
EDAF75

Database Technology

Lecture 6: REST API

Christian.Soderberg@cs.lth.se

February 5, 2026

Background

▸ Programs today are often split up in a frontend and a backend, where the
frontend is typically written in JavaScript or WebAssembly, and the backend can
be written in a number of different languages (such as Java or Python)▸ The frontend and backend need a way to communicate – one common technique
is to use what’s called a REST API

The use of REST in this course

▸ This course is not about REST API’s, we only use them to make your coding more
focused on what really matters in the course, i.e., the databases▸ The only prerequisite for this course is a first programming course, so we will
make some simplifications to make things easier – hopefully you get the gist of
REST APIs anyway

Background

▸ What happens when we enter the url

http://www.example.com/index.html

in the address bar of our browser, and press ’Return’?▸ We have one server and one client:▸ AWeb Server is running on the computer named www.example.com, it waits for
requests for its resources▸ Our browser (the client) sends a request for the contents of a document with the
path /index.html▸ The client and server use a specific protocol, HTTP (Hypertext Transfer Protocol), to
communicate



HTTP requests

▸ There are several kinds of HTTP requests, amongst them:▸ GET: ask the server for some resource▸ POST: ask the server to accept some data as a new resource▸ PUT: ask the server to replace some resource with some data▸ DELETE: ask the server to remove some resource▸ The requests are plain text sent between client and server

HTTP requests

▸ Example of an HTTP request:

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: curl/7.67.0
Accept: */*▸ Each HTTP request has three parts:▸ A request line: tells what the client wants to do (i.e., GET/POST/...), and with what
resource it wants to do it▸ Some header lines: each line in the header is a key/value‐pair specifying the request –
the only required header line is Host:▸ An optional body: it can contain data for a POST or PUT request (GET requests
normally have empty bodies)

HTTP responses

▸ Example of an HTTP response:

HTTP/1.1 200 OK
Accept-Ranges: bytes
Age: 236609
Cache-Control: max-age=604800
Content-Type: text/html; charset=UTF-8
Date: Thu, 01 Feb 2024 10:48:42 GMT
Etag: ”3147526947”
Expires: Thu, 08 Feb 2024 10:48:42 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Content-Length: 1256
...▸ A HTTP response has three parts:▸ The status line: contains the name of the protocol (typically HTTP/1.1), a numeric

return code, and short message▸ Some headers: various key/value pairs, describing date, content length, content type,
etc▸ An optional body: This can be arbitrary data, and it is where html‐code is returned

HTTP return codes

▸ Some of the most important HTTP return codes are:▸ 200: OK▸ 201: Created▸ 202: Accepted▸ 400: Bad Request▸ 404: Not Found▸ The (probably) least important return code:▸ 418: I’m a teapot



Example

▸ Our browser sends an HTTP request (text) to the web server▸ The server processes our request, and sends an HTTP response to our browser▸ Our browser reads the response, and if the status is 200 (OK), and its
Content-Type is text/html, it renders the body of the message as an html‐page▸ If the response status is anything else, the browser displays an appropriate error
message

Using curl

▸ Instead of using our browser, we can fetch web pages on the command line using
the curl command:

curl -X GET http://www.example.com/index.html▸ It’s not very useful for regular web pages, but will come in handy later today

REST services

▸ A REST server (or REST service) is a server which lets clients access and manipulate
textual representations of web resources using stateless operations▸ A REST server typically uses HTTP (GET/POST/PUT/...), to communicate with its
clients▸ Each resource normally has two URLs:▸ /students: represents the collection of all students▸ /students/123: represents the student with id 123

REST services

▸ To get information regarding a specific resource, the client makes a GET request
with the URL of the resource▸ To add a new resource, the client makes a POST to the corresponding collection▸ REST services typically use JSON for data representation



JSON

▸ JSON is short for JavaScript Object Notation, and it’s a human‐readable text
format for transmitting data▸ JSON’s basic data types are: number, string, boolean, array, object, and null.▸ We can define a student as an object:

{

”id”: 123,

”name”: ”Amy”,

”gpa”: 3.9,

}

JSON

▸ A course with arrays of weekly lectures and lab sessions can be defined as:

