LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 2

Christoph Reichenbach

Welcome back!

» No quiz 12 or 14
» Office hours tomorrow from 15:30-16:30

» Oral exams 17th and 18th of March, registration opens on
Friday (Moodle)

> lab 4 on Thursday

> Short lab
» e-mail results to Christoph
» Make sure you have podman or docker installed

» Catch-up lab next Tuesday in E:1407 from 13:15-15:00
» Final chance to present labs 2 and 3

Questions?

2/45

Execution Traces

Source program Trace
(0)fun f(arg : int) = {

(1) return arg + 1; 6
(2)3 !
(3)fun g(x : int) £ { 1
(4) return x - 1; 8
(5)¥ 0

1
(6) fun main() = { 9
(7) wvar x := £(1); 10
(8) war y := £(100); 11
(9) while x !'=y { 9
(10) X 1= x + 1; 10
(11) y -= x; 11
(12) ¥ 9

B
—

3/45

Probing

[72]
Measurements g
-]

(0)fun f(arg : int) = { 1 S
(1) return arg + 1; Log(arg) 100 }2
(2)} d o)le
(6) fun main() = { 89
(7) var x := £(1); 32 e
(8) var y := £(100); -
(9) while x '=y { 59 2
(10) X 1= x + 1; ;LZ —
11 = x;
Elzg y og())| e

J
(13)}

» Measure behavior with Probes
» May need Instrumentation in program / runtime / hardware

» Probes triggered at certain Events
» Measure specific

» Collect Samples of individual Measurements o

General Data Collection

» Probes: How we measure

» Events: When we measure

» Characteristics: WWhat we measure

» Measurements: Individual observations
» Samples: Collections of measurements

5/45

Probes

Source
Code

Libraries

Operating
System

Hardware

7/45

Probes

program.py
Source
Code

Libraries

Operating
System

Hardware

7/45

Probes

program.py
Source
Code

Libraries

Interpreter
python3.9

Operating
System

Hardware

7/45

Probes

program.py
Source
Code

Libraries

Interpreter
python3.9

Operating
System

Hardware

7/45

Probes

program.c

Source
Code

Libraries

Operating
System

Hardware

7/45

Probes

program.c

Source
Code

h

Preprocessor | CpPP

Libraries

Operating
System

Hardware

7/45

Probes

rogram.c
PTo8 ’ Libraries

Source

Code

h

Preprocessor | cpp
(Preprocessor]

Linker

Compiler

gcc

Operating
System

Hardware

7/45

Probes

rogram.c
PTo8 ’ Libraries

Source

Code

h

Preprocessor | cpp
(Preprocessor] cpp

Linker

program.o

Compiler

gcc

Operating
System

Hardware

7/45

Probes

program.c

Source
Code

h

Preprocessor | CpPP St:tk

’ Libraries

libc.

Binary
program

Linker

program.o

Compiler

gcc

SO

Operating
System

Hardware

7/45

Probes

program.c

S ’ Libraries libc.so
ource ~

Code

Binary
B program

P reprgcessor cpp >

Static
Linker

program.o

Compiler

Loader

gcc

Operating
System

Hardware

7/45

Probes

program.c _ _)
’ Libraries libc.so
Source P o
Code Binary
1 program
Preprocessor | cpp == =2
Gj Static Dynamic
Linker Linker
program.o T
9]
Compiler Bk
o
-
gcc Operating

System

Hardware

7/45

Probes

C.java

Source
Code

Libraries

Operating
System

Hardware

7/45

Probes

C.java

Source
Code

Libraries

Compiler

javac

Binary

Operating
System

Hardware

7/45

Probes

C.java

Source
Code

Libraries

Compiler

javac

Operating
System

Hardware

7/45

Probes

C.j .
java ’ Libraries rt.jar
Source o
core
C.class

Compiler

Operating
System

javac

Hardware

7/45

Probes

C.java

Source
Code

Libraries rt.jar

Compiler

Loader

javac

Operating
System

Hardware

7/45

Probes

C.java

Source
Code

Libraries

Compiler

javac

Loader

rt.jar

D'ynamlc ClassLoaders
Linker
Interpreter

Operating

Dynamic System

y .) Yy
Compiler

java

Hardware

7/45

Probes

Source

Code

Preprocessor

’ Libraries

Static
Linker

Compiler

Loader

Dynamic
Linker

Interpreter

Dynamic

Compiler

Operating
System

Hardware

7/45

Probes

Source ’ Libraries
u

Code

Preprocessor - -
Static Dynamic
Linker Linker

)
. ge!
Operating
Dynamic System
Compiler
Hardware
[Static Environmentj [Runtime Environment]

7/45

Probes

| Libraries

Source

Lin

o Con’@@

We can instrument and
analyse all of these (to
some degree)

[Static Environment]

CoJe\

Preprosessor Instrumentable
[Sta i

Dyr\imic
Compiler

Haraware

[Runtime Environment}

7/45

Events

» Subroutine call

» Subroutine return

» Memory access (read or write or either)
» System call

» Page fault

8/45

Characteristics

» Value: What is the type / numeric value / ...7
» Counts: How often does this event happen?
» Wallclock times: How long does one event take to finish,
end-to-end?
Derived properties:
» Frequencies: How often does this happen
» Per run
» Per time interval
» Per occurrence of another event
» Relative execution times: How long does this take

