
A Specialized B-Tree data structures for Datalog
Evaluation in Java

Louise Adolfsson
E17, Lund University, Sweden
lo6806ad-s@student.lu.se

Simon Tenggren
C16, Lund University, Sweden

si6187te-s@student.lu.se

Abstract
Today there is a high demand for Datalog engines to be able
to handle large amounts of data quickly. By implementing
a B-Tree in Java there can be significant improvements to
its efficiency. In this paper we present and evaluate the Java
implementation of a specialized B-Tree data structure. Our B-
Tree handles parallel insertions and dense data. It uses a hint
system for faster traversals in the B-Tree and has a optimistic
read-write lock that allows for it to handle several threads at
once efficiently. The B-Tree outperforms the TreeSet greatly
and is just slightly better than the Concurrent SkipList Set in
some cases. The B-Tree shows potential as a replacement for
Java’s data structures from the results of the benchmarks.

1 Introduction
Datalog is a declarative logic language powered by many
different engines. Datalog is used in the context of data-
base queries, static program analysis, network analysis and
more. Because of these common use cases for the language,
it requires highly efficient parallel data structures that can
handle a very large amount of insertions and read operations
concurrently. This due to the importance of achieving high
performance in said engines with very large amount of data.
Soufflé [1] is one of these engines which translate Datalog
into highly optimized parallel C++ code. It has implemented
new specialized data structures for this task. One of which
is the Specialized B-Tree [8]. This data structure is available
open-source under the Universal Permissive License. [2, 3]
Currently, to the best of our knowledge, there are no open-
source implementations of this data structure in Java. A Java
implementation of this data structure would allow for cur-
rent Datalog engines powered by Java, such as MetaDL[6],
to improve their performance significantly. The paper [8] de-
scribes the performance improvement of the specialized data
structure compared to previously used C++ alternatives as
very significant. For example the B-Tree showed significant
improvements in parallel insertion performance of up to 59
times compared to the C++ hashset during multi threaded
benchmarks.[8]
Our Java implementation of the specialized B-Tree data

structure is implemented with help from the C++ implemen-
tation as reference. The implementation is evaluated in the

Course paper, EDAN70, Lund University, Sweden
January 12, 2021.

context of the Java Virtual Machine against currently used al-
ternatives on sequential performance, parallel performance,
and memory usage.

In short the contributions of this paper are the following:
• Describe the implementation of our specialized B-Tree
data structure, with a focus on how it differs from the
C++ implementation.

• Evaluate our implemented data structure and compare
it to the currently used alternatives found in the Java
Runtime Library, in the context of the Java Virtual
Machine (JVM).

2 Parallel Datalog
Having Datalog handle several threads at once can improve
the efficiency immensely. This is due the semi-naïve evalu-
ation strategy employed by Datalog engines, allowing for
evaluation to be performed in parallel without resulting in
redundant computations.

2.1 B-Tree
A B-Tree of order 𝑘 is a self-balancing search tree in which
all the elements in each of the nodes are stored in sorted
arrays of size 𝑘 , see figure 1. The constraints on the B-Tree
are the following:

1. A node may have up to 𝑘 + 1 child nodes.
2. The root node has at least two children if it is not a

leaf node.
3. An inner node with𝑚 children has at least ⌈𝑚2 ⌉ ele-

ments.
4. An inner node with𝑚 children contains𝑚−1 elements.
5. All leaf nodes appear at the same level in the structure.