{

”courseCode”: ”EDAF75”,

”lectures”: [

{”day”: ”Monday”, ”startTime”: 13},

{”day”: ”Thursday”, ”startTime”: 13}

],

”labs”: [

{”day”: ”Wednesday”, ”startTime”: 10},

{”day”: ”Wednesday”, ”startTime”: 13},

{”day”: ”Friday”, ”startTime”: 8}

]

}

JSON

▸ Applications for a given student can be defined as:

{

”id”: 123,

”name”: ”Amy”,

”gpa”: 3.9,

”applications”: [

{”college”: ”Stanford”, ”major”: ”CS”},

{”college”: ”Stanford”, ”major”: ”EE”},

{”college”: ”Berkeley”, ”major”: ”CS”}

],

}

REST and CRUD

▸ CRUD is an acronym for Create, Read, Update, and Delete▸ REST services are often used for CRUD▸ Create: POST▸ Read: GET▸ Update: PUT▸ Delete: DELETE



Example

In the following few slides we’ll assume we have a REST server running at port
4567 on localhost, with our college application information as resources▸ To get information about all students, we make a GET request for the resource
/students:

GET http://localhost:4567/students▸ We can try out the request above using curl:

curl -X GET http://localhost:4567/students

or we can use the URL in a browser▸ The server usually returns JSON data

Example

▸ If we want information about a student with a given id, we can use her full url:

GET http://localhost:4567/students/123▸ To get information about any students named ”Irene”, we add a query string to
the resource (URL) for all students:

GET http://localhost:4567/students?name=Irene▸ Wemust make sure that our path and all our parameters are properly
URL‐encoded (our shell may or may not help us with this)

Example

▸ We can expand the URL for a resource to dig in deeper – to see all applications by
a given student we can use:

GET http://localhost:4567/students/123/applications▸ And we can combine that with a query string to see which of the applications are
for colleges in California:

GET http://localhost:4567/students/123/applications?state=’CA’

Example

▸ To add a new student, we make a POST to /students▸ Normally we put the data for the new student in the body of the request, as a
JSON description▸ It’s common practice to let the server return the id or URL of the newly created
resource



What’s the point?

▸ Asking a server to send a page, and then rendering it in the browser, is costly –
the server potentially has to serve many clients, and the client/browser has to
create each page from scratch every time▸ Much more efficient is letting a JavaScript or WebAssembly program running in
the browser fetch only the data it needs, and then update parts of the page▸ Also, instead of getting a web page, we might be interested in saving the
important data directly to our computer

REST services, the CliffsNotes

▸ Resources normally have two urls:▸ One collective: /students▸ One individual: /students/123▸ We use HTTP‐methods to operate on our resources:▸ GET to get data▸ POST to add data▸ PUT to update data▸ DELETE to delete data▸ We use query parameters to fine tune a search▸ Resources are nouns, in plural form (sometimes we also have operations which
doesn’t involve resources, their names can be verbs)▸ We use JSON to represent data▸ We use CamelCase for attribute names

Things we simplify in the course

▸ Resources must often be protected, there are several ways to handle
authorization, but we won’t deal with it▸ Some requests may return lots of data, and we sometimes don’t want all at once –
a real REST API uses some kind of paging and continuation tokens for this, we will
not▸ Ideally we want to embed documentation for the service in our responses, e.g., a
response could contain links to related resources – we won’t do that▸ Sometimes responses ’sideload’ information which might be useful for the client,
or embed hierarchies of objects, to avoid extra roundtrips – we will not do that

Frameworks

▸ Up until this year, the course had a section about how to connect to SQL from a
Java program, but it involves a lot of details which has very little to do with
databases, and this year I’ve thrown it out▸ There are many different libraries/frameworks which helps us implementing REST
services in Python, to make things simple, we’re going use a library called Bottle



Exercises

▸ Add the endpoint GET /students▸ Add the endpoint GET /students/<:id>▸ Add the endpoint GET /students\?name\=Amy▸ Add the endpoint POST /students▸ Add the endpoint GET /students/<:id>/applications▸ Add endpoint for GET /applications\?college\=Stanford\&major\=CS


