Administration

EDAF75
Database Technology

> You must sign up your lab groups (2-3 students per group) no later than 23:59 on
Lecture 4 Friday

» On Monday I'll open a webpage where you can sign up for 10-minute lab sessions
Christian.Soderberg@cs.lth.se next week, you must have a group before you sign up for the sessions

January 29, 2026

A note about relations and tables Implementing entity sets

Q: How do we handle the data in the entity sets of our model (Book, Author, ...)?

» Relational databases are based on relational algebra (a discipline of mathematics) A: We define a table for each entity set, with all its attributes
*> Inrelational algebra we use the term relation to describe what we in a database » We use the CREATE TABLE statement to create the table
call a table

> We mark our primary key with PRIMARY KEY
> You’ll often see the terms ’relation’ and ’table’ used interchangeably - for the

purpose of this course, they are the same . . .)]
ToDo Define tables for the ’obvious’ entity sets in the library example, and their

’obvious’ columns

Implementing simple associations Implementing *-* associations

: How do we implement a *-1 association?

Pl

Q: How do we implement a *-* association?

A: Inthe t.able on the * side We,pUt attributes which fmiquely pqints out the value on A: We add a new table, often called a join table, with foreign keys to the tables on
the 1 side, we call them foreign keys (and they typically constitute keys in the both sides

other table)
» We mark our foreign keys FOREIGN KEY, to make sure we have no ’loose ends’ in
our database

> If we have an association class tied to our association, its attributes end up in the
join table

L. . ToDo Implement the x-* associations of the library example
ToDo Implement the *-1 associations of the library example

Implementing ER models - special cases Translating 0..1 — 0..1 associations — example

Exercise: We want to keep track of people and dogs, and assume
a person can only own one dog, and that a dog can be owned by

> Some cases are not clear cut at most one person.
> 1-1associations What tables do we use if:
R - -
0..1-0..1associations » Almost all dogs have an owner

> x-0..1 associations, where the 0. .1 side is often 0
» Almost every person have a dog

> Only some people own dogs, and many dogs are without an
owner

Translating 0..1 — 0..1 associations Translating inheritance into tables

» If almost all dogs have owners, but only few people have dogs: Person
ssn
people(ssn, ...) nane
dogs(id, ..., owner_ssn)
> If almost everyone own a dog:
. Student Conductor
people(@, ceey dOg_ld) stil _id orchestra
dogs(id, ...) e B

> If only some people own dogs, and many dogs are without an owner:
people(ssn, ...) > Create one tablg for eash entity set, and reference from subclasses to
dogs(id, ...) superclasses using foreign keys
dog_ownerships(owner ssn, dog_id) » Create tables only for concrete entity sets

» Create one big table, with all possible attributes (with a lot of NULL values)

Translating inheritance into tables Translating inheritance into tables
Person
ssn Person
name ssn
Student Conductor
stil_id orchestra Student Conductor
e e stil id orchestra

> Create one table for each entity set, and reference from subclasses to

superclasses using foreign keys: > Create table only for concrete entity sets:
people(ssn, name, ...) students(ssn, name, stil_id, ...)
students(ssn, stil_id, ...) conductors(ssn, name, orchestra, ...)

conductors(ssn, orchestra, ...)

Translating inheritance into tables

Person

Student Conductor
stil id orchestra

> Create one big table, with all possible attributes (with a lot of NULL values)

people(ssn, name, stil_id, orchestra, ...)

Inserting values

> We can insert values using INSERT:

INSERT
INTO students(s_id, s_name, gpa, size_hs)
VALUES (123, ’'Amy’, 3.9, 1000),

(234, 'Bob’, 3.6, 1500),

> We don’t have to provide values for columns with default values

> We also don’t have to provide values for primary keys which are declared as
INTEGER - they will get a new unique integral value (hence the moniker database
sequence number)

> We can also use a SELECT statement to generate values to insert, and use WITH
statements

Some constraints we can put in table definitions

> We can declare a column to be:
» NOT NULL
> UNIQUE
> DEFAULT <value>
> CHECK <condition>
> These properties are enforced by the database, but the enforcement can often be
temporarily turned off (it does take time to check everything all the time).
> We can also define triggers to enforce constraints, we’ll return to this later in the
course

Updating values

» We can update values using UPDATE:

UPDATE students
SET gpa = min(1l.1 * gpa, 4.0)
WHERE s_name LIKE 'A%’

> All rows are updated if we don’t provide a WHERE clause

Deleting values Variants

> We can delete values using DELETE: » There are various variants of the INSERT and UPDATE commands, such as:

DELETE > INSERT OR REPLACE
INSERT OR IGNORE
INSERT OR FAIL
INSERT OR ROLLBACK
UPDATE OR REPLACE
UPDATE OR IGNORE
UPDATE OR FAIL
UPDATE OR ROLLBACK

» They are useful when an insertion or update would break some constraint

FROM applications
WHERE s_1id = 123
» Beware that the innocent looking:

DELETE
FROM applications

vV vVVY VYV V.V

empties the whole table

Generating invented keys

> InSQLite3 we can get a somewhat uuid-lookalike using:

CREATE TABLE students (

s_1id TEXT DEFAULT (lower(hex(randomblob(16)))),
S_name TEXT,

gpa DECIMAL(3,1),

size_hs INT,

PRIMARY KEY (s_id)
)s

> The database doesn’t have to check if the generated value is unique, since the
chance of a collision is ridiculously low

