
Applied mechatronics

Programming refresher and intro to C programming

Sven Gestegård Robertz
sven.robertz@cs.lth.se

Department of Computer Science, Lund University

2020

sven.robertz@cs.lth.se

Outline

1 C programming intro

2 Structuring programs

Programming environment

I Compared to the introductory Java courses
I We recommend (and support) writing the host (PC) programs

in C rather than Java
I the embedded (AVR) programs will be written in C
I using the same language may simplify things
I console and serial port I/O is more straight-forward in C

I We provide no programming environment (for host), instead
1 Edit source code in any text editor
2 compile the source file(s) from the command line
3 run the generated executable

I You are free to use whatever you’re familiar with

C programming intro Programming refresher and intro to C programming 2/26

Compared to Java, C

I is not object-oriented: no classes
I has declarations in header (.h) files and code in .c files

I separate compilation
I C files may include .h files (similar to Java import clauses)
I Declarations in header files roughly corresponds to the public

interface of a class in Java.
I is not a safe language (no runtime safety net)

I pointers instead of references
I be careful with array indices and type casts

I has no automatic memory management (GC)
I Be careful with (avoid) dynamic memory allocation

C programming intro Programming refresher and intro to C programming 3/26

Hello world

Java:
class Hello {

public static void main(String args []){
System.out.print ln("Hello , world!");

}
}

C:
#include <stdio.h>

int main()
{

fprintf(stdout , "Hello , world!\n");
return 0;

}

To print on stdout. there is a separate
function, printf:

printf("Hello , world!");

C programming intro Programming refresher and intro to C programming 4/26

Compiling and running
from the command line

I Edit the source file hello.c

I From the (cygwin) command line
1 go to the directory where the source file is (e.g. src)

> cd src

2 compile the source code

> gcc -Wall -o hello hello.c

3 run the generated executable

> ./ hello

or

> ./ hello.exe

Set output file name to hello (defaults to a.out or a.exe)
turn on compiler warnings

C programming intro Programming refresher and intro to C programming 5/26

Paths in Cygwin and Windows

I The cygwin /home directory is in the windows directory
C:\WP\cygwin\home

I The windows drives are mounted under /cygdrive.
E.g., C: is accessible in cygwin at /cygdrive/c

I NB! Cygwin and Windows use different path separators

C programming intro Programming refresher and intro to C programming 6/26

Programming recap, C examples

I C syntax similar to Java
I Control flow

I alternatives: if statments
I repetition: for and while statements

I Boolean expressions
I Array operations
I Terminal I/O (console, serial port)

C programming intro Programming refresher and intro to C programming 7/26

if statements

if(condition) {
then_statements ...

} else {
else_statements ...

}

I else branch is optional
I condition is any integer (more on that)

C programming intro Programming refresher and intro to C programming 8/26

while statements

while(condition) {
statements ...

}

do {
statements ...

} while(condition);

Like in Java

C programming intro Programming refresher and intro to C programming 9/26

for statements

for(init; condition; increment) {
statements ...

}

Example:
int i; // NB! declaration outside of for statement
for(i=0; i < 10; ++i) {

printf("%d ", i);
}

will print 0 1 2 3 4 5 6 7 8 9

C programming intro Programming refresher and intro to C programming 10/26

printf???

I the C standard I/O library has functions for formatted output
(and input)

I to use: #include <stdio.h>

I output: printf(format, arguments...) where format is a
string that may contain placeholders for the formatted values
of the following arguments (in order of appearance).

I Example:
int x = 10;
float y = 12.8;
printf("x = %d, y = %f\n", x, y);

More on this later

C programming intro Programming refresher and intro to C programming 11/26

printf() format conversions

character argument type; convert to
d, i signed decimal notation
x unsigned hexadecimal notation (w/o leading 0x)
u unsigned decimal notation
c single character (converted to char)
f double in decimal notation [-]mmm.dddd
s string (char *)
I the conversion characters may be preceeded with arguments

for minimum width and/or precision. E.g.,
I \%4.2f : min 4 chars wide, 2 decimal positions
I \%.8x : print (at least) 8 digits, padding with leading zeroes

I . . . and much more, consult a language reference

C programming intro Programming refresher and intro to C programming 12/26

Boolean and bitwise operators

I Boolean operators (evaluate to true or false)
I ! – not
I && – and
I || – or

I Bitwise operators (evaluate to a number)
I ~ – not (bitwise complement)
I & – and
I | – or
I ^ – xor (exclusive or)

C programming intro Programming refresher and intro to C programming 13/26

Boolean expressions

I Boolean expressions
I evaluate to true or false
I same syntax as in Java but

I there is no boolean type in C
I instead, any integer (and hence, any type) can be used
I zero is interpreted as false
I non-zero is interpreted as true

I Example: infinite loop

while (1) { // corresponds to while(true) in Java
printf(".");

}

C programming intro Programming refresher and intro to C programming 14/26

Primitive data types

I Similar to Java, but
I char: typically 8 bits (= 1 byte, by definition)
I unsigned integer types available
I The common ones

I char unsigned char
I short unsigned short
I int unsigned int
I long unsigned long
I float
I double

I Type definitions for special purposes
I size_t, ssize_t, uint8, uint16, int8, int16

C programming intro Programming refresher and intro to C programming 15/26

unsigned integer types

E.g, unsigned char, unsigned short, unsigned int
I Avoids sign extension

signed char x = -1; // bit pattern 0xff
unsigned char y = 255; // bit pattern 0xff
int ix = x; // ix = -1 , bit pattern 0xffffffff
int iy = y; // iy = 255 , bit pattern 0x000000ff

I Always use unsigned types when you care about a bit pattern,
e.g., bit operations on HW registers etc.

