
Applied mechatronics

More on C programming

Sven Gestegård Robertz
sven.robertz@cs.lth.se

Department of Computer Science, Lund University

2020

sven.robertz@cs.lth.se

Outline

1 Pointers and structs

2 On number representation
Hexadecimal and binary representation

3 More on bitwise operators
Masking and shifting

4 Macros

Pointers

I A pointer is a variable containing the address of a variable
I Syntax

I in declarations
I prefix * means “is pointer to”

int *x; // x is a pointer -to-int

I in expressions
I prefix * means “contents of”

int i = *x; // i gets the value x points to

I prefix & means “address of”

int *y = &i; // y points to the variable i

Pointers and structs More on C programming 2/27

Function calls

I call-by-value: the value of the argument is copied
void f(int x) {

printf("x = %d\n",x);
x += 10;
printf("x = %d\n",x);

}

I x is an int variable: a copy of the argument
I The change to x does not affect the value in the caller

I call by reference: a pointer to a variable is passed
void f(int *x) {

printf("x = %d\n",*x);
*x += 10;
printf("x = %d\n",*x);

}

I x is a pointer to an int variable
I The change to *x changes the value in the caller

Pointers and structs More on C programming 3/27

Structures (structs)

I Structured data, like Java objects without methods
I Useful for storing a set of variables that belong together
I Example: 3D point

struct 3dpoint {
int x;
int y;
int z;

};

I Suggested idiom:
I Allocate structs on the stack, typically in main()

I NB! difference from Java: structs can be
local variables and passed by value

I Pass a pointer to the struct to other functions
(call by reference)

Pointers and structs More on C programming 4/27

Struct example

struct 3dpoint {
int x;
int y;
int z;

};

void myfunction(struct 3dpoint *p)
{

int px = p->x;
int py = p->y;
int pz = p->z;

printf("%u,%u, %u\n",px,py,pz);
}

int main()
{

struct 3dpoint mypoint;

mypoint.x=10;
mypoint.y=20;
mypoint.z=30;

myfunction(&mypoint);
}

Pointers and structs More on C programming 5/27

Structs, summary

I declaration and stack allocation
struct 3dpoint mypoint;

I struct member access (when mypoint is a variable)
mypoint.x

I function with call-by-reference (pointer) parameter
void myfunction(struct 3dpoint *p);

I struct member access through pointer
p->x

I &: addressof – get a pointer to a variable
&mypoint;

Pointers and structs More on C programming 6/27

Structures (structs)
suggested programming idiom

I Allocate on the stack, typically in main()
I declare in a scope with longer lifetime than all uses
I returning a pointer to a local variable gives undefined

behaviour
I Pass a pointer to the struct (call by reference)

I Use the address of-operator (&)
I Note how to access fields

myStruct.x or myPointer ->x

I Call by reference can also be used for primitive type
parameters to allow a function to change its arguments
(but don’t overuse it)

Pointers and structs More on C programming 7/27

Representation of numbers
Positional number systems

I The decimal system: multiples of 10. (“Base 10”)
Example : 150210 = 1 · 103 + 5 · 102 + 0 · 101 + 2 · 100

I base 2: binary digits: {0, 1}
Example : = 11012 = 1 · 23 + 1 · 22 + 1 · 20 = 13

I base 16: hexadecimal digits: {0 . . . 9, a . . . f}
Example : 0x73 = 7316 = 7 ∗ 161 +3 ∗ 160 = 112+ 3 = 115

On number representation : Hexadecimal and binary representation More on C programming 8/27

Convert to hexadecimal from binary

Convert 0101 11002 to hex:

bits 0 . . . 3 : 11002 = 0 · 20 + 0 · 21 + 1 · 22 + 1 · 23 =
= 1210 = c16

bits 4 . . . 7 : 01012 = 1 · 24 + 0 · 25 + 1 · 26 + 0 · 27 =
= 16 + 64 = 5 · 16 = 5016

which gives the result (in hex) : 50 + c = 5c (= 9210)

Observation:
I Each hexadecimal digit corresponds to 4 bits
I One byte is two 4 bit “nibbles”, i.e., hex digits

On number representation : Hexadecimal and binary representation More on C programming 9/27

Hexadecimal to binary

Convert 5a (0x5a) to binary:

