
EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 2DYNAMIC PROGRAM ANALYSIS 2

Christoph Reichenbach

Welcome back!

▶ No quiz 12 or 14
▶ Office hours tomorrow from 15:30–16:30
▶ Oral exams 17th and 18th of March, registration opens on

Friday (Moodle)
▶ lab 4 on Thursday

▶ Short lab
▶ e-mail results to Christoph
▶ Make sure you have podman or docker installed

▶ Catch-up lab next Tuesday in E:1407 from 13:15–15:00
▶ Final chance to present labs 2 and 3

Questions?

2 / 45

Execution Traces
Source programSource program

(0)fun f(arg : int) = {
(1) return arg + 1;
(2)}
(3)fun g(x : int) = {
(4) return x - 1;
(5)}

(3)fun g(x : int) {
(4) return x - 1;
(5)}

(6) fun main() = {
(7) var x := f(1);
(8) var y := f(100);
(9) while x != y {
(10) x := x + 1;
(11) y -= x;
(12) }
(13)}

TraceTrace

6
7
0
1
8
0
1
9
10
11
9
10
11
9
10
11
... 3 / 45

Probing
MeasurementsMeasurements

arg 1
arg 100
y 98
y 94
y 89
y 83
y 76
y 68
y 59
y 49
y 38
y 26
y 13

(0)fun f(arg : int) = {
(1) return arg + 1;
(2)}
(6) fun main() = {
(7) var x := f(1);
(8) var y := f(100);
(9) while x != y {
(10) x := x + 1;
(11) y -= x;
(12) }
(13)}

▶ Measure behavior with Probes
▶ May need Instrumentation in program / runtime / hardware

▶ Probes triggered at certain Events
▶ Measure specific Characteristics
▶ Collect Samples of individual Measurements

log(arg)

log(y)

Sam
ple(arg)

Sam
ple(y)

4 / 45

General Data Collection

▶ Probes: How we measure
▶ Events: When we measure
▶ Characteristics: What we measure
▶ Measurements: Individual observations
▶ Samples: Collections of measurements

5 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Probes

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

Operating
System

Hardware

program.py

python3.9

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

7 / 45

Events

▶ Subroutine call
▶ Subroutine return
▶ Memory access (read or write or either)
▶ System call
▶ Page fault

. . .

8 / 45

Characteristics

▶ Value: What is the type / numeric value / . . . ?
▶ Counts: How often does this event happen?
▶ Wallclock times: How long does one event take to finish,

end-to-end?
Derived properties:
▶ Frequencies: How often does this happen

▶ Per run
▶ Per time interval
▶ Per occurrence of another event

▶ Relative execution times: How long does this take
▶ As fraction of the total run-time
▶ As fraction of some surrounding event

9 / 45

Probes

▶ Probes: devices for measuring property of interest
▶ Software probe: code artefact
▶ Hardware probe: physical device

▶ CPU, OS kernel etc. come with probes preinstalled
▶ Generally need to be flipped on

▶ Want to probe custom location / property:
▶ Instrumentation: insert new probes

10 / 45

Gathering Dynamic Data

▶ Instrumentation and Software Probes
▶ Simulation
▶ Hardware Probes

11 / 45

Gathering Dynamic Data: Java

Foo.java Foo.class

Dynamic
Classloader

JVM Run-
time

Compiler

FooInstr.classFooInstr.java

JVM Run-
time
Instrumented

Debug
Inter-
face

▶ Source-level instrumentation
▶ Binary-level instrumentation
▶ Load-time instrumentation

(Performed by classloader)
▶ Runtime System instrumentation
▶ Debug APIs

12 / 45

Comparison of Approaches
▶ Source-level instrumentation:
+ Flexible
– Will miss events for which we lack source code
– Watch out for: control flow, name capture

▶ Binary-level instrumentation:
+ Flexible
– Must handle machine code encoding/decoding, hardware-dependent
– Watch out for: run-time code generation (JITs etc.), dynamic loading