» As fraction of the total run-time
» As fraction of some surrounding event

9/45

Probes

» Probes: devices for measuring property of interest

» Software probe: code artefact
» Hardware probe: physical device

» CPU, OS kernel etc. come with probes preinstalled
» Generally need to be flipped on

» Want to probe custom location / property:
» Instrumentation: insert new probes

10/45

Gathering Dynamic Data

» Instrumentation and Software Probes
» Simulation
» Hardware Probes

11/45

Gathering Dynamic Data: Java

Foo.java

Foo.class

Compiler

Foolnstr.class

» Source-level instrumentation

Dynamic
Classloader

Foolnstr.java

» Binary-level instrumentation VM Eun_ J.VM Run-

> Load-time instrumentation time j T'me
(Performed by classloader) T Debug nstrumented

» Runtime System instrumentation Inter-

» Debug APls JAface

12/45

Comparison of Approaches

> Source-level instrumentation:
- Flexible
— Will miss events for which we lack source code
— Watch out for: control flow, name capture
> Binary-level instrumentation:
+ Flexible
— Must handle machine code encoding/decoding, hardware-dependent
— Wiatch out for: run-time code generation (JITs etc.), dynamic loading
> Load-time instrumentation:
> “Add-on" for source-level / binary-level instrumentation
—+ Can handle even unknown code
— Requires run-time support, may clash with custom loaders
> Runtime system instrumentation:
» Especially for interpreters, JIT-compiled languages
~ Can see “hidden” events (gc, JIT, ...)
— Labour-intensive and error-prone
— Becomes obsolete quickly as runtime evolves
> Debug APIs:
-+ Typically easy to use, relatively well-documented
— Limited capabilities

13/45

Instrumentation Tools

] | C/C++ (Linux) | Java

Source-Level | C preprocessor, DMCE | ExtendJ
Binary Level pin, 11vm soot, asm, bcel, As-
pect], ExtendJ
Load-time 7 Classloader, AspectJ
Debug APIs strace JVMTI

» Low-level data gathering:
» Command line: perf
> Time: clock_gettime() / System.nanoTime()
» Process statistics: getrusage ()
» Hardware performance counters: PAPI

14 /45

Practical Challenges in Instrumentation

» Measuring:

> Need access to relevant data

(e.g., Java: source code can't access JIT internal)

> May need to insert software probes (measuring device)
» Representing (optional):

> Store data in memory until it can be emitted (optional)

» May use memory, execution time, perturb measurements
» Emitting:

» Write measurements out for further processing

> May use memory, execution time, perturb measurements

15/45

Summary

» Different instrumentation strategies:

» Instrument source code or binaries

» Instrument statically or dynamically

» Instrument input program or runtime system
» Challenges when handling analysis:

» In-memory representation of measurements

(for compression or speed)
» Emitting measurements

16 /45

Perturbation

Example challenge: can we use total counts to decide whether
to optimise some function £7

» On each method entry: get current time
» On each method exit: get time again, update aggregate
» Reading timer takes: ~ 80 cycles
» Short £ calls may be much faster than 160 cycles
»fun f(x) = x+ 1 // ca. 0.25 cycles
»fun £f(x) = x // ca. 0 cycles
» Also: measurement needs CPU registers
= may require registers
= may slow down code further
1 GHz CPU: 1 cycle = 10795 (1 nanosecond / ns)

Measurements perturb our results, slow down execution

17/45

Sampling

Alternative to full counts: Sampling

» Periodically interrupt program and measure

» Problem: how to pick the right period?

System events (e.g., GC trigger or ‘safepoint’)
System events may bias results

Timer events: periodic intervals

> May also bias results for periodic applications
» Randomised intervals can avoid bias

> Short intervals: perturbation, slowdown

> Long intervals: imprecision

18/45

Samples and Measurements

Samples are collections of measurements
» Bigger samples:

» Typically give more precise answers

» May take longer to collect

» Challenge: representative sampling

15
1
0.5

0
0 0.5 1 1.5 2

Carefully choose what and how to sample

19/45

Summary

» We measure Characteristics of Events
» Sample: set of Measurements (of characteristics of events)
» Measurements often cause perturbation:
» Measuring disturbs characteristics
» Not relevant for all measurements
» Measuring time: more relevant the smaller our time intervals
get
» Can measure by:
» Counting: observe every event

> Gets all events
» Maximum measurement perturbation

» Sampling: periodically measure
» Misses some events
» Reduces perturbation

20/45

Presenting Measurements

P1 P2

Mean © 1,001 0,999
Standard Deviation ¢ 0,273 0,275

Assuming normal

distribution:

