
Flow Based Bug Detection

Oskar Kari

January 2021

Abstract

Program analysis is an important tool in modern soft-
ware developement. In this paper a program analysis
tool that solves the redundant assignment problem
will be described. This tool will be tested on a real
program as well as on smaller test programs. The
performance will be analysed and some suggestions
for further work will be done.

1 Introduction

Program analysis is useful for code optimization, de-
tecting bugs, increase code quality and reduce devel-
opement costs. There are many different forms of
program analysis [2]. There is Dynamic programing
analysis that analyses the code at runtime and there
is static program analysis that analysis the code dur-
ing the compilation. There are also different kinds of
static and dynamic program analysis. For example
there are interactive program analysis were the user
must interact with the program analysis tool, like de-
buggers. Then there are automatic program analysis
tools where the user calls the tool and it returns some
result.

In this project I will create an automatic static pro-
gram analysis tool that detects a common bug pat-
tern in the Java programming language. The tool
will find redundant assignments. For example in the
following java code

b = a;

c = b;

a = c;

the last assignment is redundant and can be removed.
This is useful both for optimization and also for de-
tecting possible bugs. To do this analysis the tool
will analyse how data flows in the program. The Java
compiler that I will be using is ExtendJ [1] and the
tool that extracts the control flow graph is IntraJ,
the excecution pipeline is summarized in Figure 1.

Figure 1: An overview of how ExtendJ and IntraJ
works together with the analysis described in this pa-
per. First the compiler ExtendJ creates an abstract
syntax tree. From this abstract syntax tree the tool
IntraJ creates a control flow graph. From this control
flow graph it is then possible to build an extension
of your own. This tool can give different warnings or
information.

1



2 Dataflow Analysis

2.1 Control Flow Graph

A control flow graph (CFG) is a graph G(V,E) that
showns how a program executes. Normally the CFG
graph is built from the intermediate code but IntraJ
extracts the CFG directly from the abstract syntax
tree. The benefit of this is speed because the compiler
does not have to execute as many steps before the
CFG can be made.

In the graph that IntraJ extracts each statement and
expression in the program is represented by a node
V in the CFG. The edges E are directed and are
drawn between statements/expressions that can be
executed sequentially. So if statement B can follow
from statement A then there is an edge from node A
to node B. There can be many ingoing edges to a
node if there are many statements that can reach the
node. Likewise there can be many outgoing edges if
many statements can follow from a node.

Every node in the CFG defines three different sets;
the set of data from ingoing edges, the set of data
from outgoing edges and a transfer function that
changes the data. The ingoing edges provides infor-
mation to the node about what happened earlier in
the program. The transform can make some kind of
modification to this information and then this infor-
mation is sent to the sequential nodes by the outgo-
ing edges. What kind of data the node gets as input,
transforms and then outputs depends on the program
analysis problem that is being solved.

2.2 Using the Control Flow Graph in
Dataflow Analysis

When the CFG is used in dataflow analysis the in-
formation that is of interest flows through the edges
of the CFG. In this project the information traverses
the CFG starting from the beginning of a method
and ending when it reaches an exit from the method.

3 Method

3.1 Redundant Assignments

To solve the redundant assignment problem four sets
will be defined for every node in the CFG. These are
inn, outn, genn, killn. The genn set contains all
the substitutions generated in this node if any. For
example if the code in the node is

a = b;

where both a and b are compatible types then the
genn set contains the substitution element Sub(a, b).
The inn set is the intersection of the subsitutions in
the outa nodes that have edges to the current node

inn =
⋂

(a,n)∈ε

outa.

The outn set is the union between inn and genn sets
except the elements that exists in the genn set. So
the outn set is the

outn = (inn ∪ genn) \ killn.

The killn set is all substitutions that are no longer
relevant after this node. If we have a variable x and
something new is assigned to this variable. Then the
killn are all the substitutions in the inn set than
contains this variable.

To determine whether a substitution is redundant
graphs are being built. Two different graphs are built
each time the genn contains an substitution to check
whether the new substitution is redundant. One of
the graphs are built from the union of the genn and
inn and the second graph is built from only the inn
set. The nodes are the variables in the substitutions
in the sets that the graphs are being built from. The
edges are directed and shows the relationship between
the variables. For example if we have

2



a = b

then there is an a node and a b node and an edge that
goes from a to b. The first graph is used to check for
circularities. If an circularity appeared when the last
subsitution was added then the last subsitution was
redundant. The second graph is used to check if there
is any other way in the graph to reach b from a. An
example of this follows in the next section.

3.2 Example Execution

For the following example program

b = a

c = b

a = c

the four sets at each step in the programs execution
can be seen in the table 1.

Assign b = a c = b a = c

inn S(b, a) S(b, a), S(c, b)
genn S(b, a) S(c, b) S(a, c)
killn S(b, a)
outn S(b, a) S(b, a), S(c, b) S(c, b), S(a, c)

Table 1: The different sets when the different assign-
ment expressions are executed in the example pro-
gram above.