There are three types of nodes in a B-Tree: leaf nodes, inner
nodes, and the root node. All of which can change their type
after a number of insertion operations are performed on the
tree. For example, the root node starts of as a leaf node that
can contain up to 𝑘 different elements. When it is full it splits
and births two new leaf nodes and itself changes its type to
an inner node, see the top node in figure 1. Leaf nodes are the
most basic nodes in the tree, see the bottom nodes in figure 1,
they only contains the sorted array of elements. Inner nodes
are nodes inside the tree which have an array of pointers to
a number of other nodes (children), leaf nodes or other inner
nodes, see the root node (top node) in figure 1. They also

1



Course paper, EDAN70, Lund University, Sweden Louise Adolfsson and Simon Tenggren

carry a sorted array of elements. The elements in the nodes
are arranged such that the left-most child node contains the
elements that are less (defined by the comparator-function)
than those in the first element in the parent. The second
child node contains those elements that are greater than
the first element, but less than the second element. This is
continued for the amount of keys in the inner node, e.g. a
node with two elements contain three children, like in figure
1. The first child contains elements that are lesser than all
of the elements in the parent, see the leftmost bottom node
in figure 1. The second child’s elements are greater than
the first element in the parent, but lesser than the second
element in the parent, see the middle bottom node in figure 1.
And finally the third child in which the elements are greater
than those in the parent node, see the rightmost bottom node
in figure 1.

An important part of the B-Tree that can affect its perfor-
mance is the order of the tree, that is, the amount of elements
that can be stored in each node. If the order of the B-Tree
is increased it grows wider compared to a lower order. This
reduces the height of the B-Tree and thus reduces the length
of the traversal.

Figure 1. A B-Tree with several elements inserted.

2.2 Specialization of the B-Tree
For the task of Datalog evaluation several specialized opti-
mizations are done to the data structure. These are the hint-
system and the Optimistic-Read-Write locking mechanism.
The hint-system allows for insertions and searches in the
tree to be sped up, by caching previously visited nodes. The
Optimistic-Read-Write lock is a system specially designed
for the distinct phases of reading or writing during Datalog
evaluation.

2.2.1 Optimistic Read-Write Lock
To handle parallel insertion, non-locking synchronization
is put in place, the Optimistic read-write lock. The lock is
inspired by the Linux Kernels heavy-read-seldom-write lock
called Seqlocks.[9]. In a Seqlock, a reader thread keeps a
version number (lease) of an atomic variable when it goes
through the data structure. When the reader has read its data,
it validates that data is still correct by making sure the lease
number is the same as the lock’s version number and that
the version is not odd. If the lease cannot be validated the

reader thread restarts its read operation. The writer waits
until the version number is an even number then increments
the version number to an odd number which ensures that all
reader threads are invalidated if they try to perform a read
operation while a concurrent write is ongoing. When the
writer is done writing, it increments the version number to a
even number and the reader threads can start trying to read
again and other writer threads can start writing if there are
any. Soufllé has made some changes to the lock and how it
is used in the data structure. Each node in the tree has its
own lock, and the root node has a dedicated lock because
virtually each operation will need to access the root node.
Threads in the B-Tree all start off as reader-threads and try
to upgrade once they decide that a write is necessary. And
thus can perform its tree traversal concurrently alongside
with other threads until it has reached its destination node
and wants to upgrade itself to a write thread.

2.2.2 Hints
The hint mechanism is a way to speed up searches in the tree,
either when searching for where to place an element or when
trying to find an element. The hint is a cache of the latest
node that was reached either through an insertion or search
in the tree. Whenever the next search or insertion operation
is done on the tree the cached node is tested if the inserted or
searched for element is covered by that node. If it is covered,
the tree traversal up until that node can be skipped. If the
element isn’t covered by that node a normal tree traversal
is done and the hint is updated. The hints also reduce the
amount of nodes being locked. This is because when skipping
some of the path in the tree traversal the nodes that otherwise
would be traversed through are skipped, and thus won’t be
locked.

2.3 Differences between Java and the C++ reference
There exists some differences between our Java implemen-
tation and the C++ reference from Soufflé. Most of these
are due the different features available in the respective lan-
guages. The C++ implementation made use of features not
available in Java such as pointers, sizeof-operator, generic
arrays, operator overloading, and how inheritance functions
differently in C++.
C++ has some optimizations that cannot be achieved in

Java. Theses are first and foremost operations utilizing the
possibility of determining the sizes of objects at compile time
using the sizeof-operator. It can therefore determine the
size of the nodes and make optimizations concerning the
order in the tree to optimize the number of keys per node and
thus also the number of children per inner node. In Java you
cannot easily determine the size of your objects at compile
time and thus this optimization is not implemented. Instead
the minimum order of the tree is set to three and the user
can set it to be larger than that if they wish.

