
EDAF75

Database Technology

Lecture 10

Feb 20, 2025

Administation

▸ OnMonday, Neo Technologies will give a guest lecture, presenting their graph
database: Neo4j – it’s a very interesting alternative to the SQL databases we’ve
seen so far. If you bring your laptop, you can try out some examples they’ll show.▸ The problem text for the project was announced last week, next week we’ll have
design meetings (you’ll have to sign up for it just as you have signed up for the
labs).▸ We’ll assign a project supervisor to each group – you’ll get an email with more
details later.

Today

▸ Quick intro to the project▸ Examples from last time (triggers)▸ SQL injection▸ Indexes and query planning▸ Limitations of SQL▸ Stored procedures▸ Alternatives to SQL (NoSQL)▸ Scaling

Project

▸ Goal: Design a database for a small bakery, and implement a REST service using the
database as a backend▸ Create an ER‐model, and draw it as a UML class diagram (so, no ”Crows foot”,
”Chen”, or other notations) – this diagram should be posted to a private coursegit
repository which you will share with your project supervisor▸ Wewill try to work out some format for design discussions between groups – the
exact format hasn’t been decided yet▸ I encourage you to discuss your design with other groups in whatever settings
you can come up with on your own▸ After the design meeting, when your design has been approved, we’ll release a
REST API which you should implement



Project

▸ When you have something which needs approval, push your code and report to
coursegit.cs.lth.se, and notify your supervisor▸ The supervisors have two roles:▸ to make sure your design is OK before you start coding▸ to make sure your program is OK when you finish▸ The project is a part of the examination, and the supervisors are not part of the
groups, so they’re not supposed to help out with your troubleshooting▸ Each project supervisor will havemany project to keep track of, and they will at
the same time be busy with other courses, so unfortunately the feedback may
sometimes take several days▸ Deadline: you must have pushed your final (approvable) version to
coursegit.cs.lth.se no later than 23:59 on April 30

Project

▸ Some of you have programmed a lot before taking this course, many of you
haven’t – we’ll require that all of you do your best (but no more), and that you
follow common coding guidelines, such as:▸ The specs must be followed exactly▸ Never, ever, use tabs in your Java or Python code!▸ Always use correct indentation (4 spaces in Python, and 2 or 4 spaces in), and place

braces where the standard guidelines put them▸ Functions/methods should generally do only one thing each – a function/method
which does many different things should be broken into several functions/methods▸ Use proper names – functions/methods/parameters should have descriptive names,
local variables can be shortened (i.e., the size of its scope determines how
descriptive a name must be)

Transactions and triggers

▸ Last time, we talked about transactions and triggers▸ The project will be much easier to implement if you use transactions and triggers
properly, and we will require you to use them appropriately

Triggers

Example

Experiment some with triggers, foreign keys, and Python exceptions



Python and SQLite

▸ The PRAGMA foreign_key switch only works for the current connection, we need
to turn it on each time our Python program runs▸ Rollbacks and constraint violations in the database will be returned as some kind
of sqlite3.Error

Removal of foreign keys

▸ Normally we’re not allowed to remove a row with a foreign key which is
referenced from another row (probably in another table)▸ We can use a ’foreign-key-clause’ (in the table definition) to handle a removal
which could be problematic

Foreign key clauses

Example

Implement a foreign key clause which removes all applications by a student which is
removed from the students table

Example

Example▸ Write a trigger to make sure no student applies for a major which hasn’t been
seen before on the college in question.▸ Why is this a weird problem?▸ How do we solve it? (It is a problem in the notes for previous lecture)



Indicies

▸ When we define a primary key, the database creates a special index to make searches for the key
fast – indexes can also speed up joins and ORDER BY statements▸ We can create our own indexes, with as many columns as we want

CREATE INDEX names_and_ages
ON employees(last_name, first_name, birth_year);

▸ This index will speed up searches for:▸ last name▸ last name and then first name▸ last name and birth year (with some fiddling)▸ The index above will not help much if we’re just searching for first name, or birth year▸ Indicies make some things faster, but insertions and deletions will become slower▸ We can sometimes create a covering index, it is an index which includes the value we’re normally
looking for – using a covering index the DBMS will not even have to look at the table itself

Indicies and the Query Planner

▸ For each SQL statement, there might be thousands of ways to perform the operation▸ Before a DBMS executes a statement, its query planner takes a good look at it, to find a way to
execute the statement as efficiently as possible▸ Indicies are very important during the planning – when searching for a value which isn’t indexed
properly, the DBMS might have to do a linear search through a table▸ Sometimes big joins (especially cross joins) gives the query planner so many alternatives that the
planning itself takes substantial time▸ In SQLite3 there is a command EXPLAIN QUERY PLANwhich explains what will happen during a
given query▸ SQLite3 also has a similarily named command EXPLAIN, which shows the VM‐instructions it would
use for a given query

