we created language constructs for accessing
these pins, or rather controlling the LED panel on the Rasp-
berry Pi Sense HAT. To implement these features we looked
through the official documentation. This however only in-
cluded documentation for the language Python. Instead we
found C code to control the LEDs and used this together
with GCC to understand how assembly code for accessing
the LEDs could look. Finally we added a new function to
the SimpliC language called led(int index, int color),
which takes two integers to set a LED lights color. This in-
cluded making a corresponding code generation function in
the ARM code generation aspect to produce working assem-
bly programs.

In addition to the led function a basic sleep function was
added to the language to enable animations on the LED
panel. The function was more or less a wrapper for the
standard C library function sleep and takes a integer as
argument for how many seconds to wait with the signature
wait(int seconds).

3.3 Comparing ARM and x86 assembly code
To showcase some of the similarities and differences between
the ARM and x86 assembly code a simple program from the

2https://gcc.gnu.org
3https://sourceware.org/gdb/

2



Code Generation for ARM Course paper, EDAN70, Lund University, Sweden

Figure 3. Example SimpliC function.

(a) Example of x86 assembly
code. (b) Example of ARM assembly

code.

Figure 4. Comparison between x86 and ARM assembly code
generated from the compiler for the SimpliC function from
figure 3.

compiler’s test suite was used. The SimpliC code can be seen
in figure 3 and the comparison of the generated assembly
programs can be seen in figure 4. As noted in the figure text
one should keep in mind that the full assembly programs
are not showcased in the figure, as the helper functions
and static data inhabit many lines of code, instead the full
programs can be found in the repository under the name
\testfiles\genCode\parameter0.s 4.

One difference between ARM and x86 is how the return
or ret instruction works, namely ARM does not have it, see
figure 4 line 17 (a) and line 20 (b). Instead of calling return
we manually save the link register on the stack with a push
at the beginning of a procedure, see line 2 figure 4b to then
pop it at the end, see line 19 4b before using a regular branch
instruction to go to the correct instruction in the caller. There
are multiple other ways to do this using the ARM instruction
set, for exampleGCC pops the link registers into the program
counter to immediately return in one instruction replacing
line 19 and 20 in figure 4b.

Another difference between ARM and x86 are how values
from the stack are read to integers. As can be seen in figure 4𝑎
the procedure f reads a value on the stack using the operation
movq (line 4), same as for copying values between registers.
In ARM we can see that another instruction is used, ldr,
4https://bitbucket.org/edan70/arm-filip-fritjof/src/master/

ARM (LoC) x86 (LoC)
total generated 3367 2881
JastAdd aspect 415 431
static generated 115 119

Table 1. Lines of code measurement and difference between
ARM and x86 assembly programs and JastAdd generator
aspect. Example programs are the test cases used for the
compiler. Static code is the helper functions and headers
included in every assembly program generated by our com-
piler.

which loads the value from an address in memory (see line
6 4b ). These are of course quite similar in that they use an
offset from the frame pointer to find the value in memory,
but its still notable that they use different syntax in this case.

Another difference encountered in the work was the math-
ematical operation of division. The division instruction in
ARM is a rather new introduction to the instruction set, first
a standard in the ARMv7 architecture 5. It did not make a
difference in this project as the computer that was used, a
Raspberry Pi 3 B+, uses the newer ARMv8 architecture 6.

There are many more differences between the instruction
sets, especially if the goal is to create optimal performance,
but for most instructions relevant to this project the differ-
ences are just syntactic and very simple to translate. Some of
these syntactic differences are; using curly brackets around
register when calling pop or push, or emitting the dollar sign
before primitives. The names of registers are also different
from x86. In ARM the general purpose registers are called
r0-r30 (r0-r12 for 32-bit) instead of rax and rbx, the frame
pointer is called fp instead of rbp and the stack pointer is
called sp instead of rsp [4] [1].
Finally, as for length of programs, there wasn’t a huge

difference between generated x86 and ARM assembly for the
compiler used in this project. However, the difference grows
larger for each procedure as the ARM procedures use 3 lines
for return instead of 1, and 1 additional line at the start of a
procedure. In table 1 our measurements for lines of code in
can be seen. These measurements were taken from our test
programs and test all different language features except for
the newly added led and sleep. As there were 21 generated
assembly programs in the test we chose to use include to
total lines of code instead of measurements for each file, but
as stated earlier the difference generally grows larger the
larger the program is.

5https://developer.arm.com//media/Arm%20Developer%20Community/PDF/Cortex-
A%20R%20M%20datasheets/Arm%20Cortex-
M%20Comparison%20Table_v3.pdf?revision=a2b3e330-d417-49cc-8037-
7f034a19197e&la=en&hash=BF9752AB2044B1FDB7EAEF957A1D92F2943FA265
6https://www.raspberrypi.com

3



Course paper, EDAN70, Lund University, Sweden Per Filip Hedén and Fritjof Bengtsson

4 Evaluation
A relevant evaluation of the project could be to compare lines
of code in our new JastAdd aspect for ARM code generation
with the previous x86 aspect. Our measurement shows that
the difference between the length of the JastAdd aspects are
just a few lines, and that the same is true for the part of
the generated assembly that is required for helper function
and setup. There is a quite significant difference in length
between the lines of assembly code though, where the ARM
programs are about 15% longer than their x86 counterparts.
As mentioned in the previous section this is mostly due
to procedure initialization and return requiring additional
operations.