2



B-Tree data structure Course paper, EDAN70, Lund University, Sweden

In C++ there is support for generic arrays, which Java
does not allow. Instead a Java Object array is used with
the size set to the maximum number of keys as a node is
created. These arrays do not grow in size during execution
and thus no resizing is done which would we be costly. How-
ever the arrays in C++ compared to Object-arrays have
no overhead from range checking operations that are done
with each access or insertion in the Object-array. Since the
Object-arrays are objects in of themselves and not contin-
uous memory, which causes another level of abstraction.
Instead the elements are stored as pointers to other elements
that might be allocated in different parts of the heap, which
doesn’t utilize spatial locality and can cause severe detri-
ment to performance, especially when trying to find the
correct position to traverse the tree or finding the correct
insertion point in the Object-array. The B-Tree implements
the SortedSet generic interface, which allows the user to
supply any non-primitive data type as the type of key to be
stored in the B-Tree.

3 Evaluation
We compare our B-Tree to the existing standard Java data
structures that are suitable for use in Datalog implementa-
tions today. We look at:

• The performance of parallel insertion, membership
test and iteration over the full structure.

• Memory usage

And compare the data structure against:

• Java’s TreeSet (wrappedwith Collections.synchronizedSet()
where appropriate)

• Java’s ConcurrentSkipListSet.

There are a lot of difficulties trying to test the performance
of Java applications. There are several things that are non-
deterministic during run time, mainly [5]:

• JIT Compilation
• Optimization in the VM
• Thread scheduling
• Garbage Collection
• Various System Effects

The benchmarks are run for two different stages of execu-
tion, start-up and steady-state. Start-up is during the start
of execution on the JVM, here the JIT-compilation has not
yet affected the performance to great degree, and thus has
other bottlenecks such as class-loading. During steady-state
the JIT compiler has performed several optimizations of the
parts of the code that is deemed "hot", i.e. the most heav-
ily used parts of the code, when the execution has reached
steady-state it is deemed that the JIT compiler has performed
most if not all of the possible optimizations and performance
cannot be increased further.[5] As such they are naturally
measured in different ways.

To test the B-Tree performance we developed a small C
framework that creates VMs and run Java benchmarks of
several operations on the B-Tree implementation and the
currently used Java alternatives. Measurements are taken by
measuring the wall clock time that it takes to execute the
benchmarks.
The methodology of measuring both the start-up and

steady-state performance of the benchmarks follows the
steps specified in the article "Statistically Rigorous Java Per-
formance Evaluation". [5]

3.1 Start-up performance
A good measurement of start-up performance is to see how
long it takes to execute a short-running Java application,
the shorter the better. As well as the time for class loading.
The steps to measuring the start-up performance are the
following:

1. Measure the execution time over several VM invoca-
tions. Every invocation are running one benchmark
iteration. At least 30 measurements are taken.

2. Create a confidence interval for a given confidence
level. (In our case 95%)

3.2 Steady-state
Steady-state performance measurement is to see how fast a
long-running Java application can be executed. The faster the
better. However steady-state performance have two issues
to consider[5, 10]:

• The time it takes an application to reach the steady-
state can vary between applications. In some cases it
may take very long time to reach the steady-state.

• The steady-state performance can vary betweenVM in-
vocations, due to different methods may be optimized
at different levels across the different invocations.

To handle there issues we are

1. Running several VM invocations where each have mul-
tiple benchmark iterations run.

2. For every VM invocation determining the iteration
where steady-state performance is reached.

3. Calculating the mean of the iterations where steady-
state performance is reached.

4. Computing a suitable confidence interval for a given
confidence level from the calculated means from each
VM invocation. (95%)

All benchmarks have the following parts in common:

• Utilizes the same comparator-function.
• Inserts the same elements.
• In the case of random insertions or searches the same
seed is used for the random number generator.

