N

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HOGSKOLA | PRESENTED 2025-05-16

MASTER THESIS An Evaluation of Approaches to Code Formatting

A Case Study on the Cypher Query Language
STUDENTS Tomas Nyberg, Simon Thuresson

SUPERVISORS Emma Soderberg (LTH), Oskar Damkjaer (Neo4j)

EXAMINER Gorel Hedin (LTH)

How to write a code formatter

POPULAR SCIENCE SYNOPSIS Tomas Nyberg, Simon Thuresson

A code formatter is an essential tool for every developer, which makes it all the more
frustrating when a language like Cypher, the language used with the Neo4;j database,
does not have one. In our thesis, we implement a formatter for Cypher and evaluate

the best approach to do so.

A code formatter is a tool that makes code more
readable by fixing its white space, as shown in
the example. Many developers consider it a must-
have tool in a their tool belt. So when such a
tool is missing, a demand for implementing one
arises. But implementing a formatter is not as
straightforward as you might think.

// Before

match (n) where n.age
n.name

// After

MATCH (n)

WHERE n.age > 25

RETURN n.name

>25 return

Our thesis evaluates three different approaches
to implementing a formatter for Cypher, which is,
curiously, missing a formatter, despite being used
by the world’s most popular graph database. In
addition to providing guidelines for how to imple-
ment a formatter, we provide a complete formatter
for Cypher available open source. Moreover, we
complement Cypher’s currently ambiguous style
guide with additional formatting rules.

The three approaches were pretty printing,
optimization-based, and layout-based formatting.
Each approach was assessed by output quality,
performance, and maintainability. To support our

development and enhancement of the style guide,
we conducted a survey on Cypher styling prefer-
ences, and gathered user feedback.

After implementing all three approaches, we
concluded that the pretty printer approach is by
far the easiest to implement, and its performance
is great. However, the output quality is very
poor, as it does not try to keep the line width
within a certain limit, which is crucial for read-
ability. Because of this, the competition of being
the best approach goes down to layout-based and
optimization-based. The layout-based approach
wins over the optimization-based approach in all
three areas we evaluate.

We justify the win, first, by the fact that the
user feedback and user survey showed that the
layout-based had the best output quality. Second,
it relies on a much simpler algorithm, which makes
it faster. Third, we also found the layout-based
approach to be much easier to implement and
maintain, partly because it has fewer lines of code,
roughly 200 versus 450. As a result of layout-
based approach win over both optimization-based
and pretty printing, we conclude that it is by far
the best approach for Cypher, and likely also for
other languages.