I the value of each nibble can be calculated independently
I i.e., you only need to use the values {1, 2, 4, 8} for each

hexadecimal digit regardless of how big the number is

high nibble: 5 = 4 + 1 = 01012
low nibble: a = 8 + 2 = 10102

which gives the result: 5a = 0101 1010

On number representation : Hexadecimal and binary representation More on C programming 10/27

Representation of numbers

I Binary (base 2) and hexadecimal (base 16) representations are
more convenient than decimal for doing bit operations

I In binary, each bit is directly represented
I In hex, each digit corresponds to 4 bits (a “nibble”)
I Converting to/from decimal is tedious; there is no simple way

to find the value(s) of a (set of) bit(s)

On number representation : Hexadecimal and binary representation More on C programming 11/27

Constants in C and Java

I Binary
I digits: 0 1
I constants in gcc and Java 7 are prefixed by 0b

e.g., 0b0001101011110100
I Hexadecimal

I digits: 0 1 2 3 4 5 6 7 8 9 a b c d e f
I constants in C and Java are prefixed by 0x

e.g., 0x1af4

Hexadecimal notation is much more readable

On number representation : Hexadecimal and binary representation More on C programming 12/27

Bitwise operators

I Bitwise operators evaluate to a number
I Works on the binary representation of the operand(s)
I Example: bitwise not (complement)

I ˜x - in the binary representation of x, invert each bit

unsigned char x,y; // 8 bits long
x = 10;
y = ~x;

x = 10 = 0x0a = 0000 1010

y = 1111 0101 = 0xf5 = 245

More on bitwise operators More on C programming 13/27

Bitwise operators

˜x - not
I the result is x with each bit inverted

x & y - and
I the result has a 1 (one) in each bit position

where the bit value of both x and y ==1

x | y - (inclusive) or
I the result has a 1 (one) in each bit position

where the bit value of either x or y ==1

x ˆ y - exclusive or
I the result has a 1 (one) in each bit position

where the bit value of exactly one of x or y ==1

More on bitwise operators More on C programming 14/27

Bitwise operators, examples

˜ 1111 0101

= 0000 1010

1110 0111
& 0111 1100

= 0110 0100

0010 1010
| 1100 0001

= 1110 1011

I & is used for bit masking and for clearing bits
I | is used for setting bits
I ˆ is used for toggling bits

More on bitwise operators More on C programming 15/27

Masking and setting bits

Example:
A register : unsigned char ctrl_reg;

A bitmask : FLAGS (e.g., 0111 0000 == 0x70)
Named bits : ENABLE_X (e.g., 0001 0000 == 0x10), ENABLE_Y (0x20), . . .

Clear the bits specified by FLAGS and set individual bits.
// clear FLAGS using bitmask
ctrl_reg = ctrl_reg & ~FLAGS;
// set individual bits
ctrl_reg = ctrl_reg | ENABLE_X | ENABLE_Y;

Can also be written:
ctrl_reg &= ~FLAGS;
ctrl_reg |= ENABLE_X | ENABLE_Y;

More on bitwise operators : Masking and shifting More on C programming 16/27

Shift operators

I In addition to the bitwise logical operators, C and Java has
operators for shifting the bits in a number

I x << n shifts x n steps to the left
I x >> n shifts x n steps to the right
I Example:

I 2 << 2 == 8 (0b0010 << 2 == 0b1000)

I Shifting can be viewed as multiplication or division
by powers of two.

More on bitwise operators : Masking and shifting More on C programming 17/27

Masking and shifting

I Low level drivers often access hardware registers where a
single, or a few, bits control something

I Example: motor servo control word (16 bits)
- - - posref[8] velref[4] enable

I Reading and writing posref:
unsigned short cr;// temporary for register value
unsigned char pr; // temporary for posRef value

cr = read_ctrl_reg ();

pr = (cr >> 5) & 0xff; //shift and mask
pr = pr + 10; //new value for posRef
cr = cr & ~(0 xff << 5); //clear posRef bits
cr = cr | (pr << 5); // update poRef bits in register value

write_ctrl_reg(cr);

More on bitwise operators : Masking and shifting More on C programming 18/27

Masking and shifting
Use named constants

I Avoid using integer literals (like 0xff) in your code
I Use macros or constant variables
I Example: accessing posref in control word (16 bits)

