EDAF75
Database Technology

Lecture 3

Christian.Soderberg@cs.lth.se

January 26, 2026

Short recapitulation

A relational database is a collection of one or more tables, where each table has a
fixed set of columns, and a varying number of rows — all cells contain primitive
values

Simple queries (SELECT-FROM-WHERE)

Simple functions and aggregate functions
Grouping (GROUP BY — HAVING)

Window functions (OVER)

Subqueries, views and CTEs (WITH statements)
Joins (INNER, CROSS, OUTER)

Set operations (UNION, INTERSECT, EXCEPT)

Administration

» From Wednesday, you can register your lab group on the course website:

> make sure you enter your whole group at once, and
> don’t register only yourself! (you will be removed)

> This week we’ll discuss database modeling, and then see how you can translate a
model into a database

> Lab 1is next week, it’s an exercise in SQL queries
» Lab 2 is the week after next, and it lets you practice modeling

> If you want a QA-session on Friday, please sign up on Moodle - it’s totally fine to
ask question about the labs during the QA sessions

Modeling

» To design a database, we’ll start out with what’s called an Entity/Relation Model

(E/R Model)

» There are many ’standards’ for drawing E/R diagrams, we’ll use UML class

diagrams - it’s becoming increasingly popular for database modeling



Elements of an E/R Model

> Entity Sets: these are the ’objects’ of our model, they correspond to classes in a
traditional object oriented model

> Attributes: properties of our objects — must be primitive values (see the next slide)

> Relationships: associations between our entity sets (with cardinality!)

> We will typically convert entity sets to tables (AKA relations), and attributes to
columns in our tables - relationships will be dealt with according to their
cardinality

UML class diagrams

> We’ll use UML classes in approixmately the same way as you may have seen them
used in earlier courses, with some caveats:

>

>

>

There will be no methods in our classes

All our attributes will be primitive and public

We won’t bother much with aggregates and compositions, we’ll use plain
associations instead

We’ll be very careful to mark cardinalities everywhere

We will think carefully about what constitutes a key for each entity set (essentially,
they’re some combination of attributes which will make each entity unique)

’Primitive’ values in our models

> integers: INT, INTEGER, ...

> real numbers: REAL, DECIMAL(w,d), ...

> strings: TEXT, CHAR(n), VARCHAR(n)

> boolean values: true, false

» dates: DATE, TIME, TIMESTAMP, ...

» blobs (binary largs objects): BLOB (only in some databases)

> JSON objects (not really primitive..., only in some databases, but increasingly
popular)

Class diagrams for ER modeling

> We'll use:

classes (entity sets)

associations with cardinality (relationships)
association classes

inheritance (sometimes)

vV v vy

» We have simple rules of how to translate each kind of element into our tables

> There isn’t much theory behind our ER-models, creating them is mostly an art to
learn



UML class diagrams — classes

Student

ssn
first_name
last_name

> The entity/class name in singular

> Only one box (since we have no methods)

» We will underline keys (or parts of keys)

UML class diagrams — association classes

Student

ssn
first_name
last_name

«wweaks
FinishedCourse
grade
exam_date
T
|
[
: Course Department
1 course_code department code
* *

course_name
credits

department_name

> Sometimes the association between two entity sets contains data itself

> We use an association class to capture that data

UML class diagrams — associations

Course Department
course_code department code
course_name * 1 |department_name
credits

» We always mark cardinality on our associations

» We use associations instead of attributes whenever the value is a reference to
another object

UML class diagrams — association classes

Normally we can use either an association class between two entity sets:

«weaks
FinishedCourse
grade
exam_date
T
|
|
Student } Course
ssn I course code
first_name * * | course_name
last_name credits

or another entity set ’between’ them

Student wnieaks Course
ssn FinishedCourse course code
first_name 0 +—grade - 7| course_name
last_name exan_date credits




Example

Exercise: Create a model for the students applying for college we saw
last week

Example

Exercise: What would be keys in a table of our children’s classmates?

Keys, candidate keys and ’super’-keys

> Asuperkey is a set of attributes for which all rows in a table are guaranteed to be

unique

A key, or candidate key, is a minimal set of attributes which uniquely identifies
each row in a table — by minimal we mean that no attribute in the set is superfluous
(it does not mean there can’t be another key with fewer attributes)

A table can have several candidate keys — when we model our database we pick
one of them and call it our primary key

If we add attributes to a key, the row will still be unique, which means that the key
plus extra attributes is a superkey - so although being a superkey may sound
impressive, it’s actually less impressive than being a (candidate) key

A key with more than one attribute is called a composite key

Keys and foreign keys

When a row in one table needs to refer to a specific row in another table (i.e., we
have a * — 1 association), it keeps a key to the other table (as one or more columns
in this table) - this key is called a foreign key

The database will ensure that there are no duplicate primary keys in a table, and it
will create an index to speed up searches for it (more about that in a few weeks),
so using a primary key in another table as a foreign key makes sense

We can also ask the database to make sure there always is a corresponding row
for a foreign key (we’ll return to that too in a few weeks)



Natural keys and invented keys

> Sometimes keys occur naturally in the problem domain, we call such keys natural
keys or business keys

> Entity sets which can’t be uniquely identified by its attributes alone are
sometimes called weak entity sets (they need to use foreign keys to create a
primary key) - for the sake of this course, calling them ”weak” is not a big deal (it
doesn’t effect our designs at all)

> Sometimes we invent keys by introducing some artificial attribute, these keys are
called invented keys, surrogate keys, synthetic keys, ...

Weak entity sets and compound keys

> Association classes are typically weak’, but using its foreign keys we can get a key

— this is sometimes called a compound key (it is also a composite key)

> We sometimes add an invented key to a ”weak” entity set - technically it’s still a
weak entity set (since the invented key isn’t really a proper attribute)

Natural keys and invented keys

> Whether to use an invented key or not is often a question of simplicity vs
effeciency:
> Without an invented key we sometimes get an unwieldy key (either because it
contains many attributes, or because a single attribute might be easily mistyped)
> With an invented key our tables and queries only need a single key column, but
finding the key may require additional joins
> If an attribute might change over time, it’s not a good choice for a key - it would
require us to update all tables which uses the old value

Example

Exercise: Solve the library example from the preparation web page.



Updating or accumulating?

How would you keep track of the balance of a bank account?
Two ideas:

> updating a balance attribute
> saving all transactions, and then calculate the balance each time

Saving the transactions allows us to track and explain the current state - it’s
called Event Sourcing, and is becoming increasingly popular

When we update a single attribute, we need to make sure no one else updates it
at the same time

Adding a new transaction requires less locking