• The elements inserted are all long-tuples of size two
or ten.

3



Course paper, EDAN70, Lund University, Sweden Louise Adolfsson and Simon Tenggren

Benchmark start-up steady-state
Parallel In-Order Insertion X X
Parallel In-Order Search

(Full-Scan) X X

Parallel Randomized Insertion X X
Parallel Randomized Search

(Full-Scan) X X
Sequential In-Order Insertion X

Sequential Randomized Insertion X
Sequential In-Order Search

(Full-Scan) X X
Sequential Randomized Search

(Full-Scan) X
Table 1. Benchmarks ran for all the datastructures.

• Multithreaded benchmarks are run with six dedicated
threads for operations on the data structures.

Due to non-deterministic elements such as thread scheduling
the elements might appear in different threads in different
benchmarks and iterations of those benchmarks when using
the random engine. If each thread would have their own
random engine, it is not possible to ensure that the same
elements are inserted during each of the benchmarks iter-
ations, since thread scheduling would give each thread a
non-deterministic amount of time for each thread if there
are more threads than cores on the machine. The B-Tree is
evaluated at four different orders (number of elements per
node) the default value of 3 as well as 8, 16, and 32.

4 Results
The benchmarks that has been run for the data structures
can be seen in table 1. We also measured the heap usage of 10
thousand, 100 thousand, and 1 million insertions on the data
structures. The benchmarks were run on consumer grade
computer with the following specifications:

• CPU: AMD Ryzen 7 3700X 3.6GHz
• RAM: 16GB DDR4 3200Mhz
• JVM Initial Heap size of 256MB and a maximum heap
size of 1GB, according to the default heap size settings
of the JVM. [4]

4.1 Steady-State Performance
The B-Tree performed very well during the steady-state per-
formance tests and outperformed the TreeSet in all tests.
The SkipList however remains just slightly ahead in some
instances. 20 million tuples with two elements each were
used in the search tests and 24 million tuples with the same
amount of elements for the insertion tests, see figures 2, 3, 4,
5. There were also test made with a little over 25 million (ex-
actly 25 165 824) bigger tuples of size 10, see figure 7, 8, 9, 10.
These test were mostly done with only the SkipList and the

B-Tree of order 32 since the other tests from steady-state has
proven uninteresting since they are greatly outperformed by
both the SkipList and the B-Tree of order 32. When the tuple
size gets larger the cost of comparisons in the data structure
gets higher on average. The data structures that then per-
form more comparisons will then see a large performance
hit than the those who perform fewer.
It is in the in-order searches and insertions, see figure 3,

7, we see the power of the implemented hints. When each
thread has their own dedicated hints they can frequently
reuse the same node they just traversed to, and with an
increasing order, the chance of a hit increases since each
node covers more nodes, and contains more keys. However
when the order is higher the cost of traversing the tree is
also a lot less, since the tree is wider instead adding more
height.

Figure 2. Parallel insertion with 24M tuples of size 2 with the
different data structures during steady-state performance.

4.2 Start-up Performance
In start-up performance the B-Tree did fairly poorly. Both
the TreeSet and the SkipList outperformed the B-Tree but
the SkipList only did so slightly see figures 11,12. However
start-up performance is not crucial to the B-Tree since it is
specialized to handle large amounts of data, and thus the
applications integrating the B-Tree is concerned with how
well it performs during steady-state.

5 Memory Usage
Memory usage was measured by examining the heap us-
age for the data structures after ten thousand, one hundred
thousand, and one million insertions in the different data
structures. The heap usage is measured by using the Java li-
brary function java.lang.Runtime.freeMemory() which
approximates the amount of free memory before and after
the insertions are performed. The SkipList and TreeSet used

4



B-Tree data structure Course paper, EDAN70, Lund University, Sweden

Figure 3. Parallel search with 20M tuples of size 2 with the
different data structures during steady-state performance.