- - - posref[8] velref[4] enable

#define POSREF_MASK 0xff
#define POSREF_OFFSET 5
#define POSREF_BITS (POSREF_MASK << POSREF_OFFSET)

unsigned short cr;// temporary for register value
unsigned char pr; // temporary for posRef value

cr = read_ctrl_reg ();

pr = (cr >> POSREF_OFFSET) & POSREF_MASK; //shift and mask
pr = pr + 10; //new value for posRef
cr = cr & ~POSREF_BITS; //clear posRef bits
cr = cr | (pr << POSREF_OFFSET); //new value for register

write_ctrl_reg(cr);

More on bitwise operators : Masking and shifting More on C programming 19/27

C preprocessor macros

I A macro is a fragment of text that has been given a name
I The C preprocessor replaces every occurrence of a name with

its contents
I Using macros for constants makes it easier (and safer) to

change them, compared to writing the same literal at many
places

I Macros can be used to select between different variants
(#if #ifdef #ifndef #else)

I Macros can be given a value on the compiler command line
(gcc -DMYMACRO=value ...)

I Macros can have parameters, but it is not always trivial what
that means. Useful for simple things.

Macros More on C programming 20/27

C preprocessor macros
Example: include guards

I Each declaration must appear exactly once
I A header file may be included several times (e.g., via other

header files)
I Solution: include guards. Example: in the file example.h

#ifndef EXAMPLE_H
#define EXAMPLE_H

struct example_data{
char* buf;
size_t size;
int something;

};
int example_func1(struct example_data *);
int example_func2 ();

#endif

Macros More on C programming 21/27

C preprocessor macros
Examples: named constant

Source code:
#define BUFSIZE 80

char buf[BUFSIZE];
...

read(fd, buf , BUFSIZE);

After preprocessor:

char buf [80];
...

read(fd, buf , 80);

Macros More on C programming 22/27

C preprocessor macros
Examples: debugprint.h

#ifdef DEBUG

#include <stdio.h>
#define debug_s(s) printf("DEBUG: %s\n", s)
#define debug_d(s,d) printf("DEBUG: %s%d\n", s, d)
#define debug_x(s,d) printf("DEBUG: %s%x\n", s, d)

#else

#define debug_s(s)
#define debug_d(s,d)
#define debug_x(s,d)

#endif
}

Macros More on C programming 23/27

#include "debugprint.h"
#include <stdio.h>
int main()
{

debug_s("Testing macros");
int sum = 0;
int i;
debug_s("summing multiples of 20");
for(i=0; i <128; i+=20){

debug_x("i=0x",i);
sum += i;
debug_d("sum=",sum);
debug_x("sum=0x",sum);

}
printf("Sum is: %d\n", sum);
return 0;

}

Macros More on C programming 24/27

With DEBUG defined, the code becomes
int main()
{

printf("DEBUG: %s\n", "Testing macros");

int sum = 0;
int i;
printf("DEBUG: %s\n", "summing multiples of 20");
for(i=0; i <128; i+=20){

printf("DEBUG: %s%d\n", "i=", i);
printf("DEBUG: %s%x\n", "i=0x", i);
sum += i;
printf("DEBUG: %s%d\n", "sum=", sum);
printf("DEBUG: %s%x\n", "sum=0x", sum);

}
printf("Sum is: %d\n", sum);
return 0;

}

Macros More on C programming 25/27

If DEBUG is not defined, the code becomes
int main()
{

;

int sum = 0;
int i;
;
for(i=0; i <128; i+=20){

;
;
sum += i;
;
;

}
printf("Sum is: %d\n", sum);
return 0;

}

Macros More on C programming 26/27

#ifndef BAR
#define BAR 2
#endif
int main()
{
#if BAR == 1
printf("BAR is one\n");
#elif BAR ==3
printf("BAR is three\n");
#else
printf("I don’t care about bar if it’s %d\n", BAR);
#endif
return 0;
}

Compiled with gcc -o macros macros.c , running it prints
I don’t care about bar if it’s 2

Compiled with gcc -o macros -DBAR=3 macros.c , running it prints
BAR is three

Macros More on C programming 27/27

	Pointers and structs
	On number representation
	Hexadecimal and binary representation

	More on bitwise operators
	Masking and shifting

	Macros