Example

Example

Write a programwhich keeps track of the namesof your friends, andwrite code to insert
new friends into a SQLite database – see the notebook

SQL Injection

▸ Wemust be careful before putting user data into our database – never
concatenate parameters into a query!▸ SQL injection is when a user sends a string which alters the intended meaning of
our SQL statement▸ A classic example is the statement

stmt = ”SELECT * FROM users WHERE name = ’”

+ user_name + ”’;”

and user_name gets the value ”’ OR ’1’=’1”▸ Using PreparedStatement instead of Statementmakes our code safer▸ In the project, we’ll require that you use a PreparedStatementwhere a
Statementwould have been dangerous



SQL injection

▸ On wikipedia there is a long list of known SQL injections (and we probably don’t
hear about most of the successful ones)▸ So, SQL injection is a real thing, and we’d better be safe than sorry – using a
PreparedStatement is a very simple protective measure▸ In languages such as C/C++, there are relatives to SQL injection – one well known
example is ”buffer overruns”, in which someone crafts a message which
overflows the buffer created to hold the reply (this was one of the exploits used
by the ”Morris worm”)▸ Very few programmers have regretted writing code which was ’too safe’

Exercise

Exercise

Define a table with employees of a company, and information about their immediate
supervisors.▸ Write a query which finds the name of the immediate supervisor for each

employee▸ Write a query which finds the names of the supervisor of the supervisor for each
employee▸ Write a query which finds all the supervisors (transitively) of an employee

Limitations of SQL

▸ For a long time, SQL lacked recursion (and loops), and many DBMS’s still do▸ That means there are many simple things we can’t do easily in SQL, such as
traversing a varying number of steps in some kind of list‐like structure (e.g., a line
of ascendants in a tree)▸ That shortcoming can be dealt with in several ways:▸ by moving the iterative code to the clients (so we write our recursive calls and loops

in another language, like Java or Python)▸ by using stored procedures▸ by using a graph database▸ Many DMBS’s now have some kind of recursion (SQLite3 is one of them), but
using it is somewhat difficult and error prone

Recursion in PostgreSQL/SQLite

▸ In PostgreSQL and SQLite3, as an example, we can ’loop’ to create a table with
the numbers 1..10:

WITH RECURSIVE enumeration(x) AS (

VALUES(1)

UNION

SELECT x+1

FROM enumeration

WHERE x<10

)

SELECT x FROM enumeration;

▸ A detailed understanding of recursive queries is beyond the scope of the course,
but I want you to be aware of them



Computer times adjusted to human scale (2017)

One CPU cycle 0.4 ns 1 s

Level 1 cache access 0.9 ns 2 s

Level 2 cache access 2.8 ns 7 s

Level 3 cache access 28 ns 1 min

Main memory access (DDR DIMM) 100 ns 4 min

Intel Optane DC SSD I/O <10 μs 7 hrs

NVMe SSD I/O 25 μs 17 hrs

SSD I/O 50‐150 μs 1.5‐4 days

Rotational disk I/O 1‐10 ms 1‐9 months

Internet call: San Francisco to New York City 65 ms 5 years

Internet call: San Francisco to Hong Kong 141 ms 11 years

Practical consequences of the timescale

▸ We try to keep the number of network calls to a minimum – WITH‐statements,
stored procedures and triggers can help us▸ We try to minimize the number of disk accesses – DMBS’s often do this by using
B‐trees▸ We try to write code which has a memory footprint which is as ’local’ as possible
(this is not really database related)

Stored procedures

▸ We’ve seen that SQL lacks some simple features, like user defined functions, and
loops▸ Often this can be alleviated by writing code in other languages, and have them
call SQL queries/statements ’remotely’ (like we’ve done in Java and Python)▸ Some DBMS’s have stored procedures, which are user defined functions, and in
which we can use regular programming features such as parameters and loops▸ One of the main advantages with stored procedures is that it reduces the need for
calls over a network connection▸ The way SQLite3 operates makes stored procedures almost pointless – there are
no network calls, since the database code is linked into our program

Using a stored procedure in MySQL

CREATE FUNCTION getTopLevelSupervisorName(IN emp_name VARCHAR(10))
RETURN VARCHAR(10)

BEGIN
DECLARE b_id INT;
DECLARE b_name VARCHAR(10);

SET b_name = emp_name;
SELECT supervisor_id into b_id
FROM employees
WHERE name = emp_name;
WHILE b_id <> 0 DO

SELECT name, supervisor_id
INTO b_name, b_id
FROM employees
WHERE nbr = b_id;

END WHILE;
RETURN b_name;

END;