Figure 4. Parallel search with 20M tuples of size 2 with the
different data structures during steady-state performance.

almost the same amount of memory at all numbers of in-
sertions. While the B-Tree of orders 8 and 16 used less for
one million insertions, but at order 32 the heap usage was
significantly larger than both the TreeSet and SkipList.

5.1 A Quick Summary of Skip Lists
The SkipList performed very well in the steady-state bench-
marks usually performing equal to the order 32 B-Tree or
better in the In-Order tests. A SkipList is a probabilistic data
structure usually implemented as a sorted linked-list. The
SkipList has several different levels of "express-lanes" where
there are pointers to different parts of the lists, where the
higher level has the largest "gaps" and allows to skip more
of the list. The bottom layer is the actual sorted linked-list.
The data structure is probabilistic because the pointers in the
levels that can be used to skip forward in the list are created

Figure 5. Parallel random insertion with 24M tuples of size
2 with the different data structures during steady-state per-
formance.

Figure 6. Heap Usage in Megabytes for the different data
structures during steady-state performance.

Figure 7. Parallel in-order insertion with 25M tuples of size
10 with the different data structures during steady-state per-
formance.

5



Course paper, EDAN70, Lund University, Sweden Louise Adolfsson and Simon Tenggren

Figure 8. Parallel search with 25M tuples of size 10 with the
different data structures during steady-state performance.

Figure 9. Parallel random insertion with 25M tuples of size
10 with the different data structures during steady-state per-
formance.

with a set probability. The SkipList has amortized insertion
and search complexity of O(log(n)), which is the same as
the Tree-Set and B-Tree. However it uses much less space
comparatively making it great alternative compared to the
regularly used Tree sets.

When inserting an element into a SkipList the higher levels
are traversed through first, until the inserted element is not
larger than the next element in the lane or next node in the
lane points to null. When this occurs the next lower level
lane is used and the process is repeated. This explains the
great performance in the in-order insertion for the SkipList.
Since the elements are inserted in order, the list can skip until
the end of the list very fast using the higher level express-
lanes and very seldom use the lower-level lanes. However
in the random insertions these lanes aren’t as useful, since

Figure 10. Parallel random search with 25M tuples of size
10 with the different data structures during steady-state per-
formance.

Figure 11. Parallel insertions in the different data structures
during start-up performance.

the element can appear somewhere in the beginning of the
list and the higher level express lanes cannot be utilized by
jumping a large gap forward in the list.

6 Discussion
The results showed that the B-Tree outperformed the TreeSet
in steady-state performance while being a contender to the
concurrent SkipList, outperforming it during random paral-
lel insertion but doing slightly worse in the in-order tests.
When concerning the start-up performance the B-Tree was
outperformed by both. As stated above, the multi threading
only ran on six dedicated threads for operations on the data
structures, and benchmarks were not ran for varying num-
ber of threads, the results from the B-Tree implemented in
Soufflé showed that a higher number of threads resulted in a

6



B-Tree data structure Course paper, EDAN70, Lund University, Sweden

Figure 12. Parallel Search with the different data structures
during start-up performance.

larger number of insertions per second for the B-Tree. This
might also hold true for the Java implementation. To give
this a fair evaluation the benchmarks would have to be reran
on a machine with a CPU with several more hardware cores.
The authors were limited to a consumer PC with a CPU with
eight dedicated hardware threads, and decided to leave two
of these threads dedicated to various system effects such as
garbage collection.

