
Extending a ChocoPy compiler to include lists and
classes on the heap

Grane, Ellen

D17, Lund University, Sweden

el6626gr-s@student.lu.se

Alkhodary, Samer

D17, Lund University, Sweden

sa2808al-s@student.lu.se

Abstract
ChocoPy is a programming language intended to be used for

learning about compilers. An existing ChocoPy compiler was

extended to support heap-dynamic lists and classes stored

on the heap. This was done in order to examine the suitabil-

ity of the ChocoPy language to be used for learning about

compilers in an advanced course. The speed of the extended

compiler was compared to the standard Python interpreter

and the results showed the ChocoPy compiler to be much

faster. It was concluded that ChocoPy would work well for

teaching more about compilers due to its many features,

however providing stable bases for the students is probably

needed in order to implement them, as underlying bugs can

lead to many issues.

1 Introduction
ChocoPy is a subset of the programming language Python,

specifically designed to be suitable to use for learning about

compilers and programming languages. For example, by let-

ting students implement a compiler for ChocoPy in a compil-

ers course. A working ChocoPy program should be possible

to execute using an ordinary Python compiler. [5]

The aim of this report is to expand an existing ChocoPy

parser, that are built with JastAdd, to include the function-

ality to generate assembly code for classes, inheritance and

heap-dynamic lists. In order to examine more advanced func-

tionality that may be used in an advanced compilers course,

some extra functionality that is not specifically part of the

ChocoPy language but is included in Python will be imple-

mented, such as heap dynamic lists and the delete function

that marks objects as ’dead’ in the heap and paves way for

garbage collection. The compiler that was extended included

an implementation for scanning and parsing of most parts

of ChocoPy, and primarily missed scanning and parsing for

lists and strings. It further had not yet implemented code

generation for lists and strings, did not have fully functional

classes and subclasses nor for-loops. [7]

The purpose of the report is further to investigate the

advantages and the possible disadvantages of using ChocoPy

in compiler courses and to compare it with SimpliC language

that is used in EDAN65 course at LTH. ChocoPy can be

expanded to cover lists, classes, inheritance and garbage

Course paper, EDAN70, Lund University, Sweden
January 16, 2022.

collection. These features are missing from the C language

which SimpliC confirms to.We alsowant to examinewhether

it is feasible to expand a ChocoPy compiler in JastAdd as

a way of learning more about heaps in a compilers course.

Furthermore we plan on assessing the compiling time of a

few ChocoPy files using the standard Python compiler and

compare it to the compiler we have extended.

1.1 Expansion of the ChocoPy compiler
To investigate these aspects, we decided to implement the

following extentions to the already existing compiler:

• Parsing and code generation for heap-dynamic lists

whose size can be changed at run time

• Fix classes so that aliasing works and implement in-

heritance functionality

• Add a "del" keyword that marks list and class instances

as dead in the heap

2 Technical Background
In this section we will present some general information

about the heap and how it can be used in assembly. We

will furthermore write about classes and how they may be

allocated on the heap according to relevant literature.

2.1 JastAdd
JastAdd is a system created with the intention of being used

for building compilers and analysis tools. It is an extension

to Java which provides features that lets the writer rewrite

abstract syntax trees. It combines object-orientation, static

aspects, and declarative attributes to form a powerful tool

with a high support for modularity and extensibility. [2]

2.2 Heap allocation
When a computer program starts, there are usually three

types of memory segments that are allocated by the operat-

ing system:

• The code segment that has the program code which is

normally read-only or execute-only. The code segment

is addressed by the program counter.

• The stack segment containing the stack, which is ad-

dressed by one or more stack pointers that can be

altered by machine code.

1

Course paper, EDAN70, Lund University, Sweden Grane, Ellen and Alkhodary, Samer

• The data segment, also called the heap, which is a

number of addresses to memory locations that are

available for data storage.