At every step a graph is built from the union of the
inn and genn set. The graph at different points in
the programs excecution can be seen in Figure 2. In
Figure 2c we can see that the graph is circular. This
circular property did not exist previously. Because of
this it follows that the last assignment is redundant.

As previously mentioned it is not always enough to
check for circularity. It is also necessary to check
for a reachable property. Assume that the gen set is

Sub(x, y). Then it is also necessary to check if it is
possible to reach node y from x in the graph formed
from the inn set. Assume that the example program
instead is

b = a

c = b

c = a

The last graph formed by the union of the inn and
genn set can be seen in Figure 3a. As can be seen it
is not circular. In Figure 3b the graph formed by the
inn set can be seen. As can be seen it is it is possible
to reach c from a in this graph. Therefore the last
assignment is redundant.

(a) The graph after assignment b = a.

(b) The graph after assignment c = b.

(c) The graph after assignment a = c.

Figure 2: The graph that is built on the union of the
inn and genn sets at different points in the program
execution.

3



(a) The graph built by the union of the
inn and genn sets after assignment c =
a.

(b) The graph built from the inn set af-
ter assignment c = a.

Figure 3: Graphs for the second example program.

3.3 Loss of Precision

Sometimes there can be many ingoing edges in the
CFG. For example after an if statement there are two
ingoing edges, one if the condition is true and one if
it isn’t. An subsitution is only added to the inn set
in these cases if the substitution exists in the out set
for all previous nodes. This causes a loss of precision
in the analysis because there might be redundancies
that are missed.

3.4 Intraprocedual versus Interproce-
dual

Intraprocedual program analysis means that the
analysis only cares about the content in the specific
method. If there is a method call to an other method
the control flow does not go into the other method.
Interprocedual program analysis on the other hand is
not restricted to a single method but follows the flow

of inspiration into other methods.

In this project the program analysis is intraproced-
ual. This can give errors in the analysis if for exam-
ple an array that a variable points to is changed in
an other method.

4 Results

4.1 Redundant Assignments

To measure the how well the tool finds redundant
assignments there is a set of testfiles. Futher more
the tool is also applied to the fop0.95 program which
is a print formatter written in Java. The fop0.95

program is useful because it is a real application that
contains several hundreds of thousands of lines of java
code.

The tool finds all redundant assignments in the test-
files. On the fop0.95 program the tool flags four
errors. However of these four errors two are false
positives.

To have something to compare with the fop0.95 pro-
gram is also analysed using SonarQube which is a
professional software used to find bugs. This soft-
ware finds one bug that my tool could not.

4.2 Execution Time

To calculate the execution time for the tool the tool
did analyze the fop0.95 program 10 times. The
mean time is 58.6 seconds and a 95% confidence in-
terval gives the interval [55.5, 61.7] seconds. The
SonarQube took less than 10 seconds to analyze the
fop0.95 program which is clearly outside the confi-
dence interval.

4



5 Discussion

SonarQube found one bug that my tool did not. The
reason for this is that my tool does not support prim-
itive types at the moment. So for example

int a;

a = 9;

a = 9;

will not return a warning when analysed using my
tool. In ExtendJ there is an class in the abstract
grammar called variable. My tool only supports this
class.

SonarQube was faster than my tool when analysing
the fop0.95 program. The reason for this is probably
because my tool used ArrayLists for storing the sets.
When building the graphs from these ArrayLists the
find() method is called a lot and this has the com-
plexity O(n).

My tool found two false positives when analysing the
fop0.95 program. The reason for this false positives
is that my tool is not interpocedual. So for example
if we have the code

a = b;

function call();

a = b;

and function call(); somehow changes the variable a
then my tool will not find out that a was changed
and flag the second assignment as redundant.

6 Futher Work

There are at least three things than could be done to
improve the tool. The program could be rewritten to

use HashMap instead of ArrayList. This should make
the tool significantly faster. An other improvement
would be to include support for primitive types. The
third improvement would be to make the analysis in-
terprocedual. The third improvement however would
probably require a major rewrite of the tool.

7 Conclusion

In this paper a intraprocedual tool that solves the
redundant assignment problem was described. This
tool was analysed using two different performance
measurements; how good it is at finding errors and
the time it takes to do the analysis. This tool is not
as good as SonarQube but some suggestions for fur-
ther work was done that would probably make the
tool as good.

References

[1] Torbjörn Ekman and Görel Hedin. The jas-
tadd extensible java compiler. In Proceedings of
the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems and appli-
cations, OOPSLA ’07, pages 1–18, New York,
NY, USA, 2007. ACM.

[2] Valentina Lenarduzzi, Alberto Sillitti, and Davide
Taibi. A Survey on Code Analysis Tools for Soft-
ware Maintenance Prediction, pages 165–175. 09
2018.

5


	Introduction
	Dataflow Analysis
	Control Flow Graph
	Using the Control Flow Graph in Dataflow Analysis

	Method
	Redundant Assignments
	Example Execution
	Loss of Precision
	Intraprocedual versus Interprocedual

	Results
	Redundant Assignments
	Execution Time

	Discussion
	Futher Work
	Conclusion

