
EDAF75

Database Technology

Lecture 8 – more normalization

Christian.Soderberg@cs.lth.se

Feb 13, 2025

From the previous lecture

▸ If a set of attributes, {A1, . . . ,An}, uniquely determines another set of attributes,{B1, . . . ,Bm}, we say that {A1, . . . ,An}→ {B1, . . . ,Bm} is a functional dependency
(FD)▸ The left hand side of a FD is sometimes called its determinant set, and the right
hand side its dependent set▸ Given a set of FD’s, we can expand a set of attributes into its closure, by applying
the FD’s until we can include no more attributes▸ Aminimal set of attributes {A1, . . . ,An}whose closure is all the attributes of a
relation, is a candidate key for the relation – by minimal we mean a set which
contains no superfluous attributes

Boyce Codd Normal Form (BCNF)

▸ A relation is in BCNF iff (if‐and‐only‐if) all its functional dependencies have left
hand sides which are superkeys▸ We have a recipe to split a relation into several smaller relation, so that each
relation will be in BCNF:

1. Put all the attributes of a BCNF‐breaking FD into a new relation (this will become a
sort of ’look‐up’ table, with the left hand side of the FD as a key)

2. Remove all the attributes on the right hand side of the BCNF‐breaking FD from our
original relation (we can always find the removed attributes by joining with our
’look‐up’‐table, using the left hand side of the FD as a join predicate)

3. If any of our FDs still break BNCF for any of our relations, go to 1.

Food for thought

▸ Howmany rows in a table can we have with a given set of values for a superkey?▸ Howmany rows in a table can we have with a given set of values for some
attributes {A1, . . . ,An}, if {A1, . . . ,An} is not a superkey?▸ If we have a functional dependency {A1, . . . ,An}→ {B1, . . . ,Bm}, where{A1, . . . ,An} is not a superkey, in howmany rows can we have the same values of{A1, . . . ,An}, and hence {A1, . . . ,An} and {B1, . . . ,Bm}?



Why we want to be in BCNF

▸ A relation is in BCNF when we have removed all redundancy based on functional
dependencies▸ Assume we have

movies(title, year, length, category, star)

and the FD’s:

FD1: title year star→ length category
FD2: title year→ length category▸ The attribute starmust be included in the key, since we can’t derive a star from
just {title,year} (there can be more than one star in a movie) – so the key is{title,year,star}

Why we want to be in BCNF

movies(title, year, length, category, star)

FD1: title year star→ length category
FD2: title year→ length category
key: {title,year,star}

title year length category star

The Post 2017 116 drama Meryl Streep

The Post 2017 116 drama Tom Hanks

The Post 2017 116 drama Sarah Paulson

The Post 2017 116 drama Bob Odenkirk▸ The left hand side of FD2 is not a superkey, so it can be repeated many times in the table, and each
time, we’ll get the same values of the attributes in it’s right hand side – that’s why we get redundance▸ By moving length and category into a separate table, with {title,year} as it’s key, we don’t
have to keep them in this table, we can instead join them in using {title,year}▸ In the other table, we’ll only have one row for each combination of {title,year} (it’s a key)

Getting into BCNF

movies(title, year, length, category, star)
FD1: title year star→ length category
FD2: title year→ length category
key: {title,year,star}▸ Since FD2 breaks BCNF, we break up the original relation movies into two relations, the first with all
attributes of FD2 (movie_info), the other is our original relation with all attributes on the right hand
side of FD2 removed (movie_stars):▸ movie_info(title, year, length, category)▸ movie_stars(title, year, star)

Getting into BCNF

Nowwe get:

movie_info:

title year length category

The Post 2017 116 drama

Three Billboards … 2017 115 drama

Lady Bird 2017 94 comedy

movie_stars:

title year star

The Post 2017 Meryl Streep

The Post 2017 Tom Hanks

The Post 2017 Sarah Paulson

The Post 2017 Bob Odenkirk

... ... ...



Exercise

Exercise

Prove that all two‐attribute relations, R(A,B), are in BCNF.

Reconstruction

▸ Wewant to be able to reconstruct all information after we’ve deconstructed a
table – such a deconstruction is called lossless▸ To reconstruct relations deconstructed using the BCNF‐deconstruction algorithm
above, we only need to join using the attributes in the left hand side of the FD’s
we’ve decomposed on▸ Even if all data can be reconstructed, some FD’s may get lost when we
decompose (more on than below)

Exercise

Exercise

We have a relation R(A,B, C)with only one FD:

FD1: A→ B

(a) Is R in BCNF?