The heap can be used to allocate dynamically sized data,

meaning data whose size is decided or can be changed at run

time. The operating system keeps a pointer to the address of

the first available location in the heap, and the programmer

can request it using machine instructions. Data can then be

allocated on the heap by using the address to the first free

space and subsequently increasing the pointer in order to

get the next free location. [3]

In an implementation guide for generating RISC-V assem-

bly code for ChocoPy, it is suggested use alloc() and alloc2()

for heap allocation. [6] In x86 which is the assembly code

used by the compiler we are extending, there exists an equiv-

alent method called malloc() that can be imported fromC.We

did not use this method, as we decided to use the low level

function brk() instead. The implementation guide further

recommends storing classes on the heap. [6]

In Linuxmachines, every program gets assigned a program

break which marks the end of the program’s data segment.

In order for the program to use more memory, the program

should be moved to increase the heap size and to allows the

program to utilize more memory. This can be achieved using

the brk() system call which takes in the address of the new

program break as an argument and returns the address of

the last slot in the newly allocated memory. [8].

Something to consider when allocating memory in the

heap is that for a large program eventually all heap mem-

ory will be filled. In order to prevent this, memory needs

to be freed when it is no longer being used. This can be

implemented explicitly or implicitly. For explicit implemen-

tation, the programmer is in charge of handling deallocation

while in an implicit implementation the garbage collection

is handled automatically by the compiler. [3] We will focus

on explicit garbage collection, by introducing a "del" key-

word in the compiler. A problem with explicit deallocation

to keep in mind is that freeing memory can be complex, and

freeing something too soon by mistake leads to the program

containing a dangling pointer. A dangling pointer points to

memory that has been deallocated, and dereferencing such

a pointer may have unpredicted effects. [3]

2.3 Classes and sub-classes
To increase the readability and the maintainability of pro-

grams that are written using ChocoPy, the language must

provide some means that allow programmers to encapsulate

variables and functions into objects. Therefore, classes and

sub-classes are added to the ChocoPy language. A class is

a template that describes variables and methods that exist

within an object. Sub-classes, on the other hand, allow classes

to inherit variables and methods from other classes [1]. Both

classes and sub-classes are tools that help programmers to

divide programs into many smaller entities. Those entities

can be reused multiple times in the code, thus reducing the

amount of duplicate code and increasing the maintainability

of the program.

2.3.1 Memory
After creating an instance of a class, a block of memory on

the heap is allocated for that class, and the base address of

the class is returned to be saved in the variable. The allocated

block size depends on the number of attributes the class has.

The attributes are saved according to their order in the class

definition. We can use the following formula to calculate the

address of any attribute:

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑐𝑏𝑎 + (𝑖𝑛𝑑𝑒𝑥 − 1) ∗ 8

Where address is the memory address of the attribute on the

heap, cba is the base memory address of the class instance

on the heap, and index is the index of the attribute in the

class definition starting from one.

For example, the following code:

class Student :
id: int
age:Int
def __init__(self:Student,id:int,age:int):

self.id = id
self.age = age

student1 = Student(1234,22)
student2 = Student(1332,23)

will be saved in this according to Figure 1 where every cell

on the heap consists of 8 bytes

Figure 1. Class instance heap allocation

2

Short Title Course paper, EDAN70, Lund University, Sweden

2.3.2 Method calls
Method calls are similar to other function calls that exist

outside classes. However, every method must have access to

the reference of the class that the method belongs to. This

can be achieved by sending the reference of the class as an

argument to the method call implicitly. For example, the

method call will be rewritten by the compiler from:

shoppingCart = ShoppingCart()
shoppingCart.add(item)

to:

shoppingCart = ShoppingCart()
add(shoppingCart,item)

3 Heap allocation
In the code generation of the compiler, we begin all programs

with allocating 5kb of memory on the heap using brk() as

described in section 2.2. To keep track of where the next

free location on the heap is we use a global buffer called

heap_pointer, where we store and update its address. To first

obtain the address of the start of the heap, brk() is called with

0 as argument. This returns the first available slot on the

heap, and is what we initially store in the heap_pointer. Then

we call on brk() again to allocate space on the heap. When

we store data on the heap, each data slot has the length of 8

bytes.

3.1 The del function
We have implemented the key word del as a predefined func-

tion, but currently we do not have code generation for it and

thus it does not do anything. Implementation of classes took

more time than estimated, which made us run out of time.

