EDAF75
Database Technology

Lecture 6: REST API

Christian.Soderberg@cs.lth.se

February 5,2026

The use of REST in this course

> This course is not about REST API’s, we only use them to make your coding more
focused on what really matters in the course, i.e., the databases

> The only prerequisite for this course is a first programming course, so we will
make some simplifications to make things easier — hopefully you get the gist of
REST APIs anyway

Background

» Programs today are often split up in a frontend and a backend, where the
frontend is typically written in JavaScript or WebAssembly, and the backend can
be written in a number of different languages (such as Java or Python)

» The frontend and backend need a way to communicate - one common technique
is to use what’s called a REST API

Background

» What happens when we enter the url
http://www.example.com/index.html

in the address bar of our browser, and press ’Return’?
> We have one server and one client:

> A Web Server is running on the computer named www. example. com, it waits for
requests for its resources

> Our browser (the client) sends a request for the contents of a document with the
path /index.html

> The client and server use a specific protocol, HTTP (Hypertext Transfer Protocol), to
communicate



HTTP requests HTTP requests

» Example of an HTTP request:
GET /index.html HTTP/1.1

> There are several kinds of HTTP requests, amongst them: Host: www.example.com

> GET: ask the server for some resource User-Agent: curl/7.67.0

A HIR A
> POST: ask the server to accept some data as a new resource ceept: */
> PUT: ask the server to replace some resource with some data > Each HTTP request has three parts:
> DELETE: ask the server to remove some resource > Arequest line: tells what the client wants to do (i.e., GET/P0OST/...), and with what

resource it wants to do it

> Some header lines: each line in the header is a key/value-pair specifying the request —
the only required header line is Host :

> An optional body: it can contain data for a POST or PUT request (GET requests
normally have empty bodies)

> The requests are plain text sent between client and server

HTTP responses HTTP return codes

> Example of an HTTP response:
HTTP/1.1 200 0K
Accept-Ranges: bytes

Age: 236609 )
Cache-Control: max-age=604800 > Some of the most important HTTP return codes are:

Content-Type: text/html; charset=UTF-8 200: OK
Date: Thu, 01 Feb 2024 10:48:42 GMT 201: Created

Etag: "3147526947" 202: Accepted
Expires: Thu, 08 Feb 2024 10:48:42 GMT 400: Bad Request
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT 404: Not Found

Content-Length: 1256 .
» The (probably) least important return code:

» AHTTP response has three parts: > 418:I'mateapot

»> The status line: contains the name of the protocol (typically HTTP/1.1), a numeric
return code, and short message

> Some headers: various key/value pairs, describing date, content length, content type,
etc

> An optional body: This can be arbitrary data, and it is where html-code is returned

v vV vy



Example

» Our browser sends an HTTP request (text) to the web server

> The server processes our request, and sends an HTTP response to our browser

> Our browser reads the response, and if the status is 200 (OK), and its
Content-Typeis text/html, it renders the body of the message as an html-page

> If the response status is anything else, the browser displays an appropriate error
message

REST services

> AREST server (or REST service) is a server which lets clients access and manipulate
textual representations of web resources using stateless operations

> A REST server typically uses HTTP (GET/POST/PUT/...), to communicate with its
clients

> Each resource normally has two URLs:

> /students: represents the collection of all students
> /students/123: represents the student with id 123

Using curl

*> Instead of using our browser, we can fetch web pages on the command line using
the curl command:

curl -X GET http://www.example.com/index.html
> It’s not very useful for regular web pages, but will come in handy later today

REST services

» To get information regarding a specific resource, the client makes a GET request
with the URL of the resource

» To add a new resource, the client makes a POST to the corresponding collection
> REST services typically use JSON for data representation



JSON

> JSON is short for JavaScript Object Notation, and it’s a human-readable text

format for transmitting data

> JSON’s basic data types are: number, string, boolean, array, object, and null.