The order of the B-Tree significantly changed the perfor-
mance of the data structure, showing increasingly better
results when using an higher order in most benchmarks,
however with some diminishing returns. E.g. the perfor-
mance difference between the mean execution time for ran-
dom parallel insertion between order 3 and 8 were 65% while
changing the order from 16 to 32 only showed a performance
increase of 9%, see figure 5. This suggest that there is an op-
timal order that remains to be found for a given element size.
This would probably have to be determined by experimenta-
tion by using different sizes of elements at different orders
of the B-Tree.
The memory usage of the B-Tree was surprisingly large

after one million insertions compared to the TreeSet and the
SkipList. Especially since the memory usage at the lower
orders were significantly lower. At one million insertions
the B-Tree at order 32 used significantly more heap space.
See figure 6. Why the memory of the large B-Tree is so
large is probably due the pre-allocated pointers in the nodes
for both keys and children that are yet to be assigned. For
example a child with only a few keys inserted at an high
order would have most of its allocated data unused, this is
especially apparent in the benchmark that was ran since the
elements were relatively small, being only an array of length
2 of long-values.

The B-Tree has not yet been profiled for either execution
or memory optimizations, and bottlenecks for both could
probably be found.

Soufllé compared their implementation of the B-Tree against
different data structures, namely a synchronized hashset, and
other available B-Trees. It might be that a C++ implementa-
tion of the concurrent SkipList would give great results in
their benchmarks as well.

7 Threats to Validity
All benchmarks were run on the Windows Subsystem for
Linux 2 on a personal computer running several other ap-
plications in the background. The authors made an effort
to minimize the number of other applications running dur-
ing the benchmarks, however this couldn’t be completely
controlled on the machine where several hidden processes
might be running during the execution of the benchmarks.

8 Related work
Soufflé [1] is an Datalog engine that created a B-Tree and
Brie implementation. These turned out successful and gave
life to papers about improved versions of them [7, 8]. In [8]
they developed a specialized B-Tree with features like an
optimistic locking protocol and a hint system that re-use the
results from previous tree traversals. Another interesting
data structure is the Brie. In [7] they developed a specialized
Trie, the Brie. It’s a specialized data structure for storing high
amounts of dense data. They showed a improvement of up
to 59 x (B-Tree) respectively 15 x (Brie) higher performance
than state-of-the-art industrial standard data structures, but
also when integrated with a Datalog engine they would have
an overall system performance increase of 3 x higher when
using the B-Tree, respectively 4 x higher for the Brie and
with a compression ratio of 3.6 x when running a point-to
analysis.

This shows the great potential of the B-Tree and Brie and
why it is interesting to develop them in Java and see if that
could improve the performance further.

9 Conclusion
The B-Tree shows potential for being a suitable replacement
as a data structure for Datalog evaluation. Outperforming
the TreeSet in all steady-state benchmarks, and perform-
ing better than the Concurrent SkipList Set in randomized
parallel insertion and ties with the SkipList in several bench-
marks only being outperformed in the in-order tests as well
as random searches at larger tuple sizes. As of right now the
B-Tree has to be profiled to find eventual performance bottle-
necks, and should not be a replacement to the SkipList as is.
The B-Tree should also go through further benchmarks on a
computer equipped with a CPU with several more cores to
examine the eventual performance increase of insertions that
was seen in the C++ implementation of the B-Tree. It might

7



Course paper, EDAN70, Lund University, Sweden Louise Adolfsson and Simon Tenggren

be the case as it was in C++ that the other data structures
have a performance cap that is reached at a lesser amount
of threads compared to the B-Tree.

Acknowledgments
The authorswould like to acknowledge our supervisor Alexan-
dru Dura, who is also developing MetaDL which utilizes Dat-
alog to bring static program analysis to the masses. The au-
thors would also like to acknowledge Professor Görel Hedin
for a great introduction to the wonderful world of compilers.

