
EDAF75

Database Technology

Lecture 7: Database Normalization

Christian.Soderberg@cs.lth.se

February 9, 2026

Lecture plan

▸ Session 1‐2: SQL: simple queries, grouping, joining▸ Session 3‐4: Database modeling, SQL for inserting, updating, and deleting▸ Session 5: Connecting to SQL databases from Python (pysqlite) or Java (JDBC)▸ Session 6: REST services (Python/Java)▸ Session 7 (today): Normalization, a formal method of removing redundancies▸ Session 8 (Thursday): More normalization

From the previous lecture

▸ Make sure the port you’re using isn’t already used by some other process▸ We can use a cool trick to see all the SQL statements our service executes by
adding:

db = sqlite3.connect(”colleges.sqlite”)

db.set_trace_callback(print)

Example

A travel agency saves information about their customers and their flights. They use one big table (spreadsheet) with
the following columns:▸ social security number (ssn)▸ name (name)▸ passport id (pp-id)▸ flight number (flight-no)▸ departure airport (dep), and arrival airport (arr)▸ flight date (date)▸ aircraft type (model, always the same for a given flight)▸ maximum number of passengers (no-pass)

ssn name pp‐id flight‐no dep arr date model no‐pass
910101‐0123 Ann Alm 42254 SAS505 CPH LHR 2018‐02‐18 B737 126
910101‐0123 Ann Alm 42254 BA189 LHR EWR 2018‐02‐18 B77W 365
910101‐1234 Bo Ek 13151 SAS505 CPH LHR 2018‐02‐20 B737 126

… … … … … … … … …

What’s problematic with this table?



Redundancy

▸ Whenever we have the same information in several places, we have a redundancy▸ For many complex systems (such as our bodies!), redundancy means we get more
resilience when things fail — so redundancy can be very useful▸ In databases, redundancies are problematic – they’re the root of various kinds of
anomalies

First normal form

▸ Wewant a database with our friends, and want to save:▸ names▸ phone numbers▸ contexts (i.e., keep track of where we meet a friend)▸ How about:
name phone context

Liv [0708‐111222, 0708‐823123] [school, handball, judo]

Adam [0708‐222111] [school, handball]▸ The ”First normal form” (1NF) of relational algebra only allows primitive values (so
no arrays, although some RDBMS actually have them…)

Removing redundancy

▸ Assuming Liv has two phone numbers, and belongs to three contexts, how many
rows would she occupy in our table if we abide by 1NF and keep phone and
context in the same table?▸ Do we need all those rows, can’t we just skip some of the rows as long as each
phone number and each context is still associated with her somewhere in the
table?

name phone context

Liv 0708‐111222 school

Liv 0708‐111222 handball

Liv 0708‐111222 judo

Liv 0708‐823123 school

Liv 0708‐823123 handball

Liv 0708‐823123 judo

Adam 0708‐222111 school

Adam 0708‐222111 handball

Update anomaly
▸ Given a relation friends:

friends(name, phone, context)

with values:
name phone context

Liv 0708‐123654 school

Liv 0708‐123654 handball

Liv 0708‐111222 judo

Liv 0708‐823123 school

Liv 0708‐823123 handball

Liv 0708‐823123 judo

... ... ...▸ Wemust change phone numbers in several rows when a friend with more than
one context changes numbers▸ If we forget to update one of the rows, the data in our table will be inconsistent
(as in the case with Liv’s phone number above)▸ This is called an update anomaly



Insertion anomaly

▸ Given a relation teachers:

teachers(id, name, email, course_code)

with values:
id name email course_code

101 Christian christian@cs.lth.se edaf75

201 Emma emma@cs.lth.se edag05

305 Liv liv@cs.lth.se edaf55▸ Even if Adam works at the department, and have an id, a name, and an email, we
have nowhere to store it until he teaches his first course▸ This is called an insertion anomaly