▶ Load-time instrumentation:
▶ “Add-on” for source-level / binary-level instrumentation

+ Can handle even unknown code
– Requires run-time support, may clash with custom loaders

▶ Runtime system instrumentation:
▶ Especially for interpreters, JIT-compiled languages

+ Can see “hidden” events (gc, JIT, . . .)
– Labour-intensive and error-prone
– Becomes obsolete quickly as runtime evolves

▶ Debug APIs:
+ Typically easy to use, relatively well-documented
– Limited capabilities 13 / 45

Instrumentation Tools

C/C++ (Linux) Java
Source-Level C preprocessor, DMCE ExtendJ
Binary Level pin, llvm soot, asm, bcel, As-

pectJ, ExtendJ
Load-time ? Classloader, AspectJ

Debug APIs strace JVMTI

▶ Low-level data gathering:
▶ Command line: perf
▶ Time: clock_gettime() / System.nanoTime()
▶ Process statistics: getrusage()
▶ Hardware performance counters: PAPI

14 / 45

Practical Challenges in Instrumentation

▶ Measuring:
▶ Need access to relevant data

(e.g., Java: source code can’t access JIT internal)
▶ May need to insert software probes (measuring device)

▶ Representing (optional):
▶ Store data in memory until it can be emitted (optional)
▶ May use memory, execution time, perturb measurements

▶ Emitting:
▶ Write measurements out for further processing
▶ May use memory, execution time, perturb measurements

15 / 45

Summary

▶ Different instrumentation strategies:
▶ Instrument source code or binaries
▶ Instrument statically or dynamically
▶ Instrument input program or runtime system

▶ Challenges when handling analysis:
▶ In-memory representation of measurements

(for compression or speed)
▶ Emitting measurements

16 / 45

Perturbation
Example challenge: can we use total counts to decide whether
to optimise some function f?
▶ On each method entry: get current time
▶ On each method exit: get time again, update aggregate
▶ Reading timer takes: ∼ 80 cycles
▶ Short f calls may be much faster than 160 cycles

▶ fun f(x) = x + 1 // ca. 0.25 cycles
▶ fun f(x) = x // ca. 0 cycles

▶ Also: measurement needs CPU registers
⇒ may require registers
⇒ may slow down code further

1 GHz CPU: 1 cycle = 10−9s (1 nanosecond / ns)

Measurements perturb our results, slow down execution

17 / 45

Sampling

Alternative to full counts: Sampling
▶ Periodically interrupt program and measure
▶ Problem: how to pick the right period?

1 System events (e.g., GC trigger or ‘safepoint’)
System events may bias results

2 Timer events: periodic intervals
▶ May also bias results for periodic applications
▶ Randomised intervals can avoid bias
▶ Short intervals: perturbation, slowdown
▶ Long intervals: imprecision

18 / 45

Samples and Measurements

Samples are collections of measurements
▶ Bigger samples:

▶ Typically give more precise answers
▶ May take longer to collect

▶ Challenge: representative sampling

0 0.5 1 1.5 2
0

0.5
1

1.5

Carefully choose what and how to sample

19 / 45

Summary

▶ We measure Characteristics of Events
▶ Sample: set of Measurements (of characteristics of events)
▶ Measurements often cause perturbation:

▶ Measuring disturbs characteristics
▶ Not relevant for all measurements
▶ Measuring time: more relevant the smaller our time intervals

get
▶ Can measure by:

▶ Counting: observe every event
▶ Gets all events
▶ Maximum measurement perturbation

▶ Sampling: periodically measure
▶ Misses some events
▶ Reduces perturbation

20 / 45

Presenting Measurements

P1 P2
Mean µ 1,001 0,999
Standard Deviation σ 0,273 0,275 Assuming normal

distribution:

