
EDAF75

Database Technology

Lecture 5

Christian.Soderberg@cs.lth.se

February 3, 2025

Administration

▸ Lab 1 this week, lab 2 and lab 3 the following two weeks▸ You’ll have to sign up for each lab separately (so you don’t have to be available at
the same time each week)▸ All groups will be in the same room (E:Jupiter)

Today’s lecture

▸ A few words about keeping track of state▸ Different ways of connecting to our database▸ Connecting to a database from Java using JDBC▸ Connecting to a database from Python using the sqlite3 package

Keeping track of state

▸ Using mutable state is often simple, but it comes with some problems:▸ Wemay need to lock our object before updating▸ We know what our state is, but can’t explain why it is what it is▸ A very popular alternative is to instead keep track of changes, and calculate our
new state from the changes – this technique is called event sourcing▸ Just adding updates is much ’cheaper’ than modifying values▸ We get the history for free, which allows us to explain the state in detail



Running SQLite3

▸ Traditional DBMS’s such as PostgreSQL, MariaDB, Oracle, MySQL, etc., run as
servers, often running on remote machines▸ We can access our database servers using various kinds of clients – most of them
offer command line clients which talks to the servers using simple text▸ SQLite3 doesn’t run as a server, but it has a simple text based client which lets us
manipulate our databases just as traditional databases do▸ There are also some nice GUIs for SQLite3, just as there are for most DBMS’s

Task

Exercise: Use sqlitebrowser to look at the database from the first
lectures

SQLite3– command line client

▸ We can run sqlite3 from a shell, it works in Linux, Mac and Windows▸ When we start sqlite3with a filename as an argument, our database will be
saved in the file▸ We can either give commands from within, at its prompt, or send commands
using redirection (we can actually even send them as command line parameters)▸ It’s very convenient to write SQL scripts and send them to sqlite3

Task

Exercise: Use the sqlite3 CLI to look at the database from the first
lectures



SQLite3– command line client

Some useful SQLite3 commands:▸ .help: makes this slide futile▸ .tables: shows all tables in the current database▸ .schema <table>: shows how a table is defined▸ .dump <table>: gives INSERT statements for creating the specified table▸ .import <filename> <table>: imports data into a table▸ .read <filename>: reads a script from a file▸ .save <filename>: writes the current database to file

SQLite3 format

We can get various output formats, using .mode – some examples (there are more):▸ csv: Comma‐separated values▸ column: Left‐aligned columns▸ html: HTML code▸ insert: SQL insert statements▸ line: One value per line▸ list: Values delimited by some separator▸ tabs: Tab‐separated values

Task

Exercise: Use the SQLite3 command line client to create a database
with the college application datawe’ve been using during the first few
lectures.

Task

Exercise: Write an SQL‐script showing the names and grades of the
students who have applied for Computer Science at Stanford. Let
SQLite3 run the script and generate output.



Java Database Connectivity (JDBC)

▸ Standard classes for handling database connections▸ Can handle all relevant relational databases▸ Based upon connections, statements, and result sets▸ Lots of things can go wrong when we connect to databases, so JDBC requires lots
of exception handling▸ There are also some alternative, non‐standard libraries, such as sql2o (but they
often depend on JDBC)

Connection

▸ Used to set up a session to a database (in the case of SQLite3, we don’t really
need to connect, the database is in a file on our hard drive, or even in memory)▸ Creates Statement‐objects, which we can use to send SQL statements to our
database▸ Connections also handle transactions (we’ll talk about that later in the course)

Statements

▸ There are two major kinds of statements:▸ Statement: a simple but unsafe kind of statement (amenable to SQL injection)▸ PreparedStatement: a precompiled statement, safer, and more efficient when
executed multiple times▸ We always use ’try‐with‐resources’ to create statements, to make sure that they

are closed properly when we finish

PreparedStatement

▸ Created with prepareStatement(str) on a connection, where str is a String
containing a query or statement▸ The query or statement can contain parameters, marked as ? – they get their
values with various setXXX‐methods▸ Some important methods:▸ ResultSet executeQuery(): executes a query▸ int executeUpdate(): executes an update



ResultSet

▸ A ResultSetwhich represents the table of data returned from an SQL query▸ It’s a kind of iterator (but doesn’t implement any iterator interface), we call
next() to jump to the next row, and it returns false if there is no next row▸ We can use various getXXX‐methods to fetch data, both positionally and by name

JDBC, code sample

var found = new ArrayList<ReturnType>();
var query =

”””
SELECT ...
FROM ...
WHERE ... = ?
...
”””;

try (var ps = conn.prepareStatement(query)) {
ps.setString(1, ...); / / set parameter value
var resultSet = ps.executeQuery();
while (resultSet.next()) {

found.add(ReturnType.fromRS(resultSet));
}

} catch (SQLException e) {
e.printStackTrace();

}
return found;

Task

Exercise: Write a Java program showing the names and grades of the
students who have applied for Computer Science at Stanford.

Task

Exercise:Write Java code toupdate thegpaby4% for all studentswho
have applied to Stanford.



Python and sqlite3

▸ sqlite3 is a lightweight standard library▸ We create a Connection to our database▸ We create a Cursor from our Connection, and call its executemethod▸ After the execute call, we can treat our Cursor as an iterator to fetch the results

Task

Exercise: Solve the previous problems in Python, using the sqlite3

package.

Task

Exercise: Write a Python program which lets us add students and ap‐
plications to the student database