References
[1] 2020. Soufflé : A Datalog Synthesis Tool for Static Analysis. (2020).

https://souffle-lang.github.io/
[2] 2020. Specalized B-Tree source code. (2020). https:

//github.com/souffle-lang/souffle/blob/master/src/include/souffle/
datastructure/BTree.h

[3] 2020. Universal Permissive License (UPL). (2020). https://github.com/
souffle-lang/souffle/blob/master/LICENSE

[4] 2021. Default Heap Size, Oracle Documentation. (2021).
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/
gctuning/parallel.html#default_heap_size

[5] Georges Andy, Buytaert Dries, and Eeckhout Lieven. 2007. Sta-
tistically Rigorous Java Performance Evaluation. In OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems, languages and applications (2007), 57–76.
https://dl.acm.org/doi/10.1145/1297027.1297033

[6] Alexandru Dura, Hampus Balldin, and Christoph Reichenbach. 2019.
MetaDL: Analysing Datalog in Datalog. In SOAP 2019 8th ACM SIG-
PLAN International Workshop on the State Of the Art in Program Analy-
sis. Association for ComputingMachinery (ACM), United States, 38–43.
https://doi.org/10.1145/3315568.3329970 8th ACM SIGPLAN Interna-
tional Workshop on the State Of the Art in Program Analysis, SOAP
2019 ; Conference date: 22-06-2019 Through 26-06-2019.

[7] Jordan Herbert, Suboti´c Pavel, Zhao David, and Scholz Bernhard.
2019. Brie: A Specialized Trie for Concurrent Datalog. in PMAM’19:
Programming Models and Applications for Multicores and Manycores
(2019), 10. https://doi.org/10.1145/3303084.3309490

[8] JordanHerbert, Suboti´c Pavel, ZhaoDavid, and Scholz Bernhard. 2019.
A Specialized B-tree for Concurrent Datalog Evaluation. in PPoPP’19:
Symposium on Principles and Practise of Parallel Programming (2019),
13. https://doi.org/10.1145/3293883.3295719

[9] Christoph Lameter. 2005. Effective Synchronization on Linux/NUMA
Systems. Gelato Conference (2005). https://mirrors.edge.kernel.org/
pub/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf

[10] Blackburn M. Stephen, McKinley S. Kathryn, Garner Robin, Hoffman
Chris, Khan M. Asjad, Bentzur Rotem, Diwan Amer, Fienberg Daniel,
Frampton Daniel, Guyer Z. Samuel, Hirzel Martin, Hosking Anthony,
JumpMaria, Lee Han, Moss B. Eliot J., Phanasalkar Aashish, Stefanovik
Darko, VanDrunen Thomas, von Dincklage Daniel, and Wiedermann
Ben. 2008. Wake up and smell the coffee: evaluation methodology
for the 21st century. Commun. ACM (2008). https://doi.org/10.1145/
1378704.1378723

8

https://souffle-lang.github.io/
https://github.com/souffle-lang/souffle/blob/master/src/include/souffle/datastructure/BTree.h
https://github.com/souffle-lang/souffle/blob/master/src/include/souffle/datastructure/BTree.h
https://github.com/souffle-lang/souffle/blob/master/src/include/souffle/datastructure/BTree.h
https://github.com/souffle-lang/souffle/blob/master/LICENSE
https://github.com/souffle-lang/souffle/blob/master/LICENSE
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html#default_heap_size
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html#default_heap_size
https://dl.acm.org/doi/10.1145/1297027.1297033
https://doi.org/10.1145/3315568.3329970
https://doi.org/10.1145/3303084.3309490
https://doi.org/10.1145/3293883.3295719
https://mirrors.edge.kernel.org/pub/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf
https://doi.org/10.1145/1378704.1378723
https://doi.org/10.1145/1378704.1378723

	Abstract
	1 Introduction
	2 Parallel Datalog
	2.1 B-Tree
	2.2 Specialization of the B-Tree
	2.3 Differences between Java and the C++ reference

	3 Evaluation
	3.1 Start-up performance
	3.2 Steady-state

	4 Results
	4.1 Steady-State Performance
	4.2 Start-up Performance

	5 Memory Usage
	5.1 A Quick Summary of Skip Lists

	6 Discussion
	7 Threats to Validity
	8 Related work
	9 Conclusion
	Acknowledgments
	References

