
DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2016-04-28

MASTER THESIS Enhancing Function Matching in Binary Code with Machine Learning Models
STUDENT Valentin Haara
SUPERVISORS Marcus Klang (LTH), Martin Ring, Samir Jasarevic, Philipp Gmaehle (Bosch)
EXAMINER Jonas Skeppstedt (LTH)

Finding out what is under the hood

POPULAR SCIENCE SYNOPSIS Valentin Haara

We have all used computer programs. Some that we are aware of; programs on a
laptop and the apps on our smart phones. What many of us don’t realise is that we
also use computer programs when we drive a car or unlock our front door with a key
card. What goes on in these programs and do we need to know?

As consumers, no, we don’t need to know. But
the manufacturers and/or the distributors of the
products have a responsibility to know, in order
to keep their products and merchandise safe. You
may have heard of vulnerabilities in software. Vul-
nerabilities are sections of code that have proved
to be an easy point of attack for hackers.

When computer programs are written, they
may in part be assembled from already existing
pieces of code from so called libraries - just like
using existing screws and nuts instead of redesign-
ing them for every new product. Of course, pro-
grammers strive to not include any vulnerabilities
in their code, but what about when the vulnera-
bility is discovered after it is already included in
many programs. How should the manufacturers
know what products include the newly discovered
vulnerabilities?

Today it is common to keep a list of the li-
braries and other software components that are
included in a program, a Software Bill of Materials
(SBOM). Still, not all programs have an SBOM,
especially not older ones. Furthermore, manufac-
turers may not have access to the SBOM of pro-
grams from subcontractors, but they still have a
responsibility towards their customers.

In this thesis I have taken steps towards creating
a tool that can tell if there are any vulnerabilities

in a computer program. There are several exist-
ing tools that can create an SBOM and look for
vulnerabilities in the source code. This is the raw
code that the programmer writes. But the source
code is only a computer program after it has been
compiled, which means that it is translated, in
several steps, from something a human can read
to something a machine can read, and packaged
in to a neat file.

What’s new is that we attempt to find vulnera-
bilities in the program instead of the source code.
For that a backwards translator, a decompiler, is
needed. The backwards translator cannot find the
original source code, no more than we can trans-
late a book in to a foreign language and back and
expect the same wording to come out. Instead,
we use backward translation of many programs in
a program database to train a machine learning
model. That means the model goes through all the
translations and gets an idea of what is most sig-
nificant to each program. Then we give the model
the backward translation of our subject program
and the model can tell us if it has a lot in common
with any of the programs in the database.

This tool can then be used to find out what
libraries was used when the program was created
and thus find out if it contains any libraries with
known vulnerabilities.