Deletion anomaly

▸ Given a relation teachers:

teachers(id, name, email, course_code)

with values:
id name email course_code

101 Christian christian@cs.lth.se edaf75

201 Emma emma@cs.lth.se edag05

305 Liv liv@cs.lth.se edaf55▸ When Christian stops teaching edaf75, all his info disappears (id, name, and
email), unless he also teaches another course▸ This is called a deletion anomaly

Functional dependencies

Definition: Functional dependency

If {A1,A2, . . . ,An} and {B1,B2, . . . ,Bm} are sets of attributes of a relation R, and we al‐
ways can determine B1,B2, . . . ,Bm from A1,A2, . . . ,An, then we write

A1 A2 . . . An → B1 B2 . . . Bm,

and call it a functional dependency (FD)

▸ In the relation

friends(ssn, name, address)

we have the functional dependence

ssn→ name address▸ If Y is a subset of X, then we say X→ Y is a trivial functional dependency▸ Functional dependencies can cause redundancies, if not handled with care

Functional dependencies

▸ Given

movies(title, year, length, category, studio_name, star)

we have the following FD’s (assuming movie titles are unique each year):▸ title year→ length▸ title year→ category▸ title year→ studio_name▸ These FD’s can be written more compactly as:

title year→ length category studio_name



Functional dependencies

▸ Given

movies(title, year, length, category, studio_name, star)

– is
title year→ star

a functional dependency?▸ No, there can be many stars in a movie, so just giving the name and year of a
movie doesn’t identify a specific star▸ Observe that FD’s are about the semantics of a scheme, not just it’s current values
(so the ’FD’ above wouldn’t be a FD even if our table happened to only contain
movies with exactly one star in each).

Example

A travel agency saves information about their customers and their flights. They use one big table (spreadsheet) with
the following columns:▸ social security number (ssn)▸ name (name)▸ passport id (pp-id)▸ flight number (flight-no)▸ departure airport (dep), and arrival airport (arr)▸ flight date (date)▸ aircraft type (model, always the same for a given flight)▸ maximum number of passengers (no-pass)

ssn name pp‐id flight‐no dep arr date model no‐pass
910101‐0123 Ann Alm 42254 SAS505 CPH LHR 2018‐02‐18 B737 126
910101‐0123 Ann Alm 42254 BA189 LHR EWR 2018‐02‐18 B77W 365
910101‐1234 Bo Ek 13151 SAS505 CPH LHR 2018‐02‐20 B737 126

… … … … … … … … …

Which are the functional dependencies of this table?

Keys

Using the concept of functional dependencies, we can now define what a key is
formally:

Definition: Key

A set of one or more attributes A1,A2, . . . ,An is a key for a relation R if, and only if:
(a) A1,A2, . . . ,An functionally determines all other attributes of R

(b) No proper subset of A1,A2, . . . ,An functionally determines all other attributes of R

▸ (a) means that A1,A2, . . . ,An is a superkey for R▸ (b) means a key has to be ’minimal’ (i.e., it has no superfluous attributes)▸ A relation can have many keys, in that case we choose one and call it our primary
key

Simple rules for FD’s

▸ Transitivity: (A→ B) ∧ (B→ C)⇒ A→ C

▸ Splitting and combining (just a notational convenience):

(A→ B) ∧ (A→ C)⇔ A→ B C

▸ Trivial:
A B→ A



Closure of a Set of Attributes

Definition: Closure of Set

The closure of a set of attributes, {A1,A2, . . . ,An}, under a set S of FD’s, is the growing
set B of attributes which can be generated by repeatedly applying the FD’s of S, starting
with B = {A1,A2, . . . ,An}.
The closure of {A1,A2, . . . ,An} is written as {A1,A2, . . . ,An}+

Exercise

Exercise

We have the relation R(A,B, C,D, E, F) and the FD’s:

FD1: A B→ C

FD2: B C→ A D

FD3: D→ E

FD4: C F→ B

Compute {A,B}+

Exercise

Exercise

We have the relation R(A,B, C,D, E, F) and the FD’s:

FD1: A B→ C

FD2: B C→ A D

FD3: D→ E

FD4: C F→ B

What are the keys of this relation?