When it comes to evaluating the number of lines of code
for the generated code for each instruction set using the
compiler, its not really important which one uses the fewest.
Instead whats important is that no architecture forces the
students to write lots of so-called ’boilerplate’ code that is
not relevant to acquiringmore knowledge of the implementa-
tion of compilers. In this aspect neither x86 nor ARM assem-
bly provides and advantage over the other as, as previously
stated, they can be translated between each other almost
line for line. One possible advantage of the ARM assembly
generated in this project is the inclusion of pushing, popping
and branching to the link register. This addition does make
the ARM assembly programs two lines longer per function,
but could provide students better understanding of what a
’return’ instruction actually does. Something similar could
be done in x86, so its still not a real advantage for ARM.

The issue we considered will be most difficult for students,
assuming they will still be given the assembly code for a
working print procedure, is generating code for integer di-
vision. Having multiple procedures to accomplish this is of
course more difficult than simply writing ’div’, but we also
believe this could be easily remedied by including a section
on how integer division could be implemented with shifts
in the assignments instruction manual or appendix. This
is of course not a problem for newer ARM architectures,
ARMv7 and above. This could however be a problem for
implementing a more general ARM compiler and especially
if students of a potential course would be writing for older
hardware. For example the first generation of the Raspberry
Pi and the low power versions Pico and Zero use the ARMv6
architecture 7.
Another issue that is more practical is where to run the

code. Many students have personal computers running x86,
and so does LTH:s computers that are available to students.
Emulators exist but installing and configuring these could be
more complicated for students. Every students probably has
a computer running ARM in their pockets, but this cannot
easily be used to compile code on as both Android and iOS
are locked from this. The option we had was a Raspberry

7https://en.wikipedia.org/w/index.php?title=Raspberry_Pi&oldid=1065303384

Pi, and we believe this was a good option but purchasing
enough of these microcomputers for all students taking the
compiler course would be costly. A good solution could be
to just have a few and let students use SSH to connect to
these computers. This would of course lead to the students
also having to get acquainted with SSH but this could be
considered sufficiently simple as it is pre-installed on most
computers and is a single program. Also this could prove
difficult with using GPIO as only one pair of students could
access these at a time on the same Raspberry Pi.

5 Related work
The work by Javal Kawash et al. is of course related and
we base much of our research on their paper. In their study,
they conducted a trial of teaching undergraduate students
compiler concepts in a course using Raspberry Pi’s and ARM
assembly. Their results showed that students learnt the con-
cepts better when having hands on experience with a phys-
ical computer hardware such as the Raspberry Pi, instead
of developing assembly for their usual personal computers
which resulted in higher grades and higher student satisfac-
tion [7].
Another recent paper concluded that the Raspberry Pi

could be used in a wide range of subjects; from higher level
programming to lower level hardware fundamentals. Fur-
thermore, many of the students that worked with the single
board computer also made the choice of doing their graduat-
ing work projects with a Raspberry Pi [2].
Yet another study released in 2015 states the belief that

using single board computers in their university curriculum
has had many advantages, both for the curriculum and stu-
dents. The authors also discuss some of the challenges one
may encounter when incorporating these computers in a
course [5].
It is worth to mention that the two later papers discuss

the use of single board computers in the broader sense of
computer science and electronics, not just for compiler tech-
nology.

These papers conclude that students learn about software
better when working close to hardware, and since we have
concluded the feasibility of of using a Raspberry Pi as a
target for the EDAN65 course compiler it could be beneficial
to trial the usage of Raspberry Pi:s in this course in a future
iteration.

6 Conclusion
In many ways, writing ARM assembly is quite similar to x86
for small basic programs. Almost all code-generation from
the two different instruction sets could in this compiler be
translated almost line for line. In some ways ARM assembly
might be easier to understand than x86, but this is mostly
due to syntax and not due to lower complexity and only
our opinion. In most aspects related to the EDAN65 course

4



Code Generation for ARM Course paper, EDAN70, Lund University, Sweden

and in implementing a basic compiler with assembly code
generation the instruction sets are almost identical. Thus the
answer to ’how’ to change a x86 assembly code generating
compiler to produce ARM code, the answer for basic opera-
tion in SimpliC is to almost line for line translate, using the
appropriate instruction set.

A benefit of programming on a Raspberry Pi is the access
to GPIO pins, enabling students to visually interact with
hardware through their code. Students interacting directly
with system calls to the operating system using assembly
might get a better understanding of how hardware, operating
systems and drivers work.

As stated in the first paragraph of the conclusion, for basic
programs and without optimization the assembly code for
ARM and x86 are very similar. However both authors found
the ARM code slightly more readable and understandable
with the choices of register names, use of primitives and
operation names. If all students in future iterations of the
course could get access to ARM computers, either through
actual hardware or emulators, we believe it could be suitable
to use ARM assembly and that the transition would be easy.

