Lecture plan

EDAF75

Database Technology » Session 1-2: SQL: simple queries, grouping, joining

. . > Session 3-4: Database modeling, SQL for inserting, updating, and deletin

Lecture 7: Database Normalization)) & & & , &
» Session 5: Connecting to SQL databases from Python (pysqlite) or Java (JDBC)

» Session 6: REST services (Python/Java)

Christian.Soderberg@cs.lth.se » Session 7 (today): Normalization, a formal method of removing redundancies

» Session 8 (Thursday): More normalization

February 9, 2026

From the previous lecture Example

A travel agency saves information about their customers and their flights. They use one big table (spreadsheet) with
the following columns:

> social security number (ssn)

> name (name)

» Make sure the port you’re using isn’t already used by some other process » passportid (pp-id)
» We can use a cool trick to see all the SQL statements our service executes by > flight number (flight-no)
adding; > departure airport (dep), and arrival airport (arr)
> flight date (date)
- : ” . ”
db = sqlite3.connect(”colleges.sqlite”) > aircraft type (model, always the same for a given flight)
db.set_trace_callback(print) > maximum number of passengers (no-pass)
ssn name pp-id flight-no dep arr date model no-pass
910101-0123 Ann Alm 42254 SAS505 CPH LHR 2018-02-18 B737 126
910101-0123 Ann Alm 42254 BA189 LHR EWR 2018-02-18 B77W 365
910101-1234 Bo Ek 13151 SAS505 CPH LHR 2018-02-20 B737 126

What’s problematic with this table?

Redundancy First normal form

» We want a database with our friends, and want to save:

> names
> Whenever we have the same information in several places, we have a redundancy > phone numbers
» For many complex systems (such as our bodies!), redundancy means we get more > contexts (i.e., keep track of where we meet a friend)
resilience when things fail — so redundancy can be very useful > How about:
» In databases, redundancies are problematic - they’re the root of various kinds of name phone context
. Liv [0708-111222, 0708-823123] | [school, handball, judo]
anomalies Adam [0708-222111] [school, handball]

» The ”First normal form” (1NF) of relational algebra only allows primitive values (so
no arrays, although some RDBMS actually have them...)

Removing redundancy Update anomaly

> Given arelation friends:
> Assuming Liv has two phone numbers, and belongs to three contexts, how many

. . . friends(name, phone, context)
rows would she occupy in our table if we abide by 1NF and keep phone and

context in the same table? with values:
. . h text
> Do we need all those rows, can’t we just skip some of the rows as long as each n;’?/e 070‘;_?;:654 Cscnh:;
phone number and each context is still associated with her somewhere in the Uv | 0708123654 | handball
table? Liv | 0708111222 judo
name phone context Liv 0708-823123 school
Liv 0708-111222 school Liv 0708-823123 | handball
Liv 0708-111222 | handball Liv 0708-823123 judo
Liv 0708-111222 judo .

Liv 0708-823123 school

Liv 0708-823123 | handball

Liv 0708-823123 judo
Adam | 0708-222111 | school > If we forget to update one of the rows, the data in our table will be inconsistent
Adam | 0708-222111 | handball (as in the case with Liv’s phone number above)

» We must change phone numbers in several rows when a friend with more than
one context changes numbers

» This is called an update anomaly

Insertion anomaly

» Given arelation teachers:

teachers(id, name, email, course_code)

with values:
id name email course_code
101 | Christian | christian@cs.lth.se edaf7s
201 Emma emma@cs.lth.se edagos
305 Liv liv@cs.lth.se edafss

> Even if Adam works at the department, and have an id, a name, and an email, we
have nowhere to store it until he teaches his first course

> This is called an insertion anomaly

Functional dependencies

Definition: Functional dependency

If {A,A,,...,An} and {By,B,,...,Bn} are sets of attributes of a relation R, and we al-
ways can determine By, B,, ..., By from A, A,, ..., Ap, then we write

AA, ... Ay — BB, ... B,

and call it a functional dependency (FD)

> In the relation
friends(ssn, name, address)

we have the functional dependence
ssn — name address
> If Yis a subset of X, then we say X — Yis a trivial functional dependency
» Functional dependencies can cause redundancies, if not handled with care

Deletion anomaly

» Given arelation teachers:

teachers(id, name, email, course_code)

with values:
id name email course_code
101 | Christian | christian@cs.lth.se edaf7s
201 Emma emma@cs.lth.se edagos
305 Liv liv@cs.lth.se edafss

» When Christian stops teaching edaf7s, all his info disappears (id, name, and
email), unless he also teaches another course

> This is called a deletion anomaly

Functional dependencies

> Given
movies(title, year, length, category, studio_name, star)

we have the following FD’s (assuming movie titles are unique each year):
> title year — length
> title year — category
> title year — studio_name

» These FD’s can be written more compactly as:

title year — length category studio_name

Functional dependencies Example

A travel agency saves information about their customers and their flights. They use one big table (spreadsheet) with
the following columns:

> Given
> social security number (ssn)
movies(title, year, length, category, studio_name, star) > name (name)
—is > passport id (pp-id)

> flight number (flight-no)
> departure airport (dep), and arrival airport (arr)

a functional dependency? > flight date (date)
> aircraft type (model, always the same for a given flight)

title year — star

> No, there can be many stars in a movie, so just giving the name and year of a

. . . . > maximum number of passengers (no-pass
movie doesn’t identify a specific star passengers (no-pass)

. . . -id flight- d d del a
» Observe that FD’s are about the semantics of a scheme, not just it’s current values e T e T B I e e
’ ’). P . 910101-0123 Ann Alm 42254 BA189 LHR EWR 2018-02-18 B77W 365
(so the ’FD’ above wouldn’t be a FD even if our table happened to only contain B T L
movies with exactly one star in each).