I NB! On signed types, >> is implementation defined. Typically
preserves the sign by shifting in ones (instead of zeroes) if the
highest bit is 1 (i.e., a negative value). i

I For char, signed or unsigned must be specified (it is
implementation defined if char is signed or unsigned), for the
other types the default is signed (i.e., int is signed int).

C programming intro Programming refresher and intro to C programming 16/26

arrays and strings

I arrays in C are similar to arrays of primitive types in Java, but
I can be allocated on the stack (or heap, but avoid that)
I have no length attribute or bounds checking

I a string in C is really a pointer to a the first character of a
char array.

C programming intro Programming refresher and intro to C programming 17/26

Arrays

I A sequence of values of the same type (homogeneous
sequence)

I Similar to Java for primitive types
I but no safety net – difference from Java
I an array does not know its size – the programmer’s

responsibility
I Can contain elements of any type

I Java arrays can only contain references (or primitive types)

I Can be a local variable (Difference from Java)
I Is declared T a[size]; (Difference from Java)

I The size must be a (compile-time) constant. (C99 has VLAs)

C programming intro Programming refresher and intro to C programming 18/26

Arrays
Representation in memory

The elements of an array can be of any type
I Java: only primitive types or a reference to an object
I C: an object or a pointer

Example: array of Point
struct Point{

int x;
int y;

};

struct Point ps[3];

y:
x:

x:
y:
x:
y:

ps:
ps[0]

ps[1]

ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

C programming intro Programming refresher and intro to C programming 19/26

Data types
C strings

I C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

s: ’H’ ’e’ ’l’ ’l’ ’o’ ’\0’

NB! A string literal is a C-style string (not a std::string)
The type of "Hello" is const char[6].

C programming intro Programming refresher and intro to C programming 20/26

arrays and strings, examples

Integer array:
int a[6];
int i;

for(i=0; i<6; i++) {
a[i] = 2 * (i+1);

}

for(i=0; i<6; i++) {
printf("%d ", a[i]);

}

string (char array):
char s[] = "hej";
int i;

for(i=0; i<3; i++) {
printf("%c\n", s[i]);

}
s[1] = ’o’;
for(i=0; i<3; i++) {

printf("%c\n", s[i]);
}

NB! char s[], not char *s to
make it mutable

C programming intro Programming refresher and intro to C programming 21/26

C strings are not like in Java

I null-terminated: the end of the string is marked by the
character null (i.e., the integer value zero)

I no length information (i.e., no safety net)
I copy, concatenate etc using library functions

I get length by counting the number of chars from the start to
the first null character.

I snprintf is a useful string builder
I like printf, but writes to a char[]
I make sure destination buffer is big enough

C programming intro Programming refresher and intro to C programming 22/26

Array operations

I Syntax like in Java
I Example:

int sum(int numbers[], int len) {
int result =0;
int i;
for(i=0; i<len; i++) {

result = result + numbers[i];
}
return result;

}

I Unlike in Java, C does not do range checking, so
the programmer must keep track of the length of arrays and
avoid accessing past the end

C programming intro Programming refresher and intro to C programming 23/26

Suggested array exercise

I read a string (char[] = char*) from the terminal
Example of raw input using fgets:

char buf[BUFSIZE]; // BUFSIZE -1 chars + terminating null
char* res = fgets(buf , BUFSIZE , stdin);
if(!res) { // an error occured ...}

I print it
I print it backwards
I encode it in “rövarspråket”

I for each consonant C, replace C with CoC
I mekatronik → momekokatotrorononikok

C programming intro Programming refresher and intro to C programming 24/26

A word on coding style

I Factor your code into small functions
I One function should do only one thing
I Rule of thumb: a function should

I be at most 24 lines long,
I have at most three block levels, and
I have at most five local variables.
I If not, split into smaller functions

I Only use stack allocation
I Allocate buffers etc. in the main function

I I.e., (rule of thumb):
I The main function should only consist of

variable declarations and (a few) function calls

Structuring programs Programming refresher and intro to C programming 25/26

A typical main function

I Allocate storage
I Do initialization
I Call functions that do the main work
I Cleanup (deallocate/release resources)

#include "myproj.h"
#define BUFSIZE 100

int main()
{

unsigned char buffer[BUFSIZE];
FILE *f;
f = init ();
do_work(f, buffer , BUFSIZE);
cleanup(f);

return 0;
}

Structuring programs Programming refresher and intro to C programming 26/26

Next lecture

I Pointers and structs
I Number representation
I Bitwise operators

Structuring programs Programming refresher and intro to C programming 27/26

	C programming intro
	Structuring programs