The del keyword can be used in future improvements for

implementing manual memory management.

4 Implementation of lists
When it comes to our list implementation, we allocate one

extra slot on the heap for each list. We decided that the

first slot is the ’extra’ slot, and in it we store the size of the

list. Storing the size this way makes iterating through a list

straightforward. Due to the extra slot, we always need to

add 1 to the index before retrieving or adding an element to

a list. Furthermore, this method makes computing the length

of a list very easy since you only need to retrieve the size

stored in the first slot, which is the slot the list pointer points

to. This is exactly how we implemented the len() function.

4.1 Static heap lists
These lists are fixed sized and allocated at compile time. One

can allocate them using a similar syntax:

a:list = [1, 2, 3, 5]

4.2 Dynamic heap lists
These lists are fixed size lists that are allocated at run-time.

They can be allocate them using a similar syntax:

a:list = [b] * n # line 1
c:list = [False, True, True] * 5 # line2

The code at line 1 will yield a list that has the element b

repeated n times. This feature can be used to create lists

of a certain size at run-time by multiplying the list with a

number that is set by input. The list values can be changed

at run time in the same way. The list multiplication syntax

was chosen because Python does not have a specific syntax

to create a list of a certain size like in java or C++.

This was implemented in the code generation by first

multiplying the length of the given list with the number n.

We store the new size in the first slot of the new array, which

is located on the first available spot in the heap. Thereafter,

we do a nested for loop in the assembly code which goes

through the elements of the list n times, and adds them to

the new list. This implementation allows choosing the size

at run-time.

Since the compiler does not currently include strings, we

cannot make informative prints to tell the user what input to

give. Thus the type and order of input needed for a specific

file needs to be described in the README file before a user

runs a file.

5 Object oriented programming
For classes we ran in to some issues with existing name

analysis methods. To get rid of these, large parts of the name

analysis were refactored. We then added functionality for

getting a class attribute by using the syntax a.b, where a is

a class instance and b is an attribute. We did this by first

introducing the syntax to the language and parser, and then

implementing name analysis and type analysis for it.

5.1 Code generation
We altered the code generation for the class declaration and

the object creation to change the objects’ allocations from

dynamic stack allocations to dynamic heap allocations. The

class declaration generates a constructor function for the

class. This function instantiates all the class’s attributes on

the heap and calls the ’init’ function if declared. After that,

the function returns the heap memory address of the object.

In addition to the constructor, all the methods of the class

are generated after concatenating the name of the class is to

the names of methods, i.e., this code

3

Course paper, EDAN70, Lund University, Sweden Grane, Ellen and Alkhodary, Samer

class Hello:
def printer(self:Hello, a:int):

print(a)

generates the following Assembly:

construct_Hello:
....
Hello_printer:
.....

When creating an object of a class, the constructor function

is called and the memory address of the object is then saved

into the variable. If a method is called from a class object,

the name of the class is concatenated to the method’s name,

and then that function is called after passing the reference

of that object to the method call, i.e., this code:

a:Hello = Hello()
a.printer()

generates the following Assembly:

call construct_Hello
....
call Hello_printer
.....

6 Evaluation
6.1 ChocoPy as a learning tool
Regarding the subject of ChocoPy being suitable for learning,

we concluded that it seems to be appropriate. As [5] states,

ChocoPy includes many features such as lists, strings and

classes which all may serve to expand the students knowl-

edge about compilers and the heap. This will be an advantage

if the language is to be used in an advanced compilers course,

where the students already know some things about imple-

menting a compiler.

During the course of the implementation we ran in to

many problems that were due to a rushed implementation of

earlier parts of the compiler. Due to this, we strongly recom-

mend that if the language were to be used in an advanced

course, the assignments are either modular and independent

from each other in the same way as [5], or that a optimized

base program is provided for each assignment. This would

help to avoid small errors in an early assignment make a

later assignment near impossible without refactoring.

We also found that extending the language to implement

the Mul list functionality was rewarding as it made us able

to clearly see dynamic allocation on the heap.