0 0.5 1 1.5 2

0.5

1

1.5

21 / 45

Standard Deviation, Assuming Normal
Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1
µ ± σ

Deviation Chance of actual µ being in interval
σ 68,27%

1,96σ 95,00%
2σ 95,45%

2,58σ 99,00%
3σ 99,73%

22 / 45

How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

0 0,5 1 1,5

P1

P2

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

23 / 45

Box Plots

1st Q 4th QMedian

▶ Split data into 4 Quartiles:
▶ Upper Quartile (1st Q): Largest 25% of measurements
▶ Lower Quartile (4th Q): Smallest 25% of measurements
▶ Median: measured value, middle of sorted list of measurements

▶ Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (IQR)

▶ 1st Q whisker shows largest measured value ≤ 1,5 × IQR
(from box)

▶ 4th Q whister analogously
▶ Remaining outliers are marked

24 / 45

Box plot: example

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

25 / 45

Violin Plots

0.
0

0.
5

1.
0

1.
5

2.
0

1 2

●
●

26 / 45

Summary

▶ We don’t usually know our statistical distribution
▶ There exist statistical methods to work precisely with

confidence intervals, given certain assumptions about the
distribution (not covered here)

▶ Visualising without statistical analysis:
▶ Box Plot

▶ Splits data into quartiles
▶ Highlights points of interest
▶ No assumption about distribution

▶ Violin Plot
▶ Includes Box Plot data
▶ Tries to approximate probability distribution function visually
▶ Can help to identify actual distribution

27 / 45

Gathering Dynamic Data

▶ Instrumentation and Software Probes
▶ Example: Performance profiler

▶ Simulation (or Emulation)
▶ Example: CPU simulator

▶ Hardware Probes
▶ Example: Hardware Performance Counters

28 / 45

Automatic Performance Measurement

▶ [Software Probes] Profiler:
▶ Interrupts program during execution
▶ Examines call stack

▶ [Software Probes] Operating System Perf. Counters:
▶ Count important system events (network accesses etc.)

▶ Simulator:
▶ Simulates CPU/Memory in software
▶ Tries to replicate inner workings of machine
▶ Alternatively: Emulator (= replicate only observable

functionality, not internals)
▶ [Hardware Probes] CPU:

▶ Hardware performance counters count interesting events

29 / 45

Profiler

▶ Measures: which functions are we spending
our time in?

▶ Approach:
▶ Build stack maps
▶ Execute program, interrupt regularly
▶ During interrupt:

▶ Examine program counter
▶ Examine stack

▶ Infer callers from stack contents

Execution Stack
return (old-1)

$fp (old-1)
. . .
. . .

return (old-2)
$fp (old-2)

. . .

Source of inaccuracy: inlined functions don’t track their
caller on call stack

30 / 45

Simulator

RAM

Input
devices CPU Output

devices

Rest of the world

memory.c

input.c cpu.c output.c

Rest of the world

▶ Software simulates hardware components
▶ Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators are
inaccurate in practice

31 / 45

Hardware Performance Counters (1/2)
C

P
U

M
em

or
y

PSp Reg
A

LU
A

LU DSp Reg

IF ID EX MEM WB

L1-Instr L1-Data

L2-Cache

RAM
Performance
Counter
Monitor

Cache miss

Cache miss

Cache miss

Branch prediction

Arithmetic operations

32 / 45

Hardware Performance Counters (2/2)

Special CPU registers:
▶ Count performance events
▶ Registers must be configured to collect specific performance

events
▶ Number of CPU cycles
▶ Number of instructions executed
▶ Number of memory accesses

. . .
▶ #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

33 / 45

Summary

▶ Performance analysis may require detailed dynamic data
▶ Profiler: Probes stack contents at certain intervals
▶ Simulator:

▶ Simulates hardware in software, measures
▶ Tends to be inaccurate

▶ Performance Counters:
▶ Software:

▶ Operating System counts events of interest
▶ Hardware:

▶ Special registers can be configured to measure CPU-level events

34 / 45

Gathering Dynamic Data

▶ Instrumentation and Software Probes
▶ Simulation
▶ Hardware Probes

35 / 45

Generality of Performance
Measurements?