» We can define a student as an object:

{
"id": 123,
"name”: "Amy”,
"gpa”: 3.9,

}

JSON

> Applications for a given student can be defined as:

{
"id": 123,
"name”: "Amy”,
"gpa”: 3.9,

"applications”: [
{"college”: "Stanford”, "major”: "CS"},
{"college”: "Stanford”, "major”: "EE"},
{"college”: "Berkeley”, "major”: "CS"}
I,
}

JSON

> A course with arrays of weekly lectures and lab sessions can be defined as:

{
"courseCode”: "EDAF75",
"lectures”: [
{"day”: "Monday”, "startTime”: 13},
{"day”: "Thursday”, "startTime”: 13}
1,
"labs”: [
{"day”: "Wednesday”, "startTime”: 10},
{"day”: "Wednesday”, "startTime”: 13},
{"day”: "Friday”, "startTime”: 8}
]
}

REST and CRUD

> CRUD is an acronym for Create, Read, Update, and Delete
> REST services are often used for CRUD

> Create: POST

> Read: GET

» Update: PUT

> Delete: DELETE



Example

In the following few slides we’ll assume we have a REST server running at port
4567 on localhost, with our college application information as resources

> To get information about all students, we make a GET request for the resource
/students:

GET http://localhost:4567/students

> We can try out the request above using curl:
curl -X GET http://localhost:4567/students
or we can use the URL in a browser

> The server usually returns JSON data

Example

> We can expand the URL for a resource to dig in deeper - to see all applications by

a given student we can use:
GET http://localhost:4567/students/123/applications

> And we can combine that with a query string to see which of the applications are
for colleges in California:

GET http://localhost:4567/students/123/applications?state="CA’

Example

» If we want information about a student with a given id, we can use her full url:
GET http://localhost:4567/students/123

> To get information about any students named ”Irene”, we add a query string to
the resource (URL) for all students:

GET http://localhost:4567/students?name=Irene

» We must make sure that our path and all our parameters are properly
URL-encoded (our shell may or may not help us with this)

Example

» To add a new student, we make a POST to /students

> Normally we put the data for the new student in the body of the request, as a
JSON description

» It’s common practice to let the server return the id or URL of the newly created
resource



What’s the point?

> Asking a server to send a page, and then rendering it in the browser, is costly -
the server potentially has to serve many clients, and the client/browser has to
create each page from scratch every time

> Much more efficient is letting a JavaScript or WebAssembly program running in
the browser fetch only the data it needs, and then update parts of the page

» Also, instead of getting a web page, we might be interested in saving the
important data directly to our computer

Things we simplify in the course

> Resources must often be protected, there are several ways to handle
authorization, but we won’t deal with it

> Some requests may return lots of data, and we sometimes don’t want all at once -
areal REST API uses some kind of paging and continuation tokens for this, we will

not

> ldeally we want to embed documentation for the service in our responses, e.g., a
response could contain links to related resources — we won’t do that

» Sometimes responses ’sideload’ information which might be useful for the client,
or embed hierarchies of objects, to avoid extra roundtrips — we will not do that

REST services, the CliffsNotes

Resources normally have two urls:

> One collective: /students
> Oneindividual: /students/123

We use HTTP-methods to operate on our resources:

GET to get data

POST to add data

PUT to update data
DELETE to delete data

>
>
>
>
We use query parameters to fine tune a search

Resources are nouns, in plural form (sometimes we also have operations which
doesn’t involve resources, their names can be verbs)

We use JSON to represent data

We use CamelCase for attribute names

Frameworks

Up until this year, the course had a section about how to connect to SQL from a
Java program, but it involves a lot of details which has very little to do with
databases, and this year I’'ve thrown it out

There are many different libraries/frameworks which helps us implementing REST
services in Python, to make things simple, we’re going use a library called Bottle



Exercises

Add the endpoint GET /students

Add the endpoint GET /students/<:id>

Add the endpoint GET /students\?name\=Amy

Add the endpoint POST /students

Add the endpoint GET /students/<:id>/applications

Add endpoint for GET /applications\?college\=Stanford\&major\=CS