Which are the functional dependencies of this table?

Keys Simple rules for FD’s
Using the concept of functional dependencies, we can now define what a key is » Transitivity:
formally: (A-B)A(B-CO)=A->C
A set of one or more a.ttributes Awf\z, ..., Apisa key for arelation R if, and only if: > splitting and combining (just a notational convenience):
(a) Ay, A,,..., A, functionally determines all other attributes of R
(b) No proper subset of A, A,, ..., A, functionally determines all other attributes of R (A-B)A(A->C)<=A->BC

> (a) means that A, A,, ..., A, is a superkey for R
> (b) means a key has to be 'minimal’ (i.e., it has no superfluous attributes) > Trivial:

> Arelation can have many keys, in that case we choose one and call it our primary AB—A
key

Closure of a Set of Attributes

Definition: Closure of Set

The closure of a set of attributes, {As,A,,..., Ay}, under a set S of FD’s, is the growing
set B of attributes which can be generated by repeatedly applying the FD’s of S, starting
with B = {A,As, ..., An}.

The closure of {A,A,, ..., An} is written as {A;,A,, ..., An}"

Exercise

Exercise

We have the relation R(A, B, C, D, E, F) and the FD’s:
FD: A B—>C

FD,: B C—~A D

FD3: D—~E

FD,: C F—>B

What are the keys of this relation? i

Exercise

Exercise

We have the relation R(A, B,C, D, E, F) and the FD’s:
FD;: A B—C

FD,: B C—-A D

FDy: D—E

FD,: CF—>B

Compute {A,B}* J

Projecting Relations

» We normalize relations by splitting them in two or more relations, we do that by
removing some attributes from the original relation - this is called projection

» Some FD’s may depend (transitively) on attributes which are removed from the
original relation, but their semantics don’t change, so all FD’s which can be
derived from the original FD’s will still be valid

Exercise Normalization

Exercise » Normalization is a formal method to:

We have the relation R;(A, B, C,D) and the FD’s: » discover redundancies, and
» decompose a relation into two or more relations in order to remove redundancies

FDi: A~ B and improve data integrity
FDy: B> C » There are several Normal Forms (1st, 2nd, 3rd, Boyce-Codd, 4th, ...)
FDs: C _)’D))) » We will focus on Boyce-Codd (BCNF), since it means we have no redundancies
What FD’s will hold in the new relation R, (A, C,D)?) based on functional dependencies
Attributes, dependencies and normal forms The first three and a half normal forms

v

An attribute which is part of a key is called a prime attribute

v

1NF: Only primitive values, and unique rows

v

An attribut which is not part of a key is called a non-prime attribute (duh!)

> Partial dependency: a non-prime attribute which depends on a proper subset of a > 2NF:1NF, and no partial dependencies

key (can only happen if we have a composite key) » 3NF: 2NF, and no transitive dependencies
BCNF (3.5NF): 3NF, and no reduncancies based on functional dependencies

v

» Transitive dependency: a non-prime attribute which depends on another
non-prime attribute

BCNF: Boyce-Codd Normal Form (3.5NF)

Definition: BCNF

Arelation Risin BCNFif, and only if, the left hand side of every non-trivial FD is a superkey
forR.

> Observe that this means there are no FD’s which determines only parts of a row
(they all determine the whole row), so we have no redundancies based on FD’s

Decomposition into BCNF

Algorithm: BCNF-decomposition

(1) We have a relation R which is not in BCNF
(2) Pick a FD which makes R break BCNF:

AA, ... A, > BB, ... Bn

(3) Create one new relation with all the attributes of the FD (i.e., all the A’s and B’s)

(4) Create another new relation with all attributes in R, except those in the right hand
side of the FD (i.e., all the B’s) — observe that all the A’s should be in this new
relation

(5) Remove the old BCNF-violating relation (R), and repeat from step (1), if necessary §

Exercise

Exercise

We have the relation

movies(title, year, length, category, star)
and the FD’s:
FD;: title year star — length category
FD,: title year — length category
Is this in BCNF?

Decomposition into BCNF

» The first relation, from step (3), tells us how to ’look up’ the values of B, B, ... Bm
given the ’partial’ key A; A, ... Ay (it’s not actually called a partial key, but note
that it by definition is not a superkey)

» In the second relation we keep the ’partial’ key (i.e., the left hand side of the FD,
Ai A, ... Ap), but remove the values we now can look up in our ’lookup table’
(BB, ... Bm)

> We get the dependents from the 'lookup table’ using an equi-join, using the left
hand side of the FD (A, A, ... A,) in the join predicate

Exercise

Exercise

We have the relation

movies(title, year, length, category, star)
and the FD’s:
FD;: title year star — length category
FD,: title year — length category

Decompose into BCNF. §

Causes for non-BCNF

» Converting a many-to-many association into an attribute in one relationship (such
as star in the example above)

> Putting transitive dependencies in a table (such as
studio_name — studio_address in the example above)

> If we translate our models into relations the way we saw last week, we’ll avoid
these pitfalls

Exercise

We have the relation

movies(title, year, length, category, studio_name, studio_address)

with the only key {title,year}.
Decompose into BCNF.

Exercise

(a) Make a model of movies and studios, and translate it into relations

(b) Make a model of movies and movie stars, and translate it into relations