Big Data

▸ The cost of storing 1 GB of data has gone down from ca SEK 1 000 000 in the 1980‐ies, to less than
SEK 1 today▸ Today, there are many databases on the petabyte scale (that is 1 000 000 000 000 000 bytes)

▸ Data mining is a very active field today, and we mine for:▸ Scientific discoveries (CERN invented the web for this purpose)▸ User behavior (customize advertising)▸ Economic data (algorithmic trading)▸ …

▸ To find interesting patters in our data, we often want to store many kinds of data:▸ text▸ urls▸ images▸ sound▸ video

OLTP and OLAP

▸ OLTP: OnLine Transaction Processing – is used for real time processing of business
data▸ OLAP: OnLine Analytical Processing – is used for making complicated queries on
historical data▸ Column store: a database with rows containing columns of data, but data is
organized so that each column is saved for quick access – this makes many
queries faster, and is typically used for OLAP

SQL vs. NoSQL

▸ Relational databases have been a phenomenal success, for several reasons:▸ ACID▸ Well tested technology▸ An enormous amount of money invested in them▸ It is not a panacea for all data, though▸ They require that we convert all data into tables▸ They may be more complex than necessary▸ They’re sometimes not fast enough▸ They don’t scale very well (more about that soon)

NoSQL

▸ In 2000‐2016, many alternatives to relational databases sprung up – for some
reason they got the moniker NoSQL (it should really have been NonRelational)▸ Initially it meant literally “No SQL”, but it has evolved into meaning “Not Only
SQL”, since many of them embed some SQL like query language themselves▸ NoSQL databases allow users to save and access all sorts of data in simple ways▸ NoSQL databases often sacrifice some of the ACID properties, sometimes they
replace “Consistency” with “Eventual consistency”



NoSQL

▸ There are different kinds of NoSQL databases:▸ Key‐value store: this is the simplest kind of database, it’s basically a Map[K,V], where
the database has no way of querying on the contents – Redis is a popular key‐value
store▸ Document store: this is an enhanced key‐value store, where we can search and
manipulate data based on the contents, not only the keys – MongoDB and CouchDB
are popular document stores▸ Wide column store: has tables, rows and columns, but the columns can vary from
row to row (Apache Cassandra is a popular example)▸ Graph databases: data is stored in nodes and edges in a graph – Neo4j (fromMalmö!)
is a popular example

NoSQL – MongoDB

Exercise

UseMongoDB to insert some student with their applications, and tomake some simple
queries.

MongoDB

▸ We save data as JSON‐like objects in ’documents’▸ We don’t have to define schemas (but can do)▸ We can query using a simple query language

MongoDB – examples

use db.students

db.students.insertMany([
{
id: 123,
name: ”Amy”,
gpa: 3.9,
applications: [
{college: ”Berkeley”, major: ”CS”},
{college: ”Cornell”, major: ”EE”},
{college: ”Stanford”, major: ”CS”},
{college: ”Stanford”, major: ”EE”}

]
},
{
id: 234,
name: ”Bob”,
gpa: 3.6,
applications: [
{college: ”Berkeley”, major: ”biology”}

]
}])



MongoDB – examples

use db.students

db.students.find({})
db.students.find({}).pretty()

db.students.find({”id”: 123}).pretty()

db.students.find({”applications.college”: ”Stanford”}).pretty()
db.students.find({”applications.major”: ”CS”}).pretty()

db.students.remove({name: ”Amy”})

db.students.drop()

Scaling

▸ Handling bigger amounts of data requires that we add computing power and
storage space, we can do it in at least two ways:▸ Vertical scaling: updating our processor and expanding our memory – this is also

called scaling up▸ Horizontal scaling: adding more processors/computers and more hard drives – this is
also called scaling out▸ Horizontal scaling is normally cheaper, and has greater potential

Capitalizing on horizontal scaling

▸ If we scale horizontally, we need a way to use our resources in parallel▸ Google usedmap‐reduce for a long time – a simplistic description:

1. We distribute our data to many servers
2. On each server, we ’map’ a function to our data
3. We then ’reduce’ the results from each server into one final result▸ map and reduce are staples of functional programming▸ Hadoop is an open source framework based on map‐reduce

Horizontal scaling of databases

▸ Databases are sometimes split row‐wise into non‐overlapping partitions, this is
called horizontal partitioning▸ If the partitions are put on separate servers, we call it sharding▸ A global company could potentially use sharding to put European customers on
European servers, and American customers on American servers – this could
make some queries faster▸ Horizontal partitioning (and sharding in particular) enables us to use
map‐reduce‐like algorithms▸ The cost of sharding is increased complexity, and a reliance on the connections
between the servers▸ MongoDB and Spanner are examples of DBMS’s using sharding