6.2 Performance compared to Python3
An experiment was created an experiment to test the per-

formance difference between the ChocoPy version that we

implemented and Python3.

6.2.1 Experiment
The experiment was conducted by creating a script that

constructs a list of 1500 numbers, then it uses the Bubble

sort algorithm to sort the content of that list. The script

was run 1500 times using a binary that was generated using

the ChocoPy compiler and an additional 1500 times using

Python3. After that all the execution times were saved to a

file. Eventually, the execution times were used to calculate

the average execution time, standard deviation, and the lower

and the upper bounds of the confidence interval with the

confidence level of 99.9 for both Python3 and the generated

binary.

6.2.2 Results
Source Mean Std L.Conf.Int. U.Conf.Int.

ChocoPy 12.675 1.995 12.506 12.844

Python3 402.613 37.649 399.414 405.812

From the results table above, we can see that ChocoPy

is much faster than Python3. The results can be explained

with the paradigm difference between Python3 and ChocoPy.

Python3 is an interpreted language where scripts gets in-

terpreted by another program called the interpreter. On the

other hand, ChocoPy is a compiled language where the com-

piler convert scripts into binary files that can be run directly

by the machine and according to the Concepts of program-

ming languages book[4], interpreted languages execution

is 10 to 100 times slower than in compiled systems. Also

Python is a dynamically typed language [4], which means

that all the types are checked and determined at the run-time

in contrast to ChocoPy where all the types are determined

and checked at compile time and as a result, Python has

to do more work during run-time which can increase the

execution times of programs.

7 Related work
In [5], it is described that the intention behind the ChocoPy

language which this report regards, is to suit for teaching

about implementation and design of compilers. The chosen

Python subset includes a lot of features that allows for a

fairly high complexity in the implemented compilers, such as

strings, classes and inheritance, lists of any type and method

overloading to mention a few. The language has a detailed

reference manual explaining its rules.

Using a subset of a well-known language is meant to help

the students feel familiar with the rules, and stay motivated.

The creators of ChocoPy further found a benefit of using a

type-safe subset of such a dynamic language as Python to be

that the students’ compilers often were able to outperform

the standard Python interpreter speed wise. They found that

this helped to further improve the students’ morale.

In our implementationwe extended the ChocoPy language

to also contain the Python list multiplication function. This

allowed us to clearly see dynamic heap allocation.We believe

4

Short Title Course paper, EDAN70, Lund University, Sweden

that being able to see this important functionality, which is

an important reason to use the heap in the first place, may

have a similar motivating effect on the students as the one

[5] found when letting the students compare their compilers

to the Python interpreter, as it allows the student’s to see

that the heap allocation works accordingly.

In the trials of using ChocoPy in a compilers course, the

students’ work was divided into three different assignments.

The assignments were modular in the way that they were

independent of each other, so if a previous assignment had

some minor faults it would not affect the later ones. Overall,

they received very positive feedback on both the course and

the usage of ChocoPy. [5]

In an earlier project [7] in the EDAN70 course, the suit-

ability for ChocoPy when teaching about compilers was ex-

amined. At the end of the examination, the compiler had not

been completely finished in time. It was however concluded

that with the right adjustments, using a more controlled

work structure, it should be possible to implement a com-

piler for ChocoPy and learn a lot from it within the given

time frame. The resulting compiler was also compared to

the standard Python interpreter and deemed to be faster,

reaffirming what [5] had experienced during their trials.

In this report, we refactored and extended Tobias’ [7]

compiler to include more functionality. In our comparison

experiment we similarly to both [5] and [7], got the result

that our compiler was faster than the Python3 interpreter.We

furthermore found the programming language to be suitable

for more advanced compilers course due to the extendablity

of the language, and this seems to be the experience of the

authors of [5] as well, considering the positive feedback they

received.

8 Conclusion
We successfully implemented heap-dynamic lists and altered

the classes and class instances so that they are seemingly

functional as well as stored on the heap. Formemorymanage-

ment, we ran out of time and only implemented the keyword

without any meaningful code generation.

Also, we were able to compare Python3 and ChocoPy

performance wise and that ChocoPy is faster than Python3.

