
EDAF75

Database Technology

Lecture 3

Christian.Soderberg@cs.lth.se

January 27, 2025

Administration

▸ FromWednesday, you can register your lab group on the course website:▸ make sure you enter your whole group at once, and▸ don’t register only yourself! (you will be removed)▸ This week we’ll discuss database modeling, and then see how you can translate a
model into a database▸ Lab 1 is next week, it’s an exercise in SQL queries▸ Lab 2 is the week after next, and it lets you practice modeling▸ If you want a QA‐session tomorrow, please sign up on Moodle – it’s totally fine to
ask question about the labs during the QA sessions

Short recapitulation

▸ A relational database is a collection of one or more tables, where each table has a
fixed set of columns, and a varying number of rows – all cells contain primitive
values▸ Simple queries (SELECT‐FROM‐WHERE)▸ Simple functions and aggregate functions▸ Grouping (GROUP BY – HAVING)▸ Window functions (OVER)▸ Subqueries, views and CTEs (WITH statements)▸ Joins (INNER, CROSS, OUTER)▸ Set operations (UNION, INTERSECT, EXCEPT)

Modeling

▸ To design a database, we’ll start out with what’s called an Entity/Relation Model
(E/R Model)▸ There are many ’standards’ for drawing E/R diagrams, we’ll use UML class
diagrams – it’s becoming increasingly popular for database modeling



Elements of an E/R Model

▸ Entity Sets: these are the ’objects’ of our model, they correspond to classes in a
traditional object oriented model▸ Attributes: properties of our objects – must be primitive values (see the next slide)▸ Relationships: associations between our entity sets (with cardinality)▸ Wewill typically convert entity sets to tables (relations), and attributes to columns
in our tables – relationships will be dealt with according to their cardinality

’Primitive’ values in our models

▸ integers: INT, INTEGER, ...▸ real numbers: REAL, DECIMAL(w,d), ...▸ strings: TEXT, CHAR(n), VARCHAR(n)▸ boolean values: true, false▸ dates: DATE, TIME, TIMESTAMP, ...▸ blobs (binary largs objects): BLOB (only in some databases)▸ JSON objects (not really primitive..., only in some databases)

UML class diagrams

▸ We’ll use UML classes in approixmately the same way as you may have seen them
used in earlier courses, with some caveats:▸ There will be no methods in our classes▸ All our attributes will be primitive and public▸ Wewon’t bother much with aggregates and compositions, we’ll use plain

associations instead▸ We’ll be very careful to mark cardinalities everywhere▸ Wewill think carefully about what constitutes a key for each entity set (essentially,
they’re some combination of attributes which will make each entity unique)

Class diagrams for ER modeling

▸ We’ll use:▸ classes (entity sets)▸ associations with cardinality (relationships)▸ association classes▸ inheritance (sometimes)▸ We have simple rules of how to translate each kind of element into our tables▸ There isn’t much theory behind our ER‐models, creating them is mostly an art to
learn



UML class diagrams – classes

▸ The entity/class name in singular▸ Only one box (since we have no methods)▸ Wewill underline keys

UML class diagrams – associations

▸ We always mark cardinality on our associations▸ We use associations instead of attributes whenever the value is a reference to
another object

UML class diagrams – association classes

▸ Sometimes the association between two entity sets contains data itself▸ We use an association class to capture that data

UML class diagrams – association classes

Normally we can use either an association class between two entity sets:

or another entity set ’between’ them



Example

Exercise: Create a model for the students applying for college we saw
last week

Keys, candidate keys and ’super’‐keys

▸ A superkey is a set of attributes for which all rows in a table are guaranteed to be
unique▸ A key, or candidate key, is aminimal set of attributes which uniquely identifies
each row in a table – by minimal we mean that no attribute in the set is superfluous
(it does notmean there can’t be another key with fewer attributes)▸ A table can have several candidate keys – when we model our database we pick
one of them and call it our primary key▸ If we add attributes to a key, the rowwill still be unique, which means that the key
plus extra attributes is a superkey – so although being a superkey may sound
impressive, it’s actually less impressive than being a (candidate) key▸ A key with more than one attribute is called a composite key

Example

Exercise:What would be keys in a table of our children’s classmates?

Keys and foreign keys

▸ When a row in one table needs to refer to a specific row in another table (i.e., we
have a ∗− 1 association), it keeps a key to the other table (as one or more columns
in this table) – this key is called a foreign key▸ The database will ensure that there are no duplicate primary keys in a table, and it
will create an index to speed up searches for it (more about that later), so using a
primary key in another table as a foreign key makes sense▸ We can also ask the database to make sure there always is a corresponding row
for a foreign key (we’ll return to that in a few weeks time)



Natural keys and invented keys

▸ Sometimes keys occur naturally in the problem domain, we call such keys natural
keys or business keys▸ Entity sets which can’t be uniquely identified by its attributes alone is sometimes
called aweak entity sets (they need to use foreign keys to create a primary key) –
for the sake of this course, calling them ”weak” is not a big deal (it doesn’t effect
our designs at all)▸ Sometimes we invent keys by introducing some artificial attribute, these keys are
called invented keys, surrogate keys, synthetic keys, …

Natural keys and invented keys

▸ Whether to use an invented key or not is often a question of simplicity vs
effeciency:▸ Without an invented key we sometimes get an unwieldy key (either because it

contains many attributes, or because a single attribute might me easily mistyped)▸ With an invented key our tables and queries only need a single key column, but
finding the key may require additional joins▸ If an attribute might change over time, it’s not a good choice for a key – it would

require us to update all tables which uses the old value

Weak entity sets and compound keys

▸ Association classes are typically ’weak’, but using its foreign keys we can get a key
– this is sometimes called a compound key (it is also a composite key)▸ We sometimes add an invented key to a ”weak” entity set – technically it’s still a
weak entity set (since the invented key isn’t really a proper attribute)

Example

Exercise: Solve the library example from the preparation web page.



Updating or accumulating?

▸ Howwould you keep track of the balance of a bank account?▸ Two ideas:▸ updating a balance attribute▸ saving all transactions, and then calculate the balance each time▸ Saving the transactions allows us to track and explain the current state – it’s
called Event Sourcing, and is becoming increasingly popular▸ When we update a single attribute, we need to make sure no one else updates it
at the same time▸ Adding a new transaction requires less locking