7 Continued Work
An extension of the compiler that could be interesting is the
use of a generic write system call instead of printf, which
would not require any extra libraries and thusmaking the use
of GCC for linking obsolete. This would require writing an
itoa or integer to ascii function in assembly as write cannot
naively print numbers. It could also be helpful to hide less
steps of the compilation process for students so they have an
easier time understanding it. The same can of course be done
in the case of using read instead of the C library function
scanf that is currently in use. To use read one would need to
implement the reverse of an itoa function, an atoi function
or ascii to integer to enable arithmetic operations on the
values read by the programs.

On a RISC computer the programmer has access to many
general purpose registers. This means that in general func-
tion parameters do not need to be passed on the stack, but
can instead be passed through some of the general purpose
registers. Howmany registers are allowed for argument pass-
ing is dependent on the architecture, but the number for the
ARM architecture on the Raspberry Pi 3 B+ board, which was
used in this study, is 31 if run in 64-bit mode [9]. A future
version of this compiler could then take advantage of using
registers for argument passing instead of the stack.

Acknowledgments
Alfred Åkesson, our supervisor. Who guided us through the
project with great advice and feedback.

Görel Hedinwho teaches the introductory compiler course
at LTH and made us excited about the subject.

Jonas Skeppstedt who helped us understand linking, and
continually improves the authors understanding on all things
compilers and low level computational systems.

References
[1] Arm. 2019. ARM® Compiler for µVision® armasm User Guide.

(2019). https://www.keil.com/support/man/docs/armasm/armasm_
deb1353594352617.htm

[2] Branko Balon and Milenko Simić. 2019. Using Raspberry Pi computers
in education. In 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, 671–676. https://doi.org/10.23919/MIPRO.2019.8756967

[3] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd Extensible Java
Compiler. OOPSLA 2007,Montreal, Canada,– ACM Sigplan Notices 42
(2007), 1 – 17. https://doi.org/10.1145/1297105.1297029

[4] Görel Hedin. 2021. EDAN65 Compilers. (2021). https://fileadmin.cs.
lth.se/cs/Education/EDAN65/2021/web/index.html

[5] Peter Jamieson and Jeff Herdtner. 2015. More missing the
Boat—Arduino, Raspberry Pi, and small prototyping boards and en-
gineering education needs them. In 2015 IEEE Frontiers in Education
Conference (FIE). IEEE, 1–6. https://doi.org/10.1109/FIE.2015.7344259

[6] T. Jamil. 1995. RISC versus CISC. IEEE Potentials 14, 3 (1995), 13–16.
https://doi.org/10.1109/45.464688

[7] Jalal Kawash, Andrew Kuipers, Leonard Manzara, and Robert Col-
lier. 2016. Undergraduate Assembly Language Instruction Sweet-
ened with the Raspberry Pi. In Proceedings of the 47th ACM Tech-
nical Symposium on Computing Science Education (SIGCSE ’16). As-
sociation for Computing Machinery, New York, NY, USA, 498–503.
https://doi.org/10.1145/2839509.2844552

[8] Don Monroe. 2021. Fukagu takes the lead. In Communications of the
ACM. ACM, 16–18. https://doi.org/10.1145/3433954

[9] Robert G. Plantz. 2021. Introduction to Computer Organization: ARM
Assembly Language Using the Raspberry Pi. (2021). https://bob.cs.
sonoma.edu/IntroCompOrg-RPi/frontmatter-1.html

[10] Manoj Pratap Singh, Mahendra & Kumar. 2014. Evolution of Processor
Architecture in Mobile Phones. In International Journal of Computer
Applications. IJCA. https://doi.org/10.1145/3433954

5

https://www.keil.com/support/man/docs/armasm/armasm_deb1353594352617.htm
https://www.keil.com/support/man/docs/armasm/armasm_deb1353594352617.htm
https://doi.org/10.23919/MIPRO.2019.8756967
https://doi.org/10.1145/1297105.1297029
https://fileadmin.cs.lth.se/cs/Education/EDAN65/2021/web/index.html
https://fileadmin.cs.lth.se/cs/Education/EDAN65/2021/web/index.html
https://doi.org/10.1109/FIE.2015.7344259
https://doi.org/10.1109/45.464688
https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1145/3433954
https://bob.cs.sonoma.edu/IntroCompOrg-RPi/frontmatter-1.html
https://bob.cs.sonoma.edu/IntroCompOrg-RPi/frontmatter-1.html
https://doi.org/10.1145/3433954

	Abstract
	1 Introduction
	1.1 Research Questions

	2 Background
	2.1 EDAN65 and SimpliC
	2.2 ARM & RISC
	2.3 CISC
	2.4 Computers Today

	3 Implementation
	3.1 Writing basic ARM assembly
	3.2 Implementing new SimpliC language features for GPIO on the Raspberry Pi
	3.3 Comparing ARM and x86 assembly code

	4 Evaluation
	5 Related work
	6 Conclusion
	7 Continued Work
	Acknowledgments
	References

