
Applied mechatronics

Low-level programming

Sven Gestegård Robertz
sven.robertz@cs.lth.se

Department of Computer Science, Lund University

2020

sven.robertz@cs.lth.se

Outline

1 Low-level programming
Bitwise operators
Byte order
Masking and shifting

Boolean and bitwise operators

I Boolean operators (evaluate to true or false)
! not

&& and
|| or

I Bitwise operators (evaluate to a number)

˜ not
& and
| or

ˆ exclusive or (xor)

Low-level programming Low-level programming 2/9

Bitwise operators, examples

˜ 1111 0101

= 0000 1010

1110 0111
& 0111 1100

= 0110 0100

0010 1010
| 1100 0001

= 1110 1011

I & is used for bit masking and for clearing bits
I | is used for setting bits
I ˆ is used for toggling bits

Low-level programming : Bitwise operators Low-level programming 3/9

Masking and setting bits

Example:
A register : unsigned char ctrl_reg;

A bitmask : FLAGS (e.g., 0111 0000 == 0x70)
Named bits : ENABLE_X (e.g., 0001 0000 == 0x10), ENABLE_Y (0x20), . . .

Clear the bits specified by FLAGS and set individual bits.
// clear FLAGS using bitmask
ctrl_reg = ctrl_reg & ~FLAGS;
// set individual bits
ctrl_reg = ctrl_reg | ENABLE_X | ENABLE_Y;

Can also be written:
ctrl_reg &= ~FLAGS;
ctrl_reg |= ENABLE_X | ENABLE_Y;

Low-level programming : Bitwise operators Low-level programming 4/9

Shift operators

I In addition to the bitwise logical operators, C and Java has
operators for shifting the bits in a number

I x << n shifts x n steps to the left
I x >> n shifts x n steps to the right
I Example:

I 2 << 2 == 8 (0b0010 << 2 == 0b1000)

I Shifting can be viewed as multiplication or division by powers
of two.

Low-level programming : Masking and shifting Low-level programming 5/9

Masking and shifting

I Low level drivers often access hardware registers where a
single, or a few, bits control something

I Example: motor servo control word (16 bits)
- - - posref[8] velref[4] enable
I Reading and writing posref:

#define POS_OFF 5
#define POS_MSK 0xff
unsigned short cr;// temporary for register value
unsigned char pr; // temporary for posRef value

cr= read_ctrl_reg ();

pr = (cr >> POS_OFF) & POS_MSK; //shift and mask
cr &= ~(POS_MSK << POS_OFF);//clear posRef bits
pr = pr + 10;
cr |= (pr << POS_OFF); //new value for register

write_ctrl_reg(cr);

Low-level programming : Masking and shifting Low-level programming 6/9

Byte order (Endianness)

I Data types larger than one byte are often represented (in
memory) and sent (on communication channels) as a
sequence of bytes

I For data types larger than 8 bits
I is the most significant byte sent first (big endian)
I or last (little endian)

I The byte order is different in different architectures/systems
I Don’t confuse with bit order on serial lines

Low-level programming : Byte order Low-level programming 7/9

Byte order, example

I Example: the number 1000 as a 16 bit integer (== 0x03E8)
Big endian: 0x03, 0xE8 (“network”, IP, Java)

Little endian: 0xE8, 0x03 (CANopen, Intel)
I Conversion is done by mask & shift.

Be careful with sign extension (use unsigned in C).
I The same applies to values in memory

Low-level programming : Byte order Low-level programming 8/9

Example: Little endian memory

I “First” byte means lowest address
I Example: *a = 0x0A0B0C0D;

Low-level programming : Byte order Low-level programming 9/9

	Low-level programming
	Bitwise operators
	Byte order
	Masking and shifting