Measured performance properties are valid for. . .
▶ Selected CPU
▶ Selected operating system
▶ Compiler version and configuration
▶ Operating system configuration:

▶ OS setup
(e.g., dynamic scheduler)

▶ Processes running in parallel
. . .

▶ A particular input/output setup
▶ Behaviour of attached devices
▶ Time of day, temperature, air pressure, . . .

▶ CPU configuration (CPU frequency etc.)
. . .

Is that all? 36 / 45

Unexpected Effects

▶ User toddm measures run time 0.6s
▶ User amer measures run time 0.8s
▶ Both measurements are stable
▶ Reason for discrepancy:

▶ Before program start, Linux copies shell environment onto stack
▶ Shell environment contains user name
▶ Program is loaded into different memory addresses

⇒ Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

37 / 45

Unexpected Effects

Mytkowicz, Diwan, Hauswirth, Sweeney: “Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009

38 / 45

Linking Order
Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS’09)
39 / 45

Adaptive Systems
▶ Java program: loop n iterations (x axis) around simple

computation that randomly samples from pre-initialised array
▶ Measurement: 11 runs

▶ Ran each n 11 times, time reported below is last iteration only

●

●

●

●

●
●

●●

●

●

●

● ● ●

1 2 3 4 5 6 7 8 9 10 11

0.
5

1.
0

1.
5

Durchlaufnummer

La
uf

ze
it

Ru
nt

im
e

(s
)

Iteration

Warm-up effect
40 / 45

Warm-Up Effects
▶ Performance varies during initial runs
▶ Eventually reaches steady state
▶ Reason: Adaptive Systems

▶ Hardware:
▶ Cache: Speed up some memory accesses
▶ Branch Prediction: Speed up some jumps
▶ Translation Lookaside Buffer

▶ Software:
▶ Operating System / Page Table
▶ Operating System / Scheduler
▶ Just-in-Time compiler

▶ Understanding performance: what to measure?
▶ Latency: measure first run

Reset system before every run
▶ Throughput: later runs

Discard initial n measurements
41 / 45

Ignored Parameters

▶ Performance affected by subtle effects
▶ Systems developers must “think like researchers” to spot

potential influences

Beware of generalising measurement results!

42 / 45

Summary

▶ Modern computers are complex:
▶ Caches make memory access times hard to predict
▶ Multi-tasking may cause sudden interruptions
▶ CPU frequency scaling changes speed based on temperature

. . .
▶ This makes measurements difficult:

▶ Must carefully consider what assumptions we are making
▶ Must measure repeatedly to gather distribution
▶ Must check for warm-up effects
▶ Must try to understand causes for performance changes

▶ Measurements are often not normally distributed
▶ Mean + Standard Deviation may not describe samples well
▶ If in doubt, use box plots or violin plots

43 / 45

Summary: Dynamic Analysis

▶ Collecting Measurements of Characteristics at Events via
Probes:
▶ In software, hardware, or indirectly via simulation

▶ Applications include:
▶ Purely to observe (program understanding etc.)
▶ Efficiency (JIT compilation etc.)
▶ Prevent undesirable behaviour (Safety, Security)

▶ Sampling to reduce overhead:
▶ Finite set of inputs/workloads, hardware etc.

▶ Some characteristics (esp. performance) influenced by sources
of variability outside of program and program input

▶ Can usually avoid false positives, cannot usually avoid false
negatives

44 / 45

Outlook

▶ Oral exam information on Thursday
▶ Oral exam registration on Friday
▶ Final Lecture: (Mostly) review session– bring your questions!

http://cs.lth.se/edap15

45 / 45

http://cs.lth.se/edap15

