
INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-09

EXAMENSARBETE Database loading strategies for an in-memory cache in Java
STUDENTER Ivar Henckel, David Söderberg
HANDLEDARE Alma Orucevic-Alagic (LTH), Inger Klintmalm (Nasdaq)
EXAMINATOR Jonas Skeppstedt (LTH)

Loading data into an in-memory cache,
the choice of being full, lazy, or
asynchronous

POPULÄRVETENSKAPLIG SAMMANFATTNING Ivar Henckel, David Söderberg

Slow database loading can be a nuisance, causing unresponsive programs and irritated
customers. In our thesis, we investigate different strategies to load data into a cache
efficiently. We propose new implementations, some of which manage to decrease the
inconvenience of data loading.

In the field of computer science databases are com-
monly used as a means to effectively store and
fetch data. Although databases are optimized for
fetching data with the high performance there is
still a cost for each load, especially with a huge
amount of data. To mitigate this cost caches can
be used to temporarily store previously accessed
data in a location that is faster to access.

In this thesis, we investigated different strate-
gies to load data into the cache. The original
cache implementation at the case company loaded
all of the data into the cache at startup, called
a full load. This meant that startup time would
increase which could be a problem, especially if
a server crashes during business hours and every-
thing needs to be quickly restarted and restored.

One alternative solution is to load data into the
cache lazily. Lazy loading means that no load is
done until the data is used in the program. This
will move the cost of loading from startup to run-
time while also removing the cost of fetching data
that is never used. A third option is to utilize par-
allelism and load data from separate threads while
the main thread can continue without having to
wait.

Three solutions were implemented, two of which

used lazy loading, and the third used parallelism.
These implementations were compared to the orig-
inal full load solution in experiments. It was found
that all three implementations decreased startup
time but impacted the run-time request latency
in different ways. Additionally, all of our so-
lutions added a higher level of complexity to a
varying degree, compared to the full load solu-
tion. One of the lazy loading implementations was
shown to be inefficient. This solution relied heav-
ily on a higher level framework meaning that we
as developers had less control over the details in
the database operations. The second lazy load-
ing solution worked efficiently, serving its purpose
to reduce startup time but slightly increase run-
time latency as expected. Our implementation us-
ing parallelism was shown to be efficient both at
startup and run-time, but it also adds the most
complexity.

