
EDAF75

Database Technology

Lecture 4

Christian.Soderberg@cs.lth.se

January 30, 2025

Administration

▸ You must sign up your lab groups (2‐3 students per group) no later than 23:59 on
Friday▸ Tomorrow I’ll open a page where you can sign up for 10‐minute lab sessions next
week, you must have a group before you sign up for the sessions

A note about relations and tables

▸ Relational databases are based on relational algebra (a discipline of mathematics)▸ In relational algebra we use the term relation to describe what we in a database
call a table▸ You’ll often see the terms ’relation’ and ’table’ used interchangeably – for the
purpose of this course, they are the same

Implementing entity sets

Q: How do we handle the data in the entity sets of our model (Book, Author, …)?

A: We define a table for each entity set, with all its attributes▸ We use the CREATE TABLE statement to create the table▸ Wemark our primary key with PRIMARY KEY

ToDo Define tables for the ’obvious’ entity sets in the library example, and their
’obvious’ columns



Implementing simple associations

Q: How do we implement a *-1 association?

A: In the table on the * side we put attributes which uniquely points out the value on
the 1 side, we call them foreign keys (and they typically constitute keys in the
other table)▸ Wemark our foreign keys FOREIGN KEY, to make sure we have no ’loose ends’ in
our database

ToDo Implement the *-1 associations of the library example

Implementing *-* associations

Q: How do we implement a *-* association?

A: We add a new table, often called a join table, with foreign keys to the tables on
both sides▸ If we have an association class tied to our association, its attributes end up in the
join table

ToDo Implement the *-* associations of the library example

Implementing ER models ‐ special cases

▸ Some cases are not clear cut▸ 1-1 associations▸ 0..1-0..1 associations▸ *-0..1 associations, where the 0..1 side is often 0

Translating 0..1 − 0..1 associations – example

Exercise:We want to keep track of people and dogs, and assume
a person can only own one dog, and that a dog can be owned by
at most one person.
What tables do we use if:▸ Almost all dogs have an owner▸ Almost every person have a dog▸ Only some people own dogs, and many dogs are without an

owner



Translating 0..1 − 0..1 associations
▸ If almost all dogs have owners, but only few people have dogs:

people(ssn, ...)
dogs(id, ..., owner_ssn)

▸ If almost everyone own a dog:

people(ssn, ..., dog_id)
dogs(id, ...)

▸ If only some people own dogs, and many dogs are without an owner:

people(ssn, ...)
dogs(id, ...)
dog_ownerships(owner_ssn, dog_id)

Translating inheritance into tables

▸ Create one table for each entity set, and reference from subclasses to
superclasses using foreign keys▸ Create tables only for concrete entity sets▸ Create one big table, with all possible attributes (with a lot of NULL values)

Translating inheritance into tables

▸ Create one table for each entity set, and reference from subclasses to
superclasses using foreign keys:

people(ssn, name, ...)
students(ssn, stil_id, ...)
conductors(ssn, orchestra, ...)

Translating inheritance into tables

▸ Create table only for concrete entity sets:

students(ssn, name, stil_id, ...)
conductors(ssn, name, orchestra, ...)



Translating inheritance into tables

▸ Create one big table, with all possible attributes (with a lot of NULL values)

people(ssn, name, stil_id, orchestra, ...)

Some constraints we can put in table definitions

▸ We can declare a column to be:▸ NOT NULL▸ UNIQUE▸ DEFAULT <value>▸ CHECK <condition>▸ These properties are enforced by the database, but the enforcement can often be
temporarily turned off (it does take time to check everything all the time).▸ We can also define triggers to enforce constraints, we’ll return to this later in the
course

Inserting values

▸ We can insert values using INSERT:

INSERT

INTO students(s_id, s_name, gpa, size_hs)

VALUES (123, ’Amy’, 3.9, 1000),

(234, ’Bob’, 3.6, 1500),

...

▸ We don’t have to provide values for columns with default values▸ We also don’t have to provide values for primary keys which are declared as
INTEGER – they will get a new unique integral value (hence the moniker database
sequence number)▸ We can also use a SELECT statement to generate values to insert, and use WITH
statements

Updating values

▸ We can update values using UPDATE:

UPDATE students

SET gpa = min(1.1 * gpa, 4.0)

WHERE s_name LIKE ’A%’;

▸ All rows are updated if we don’t provide a WHERE clause



Deleting values

▸ We can delete values using DELETE:

DELETE

FROM applications

WHERE s_id = 123

▸ Beware that the innocent looking:

DELETE

FROM applications

empties the whole table

Variants

▸ There are various variants of the INSERT and UPDATE commands, such as:▸ INSERT OR REPLACE▸ INSERT OR IGNORE▸ INSERT OR FAIL▸ INSERT OR ROLLBACK▸ UPDATE OR REPLACE▸ UPDATE OR IGNORE▸ UPDATE OR FAIL▸ UPDATE OR ROLLBACK▸ They are useful when an insertion or update would break some constraint

Generating invented keys

▸ In SQLite3we can get a uuid‐lookalike using:

CREATE TABLE students (

s_id TEXT DEFAULT (lower(hex(randomblob(16)))),

s_name TEXT,

gpa DECIMAL(3,1),

size_hs INT,

PRIMARY KEY (s_id)

);

▸ The database doesn’t have to check if the generated value is unique, since the
chance of a collision is ridiculously low▸ The most recent version of SQLite3 (Sqlite 3.31) has a uuid()‐function