(b) Decompose into BCNF

(c) What about the decomposition of R into R1(A,B) and R2(B,C)? R1 and R2 are both
in BCNF (all relations with two attributes are), but what do we get if we project
and reconstruct

a b c

1 2 3

2 2 4

(d) Do the same projection and reconstruction using your own BCNF‐decomposition

Third Normal Form

▸ Sometimes we lose important FD’s when we decompose into BCNF▸ Using Third Normal Form (3NF) instead might be an option:

Definition: Third Normal Form

A relation R is in Third Normal Form iff the left hand side of every non‐trivial FD is a super‐
key for R, or the right hand side is a member of some key.

▸ 3NF is slightly weaker than BCNF (observe that we add the last phrase to an
otherwise identical definition)



Exercise

We have:

bookings(title, theater, city)

FD1: theater→ city

FD2: title city→ theater

FD1 means that the theaters will have unique names, and FD2 means that two theaters in the same city
never show the same movie (obviously, both FD’s are unrealistic). The candidate keys are {title,city}
and {theater,title}.▸ Is bookings in BCNF?▸ Decompose into BCNF, and enter the following data:

theater city title

Guild Menlo Park Phantom Thread

Park Menlo Park The Shape of Water

▸ Add a performance of ”Phantom Thread” at ”Park” (it breaks no constraints for any table), and
then reconstruct.▸ Is bookings in 3NF?

To Decompose, or Not To Decompose?

▸ Having our relations in BCNF makes itmuch easier to maintain our database▸ But it comes with a cost: we often have to join tables to find data which could have been in one
un‐normalized table, and some functional dependencies may get lost▸ So, sometimes it’s perfectly reasonable to use tables which aren’t normalized up to BCNF

Example

▸ Earlier we had the relation:

friends(name, phone, context)

and saw that it led to a lot of repetition:

name phone context

Liv 0708‐111222 school

Liv 0708‐111222 basketball

Liv 0708‐111222 judo

Liv 0708‐823123 school

Liv 0708‐823123 basketball

Liv 0708‐823123 judo

Adam 0708‐222111 school

Adam 0708‐222111 basketball▸ Is friends in BCNF?

Multivalued Dependencies

▸ So, the relation:

friends(name, phone, context)

has the key (name, phone, context), and it is in BCNF, since there are no FD:s▸ But there is another kind of dependency, for a given name, we have:▸ a given set of phone values (name↠ phone), and▸ a given set of context values (name↠ context)▸ Technically, we say that namemultidetermines phone (and context), but it’s not a
functional dependency, since a FD requires its right hand side to be a unique value▸ Those two ’multideterminates’ have the same left hand side, and since they are
independent of each other, they generate lots of repetition when we combine
them in one table▸ Having two such independent ’multideterminates’ with the same left hand side in
a table is called having aMultivalued Dependency (MVD)



4th normal form

▸ Having only name↠ phone (without context) would be fine, then we’d just be
listing all different phone numbers of our friends – it’s combining name↠ phone

and name↠ context in one table which is problematic▸ If we use the same machinery as in BCNF normalization, but replace FD:s with
MVD:s, we could break out name↠ phone into its own table, and then keep
everything except the right hand side (phone) in the original table:

phones(name, phone)

friends(name, context)▸ These tables are in 4th normal form, and we can join together the initial table with:

SELECT *

FROM friends

JOIN phones USING (name)

Normal Forms

▸ There are many normal forms (1NF, 2NF, 3NF, BCNF, 4NF, 5NF, 6NF)▸ In the course, we focus on BCNF and 3NF▸ The forms are progressively stricter:

4NF ⊂ BCNF ⊂ 3NF ⊂ . . .
Property 3NF BCNF 4NF

Eliminates redundancy due to FD’s most yes yes
Eliminates redundancy due to MVD’s no no yes
Preserves FD’s yes some some
Preserves MVD’s some some some▸ We normally aim for BCNF for all relations, but sometimes accept 3NF if there are

good reasons

Exercise

Exercise

Consider the student application example we’ve seen over and over again:▸ Which are the functional dependencies▸ Would one big table with all data be in BCNF?▸ Normalize so we get into BCNF▸ Compare with the tables we would get from an ER‐model of the problem

Exercise

Exercise

The relation R(A,B, C,D) has the following functional dependencies:

FD1: A B→ D

FD2: B C→ A D

FD3: D→ B

(a) Which are the keys of the relation?

(b) Show that the relation isn’t in BCNF. Is it in 3NF?

(c) Decompose the relation into relations which are in BCNF