Projecting Relations

▸ We normalize relations by splitting them in two or more relations, we do that by
removing some attributes from the original relation – this is called projection▸ Some FD’s may depend (transitively) on attributes which are removed from the
original relation, but their semantics don’t change, so all FD’s which can be
derived from the original FD’s will still be valid



Exercise

Exercise

We have the relation R1(A,B, C,D) and the FD’s:

FD1: A→ B

FD2: B→ C

FD3: C→ D

What FD’s will hold in the new relation R2(A,C,D)?

Normalization

▸ Normalization is a formal method to:▸ discover redundancies, and▸ decompose a relation into two or more relations in order to remove redundancies
and improve data integrity▸ There are several Normal Forms (1st, 2nd, 3rd, Boyce‐Codd, 4th, …)▸ Wewill focus on Boyce‐Codd (BCNF), since it means we have no redundancies

based on functional dependencies

Attributes, dependencies and normal forms

▸ An attribute which is part of a key is called a prime attribute▸ An attribut which is not part of a key is called a non‐prime attribute (duh!)▸ Partial dependency: a non‐prime attribute which depends on a proper subset of a
key (can only happen if we have a composite key)▸ Transitive dependency: a non‐prime attribute which depends on another
non‐prime attribute

The first three and a half normal forms

▸ 1NF: Only primitive values, and unique rows▸ 2NF: 1NF, and no partial dependencies▸ 3NF: 2NF, and no transitive dependencies▸ BCNF (3.5NF): 3NF, and no reduncancies based on functional dependencies



BCNF: Boyce‐Codd Normal Form (3.5NF)

Definition: BCNF

A relationR is in BCNF if, andonly if, the left hand sideof every non‐trivial FD is a superkey
for R.

▸ Observe that this means there are no FD’s which determines only parts of a row
(they all determine the whole row), so we have no redundancies based on FD’s

Exercise

Exercise

We have the relation

movies(title, year, length, category, star)

and the FD’s:

FD1: title year star→ length category

FD2: title year→ length category

Is this in BCNF?

Decomposition into BCNF

Algorithm: BCNF‐decomposition

(1) We have a relation Rwhich is not in BCNF

(2) Pick a FD which makes R break BCNF:

A1 A2 . . . An → B1 B2 . . . Bm

(3) Create one new relation with all the attributes of the FD (i.e., all the A’s and B’s)

(4) Create another new relation with all attributes in R, except those in the right hand
side of the FD (i.e., all the B’s) – observe that all the A’s should be in this new
relation

(5) Remove the old BCNF‐violating relation (R), and repeat from step (1), if necessary

Decomposition into BCNF

▸ The first relation, from step (3), tells us how to ’look up’ the values of B1 B2 . . . Bm

given the ’partial’ key A1 A2 . . . An (it’s not actually called a partial key, but note
that it by definition is not a superkey)▸ In the second relation we keep the ’partial’ key (i.e., the left hand side of the FD,
A1 A2 . . . An), but remove the values we now can look up in our ’lookup table’
(B1 B2 . . . Bm)▸ We get the dependents from the ’lookup table’ using an equi‐join, using the left
hand side of the FD (A1 A2 . . . An) in the join predicate



Exercise

Exercise

We have the relation

movies(title, year, length, category, star)

and the FD’s:

FD1: title year star→ length category

FD2: title year→ length category

Decompose into BCNF.

Exercise

Exercise

We have the relation

movies(title, year, length, category, studio_name, studio_address)

with the only key {title,year}.
Decompose into BCNF.

Causes for non‐BCNF

▸ Converting a many‐to‐many association into an attribute in one relationship (such
as star in the example above)▸ Putting transitive dependencies in a table (such as
studio_name→ studio_address in the example above)▸ If we translate our models into relations the way we saw last week, we’ll avoid
these pitfalls

Exercise

Exercise

(a) Make a model of movies and studios, and translate it into relations

(b) Make a model of movies and movie stars, and translate it into relations