While implementing lists and classes, we found ChocoPy

to be suitable for learning more about compilers, as there

were many features that had to be added. If ChocoPy is to

be used in an advanced compilers course we suggest having

modular assignments or that solid bases are provided for each

assignment to prevent errors in earlier assignments from

creating issues. Furthermore we believe it could possibly

be beneficial to extend the ChocoPy language to include

some dynamic heap allocation, as being able to showcase it

may motivate the students the same way comparison to the

Python interpreter has shown to do.

9 Future improvements
Due to running into more issues than estimated combined

with a lack of time, we were not able to implement all the

things we planned to. Here is a summary of some things that

may be regarded as future improvements.

9.1 Memory management
Currently, heap allocation is only done at the beginning

of the program which means that it may run out of space.

To fix this, some type of memory management needs to be

implemented i.e using the del keyword. An non-efficient

quick-fix could also be to check if the heap_pointer will pass

the heap_limit whenever an object is to be added to the heap.

If it will pass, more space should be allocated to the heap

before adding the object.

9.2 Inheritance
We did not have time to look into inheritance. This means

that classes do not take inheritance into consideration cur-

rently, and thus need to be altered in order to handle them.

Acknowledgments
We want to thank Alfred Åkesson for his support and valu-

able input throughout the course of the project.

References
[1] Ray Klump. “Understanding object-oriented programming concepts”.

In: 2001 Power Engineering Society Summer Meeting. Conference Pro-
ceedings (Cat. No. 01CH37262). Vol. 2. IEEE. 2001, pp. 1070–1074.

[2] Torbjörn Ekman and Görel Hedin. “The JastAdd system — modular

extensible compiler construction”. In: Science of Computer Program-
ming 69.1 (2007). Special issue on Experimental Software and Toolkits,

pp. 14–26. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2007.02.
003.

[3] Dick Grune et al. Modern Compiler Design. 2nd ed. New York Heidel-

berg Dordrecht London: Springer, 2012. isbn: 978-1-4614-4698-9. doi:

10.1007/978-1-4614-4698-9.
[4] R Sebesta. Concepts of Programming Languages,Global Edition. 11th ed.

Pearson Education Limited, 2016. isbn: 978-0-13-394302-3.

[5] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. “ChocoPy: A

Programming Language for Compilers Courses”. In: Proceedings of
the 2019 ACM SIGPLAN Symposium on SPLASH-E. SPLASH-E 2019.

Athens, Greece: Association for Computing Machinery, 2019, pp. 41–

45. isbn: 9781450369893. doi: 10.1145/3358711.3361627. url: https:
//doi.org/10.1145/3358711.3361627.

[6] Berkeley University of California. ChocoPy v2.2: RISC-V Implementa-
tion Guide. Oct. 2019. url: https://chocopy.org/chocopy_implementation_
guide.pdf (visited on 12/01/2021).

[7] Tobias Karlsson. ChocoPy compiler. Tech. rep. LTH, 2020.
[8] Michael Haardt and Michael Kerrisk. brk(2) - Linux manual page. Mar.

2021. url: https://man7.org/linux/man-pages/man2/brk.2.html
(visited on 11/19/2021).

5

https://doi.org/https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1007/978-1-4614-4698-9
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://chocopy.org/chocopy_implementation_guide.pdf
https://chocopy.org/chocopy_implementation_guide.pdf
https://man7.org/linux/man-pages/man2/brk.2.html

	Abstract
	1 Introduction
	1.1 Expansion of the ChocoPy compiler

	2 Technical Background
	2.1 JastAdd
	2.2 Heap allocation
	2.3 Classes and sub-classes

	3 Heap allocation
	3.1 The del function

	4 Implementation of lists
	4.1 Static heap lists
	4.2 Dynamic heap lists

	5 Object oriented programming
	5.1 Code generation

	6 Evaluation
	6.1 ChocoPy as a learning tool
	6.2 Performance compared to Python3

	7 Related work
	8 Conclusion
	9 Future improvements
	9.1 Memory management
	9.2 Inheritance

	Acknowledgments