1.5

0.5

0 0.5 1 15 2

21/45

Standard Deviation, Assuming Normal

Distribution

0 02 04 06 08 1 12 14 16 18

Deviation
o

1,960

20

2,580

30

Chance of actual i being in interval
68,27%
95,00%
95,45%
99,00%
99,73%

2

2.2

22/45

How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

P2 | ° |
X X X X
P1 } = |

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

23/45

Box Plots

*————x—— X XF X XX ¥k -———————-— a’(®
—_— ~
1st Q Median 4th Q

» Split data into 4 Quartiles:

> Upper Quartile (1st Q): Largest 25% of measurements
> Lower Quartile (4th Q): Smallest 25% of measurements
» Median: measured value, middle of sorted list of measurements

» Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (/QR)

» 1st Q whisker shows largest measured value < 1,5 x IQR
(from box)

» 4th Q whister analogously
» Remaining outliers are marked

24 /45

Box plot: example

o |
o
w |
— "
.
04 —_—
- C———
o _|
o
o |
o

25 /45

Violin Plots

2.0

15

1.0

0.5
|

0.0

26 /45

Summary

» We don't usually know our statistical distribution

» There exist statistical methods to work precisely with
confidence intervals, given certain assumptions about the
distribution (not covered here)

» Visualising without statistical analysis:

» Box Plot
> Splits data into quartiles
> Highlights points of interest
> No assumption about distribution

» Violin Plot
> Includes Box Plot data
> Tries to approximate probability distribution function visually
> Can help to identify actual distribution

27 /45

Gathering Dynamic Data

» Instrumentation and Software Probes
» Example: Performance profiler
» Simulation (or Emulation)
» Example: CPU simulator
» Hardware Probes
» Example: Hardware Performance Counters

28/45

Automatic Performance Measurement

> [Software Probes] Profiler:
» Interrupts program during execution
» Examines call stack
» [Software Probes] Operating System Perf. Counters:
» Count important system events (network accesses etc.)
» Simulator:

> Simulates CPU/Memory in software

» Tries to replicate inner workings of machine

> Alternatively: Emulator (= replicate only observable
functionality, not internals)

» [Hardware Probes] CPU:

» Hardware performance counters count interesting events

29/45

Profiler

» Measures: which functions are we spending Execution Stack
our time in? return (old-1)

» Approach: $£p (old-1)
» Build stack maps
» Execute program, interrupt regularly e
> During interrupt: return (old-2)
» Examine program counter $£p (old-2)
» Examine stack

» Infer callers from stack contents

Source of inaccuracy: inlined functions don’t track their
caller on call stack

30/45

Simulator

input.c

=

memory.c

5

cpu.c

=

output.c

Rest of the world %

» Software simulates hardware components

> Can count events of interest (memory accesses etc.)

inaccurate in practice

Modern CPUs are very complex: Simulators are

31/45

Hardware Performance Counters (1/2)

RAM

Cache miss

CPU

MEM

Performance
Counter
Monitor

WB

Arithmetic operations

32/45

Hardware Performance Counters (2/2)

Special CPU registers:
» Count performance events

» Registers must be configured to collect specific performance
events
» Number of CPU cycles
» Number of instructions executed
» Number of memory accesses

» #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

33/45

Summary

» Performance analysis may require detailed dynamic data
» Profiler: Probes stack contents at certain intervals
» Simulator:
» Simulates hardware in software, measures
» Tends to be inaccurate
» Performance Counters:
» Software:
> Operating System counts events of interest
» Hardware:
> Special registers can be configured to measure CPU-level events

34/45

Gathering Dynamic Data

» Instrumentation and Software Probes
» Simulation
» Hardware Probes

35/45

Generality of Performance
Measurements?

Measured performance properties are valid for. ..
» Selected CPU
» Selected operating system
» Compiler version and configuration
» Operating system configuration:

» OS setup

(e.g., dynamic scheduler)
» Processes running in parallel

» A particular input/output setup

» Behaviour of attached devices

» Time of day, temperature, air pressure, ...
» CPU configuration (CPU frequency etc.)

| Is that all? 3/45

Unexpected Effects

» User toddm measures run time 0.6s
» User amer measures run time 0.8s
» Both measurements are stable

» Reason for discrepancy:

» Before program start, Linux copies shell environment onto stack
» Shell environment contains user name
» Program is loaded into different memory addresses
= Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

37/45

Unexpected Effects

1600000 —

1400000 —

1200000 —

cycles(00)

1000000 —

800000 —

600000 —

1000 —
2000 —
3000 —
4000 —

bytes added to empty environment

Mytkowicz, Diwan, Hauswirth, Sweeney: “Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009

38/45

Linking Order

Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

1.10
=)
g @
% 1.05 4
>
(&)
g - @@@ <+
S 1.00 - = B e
%)
&
S / + default
© 0.95 x alphabetical
I I I I I I I I I I I |
g E £ N B B X 5 @ x L g
& 2 ¢ él 3 E E £ & Jc%l E S
te 8 B8ETS
o (0]
2 a

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS'09)

39/45

Adaptive Systems

» Java program: loop n iterations (x axis) around simple
computation that randomly samples from pre-initialised array
» Measurement: 11 runs
» Ran each n 11 times, time reported below is last iteration only

w0
—

o _| ——
—

v]
o

Runtime (s)
1

Iteration

Warm-up effect

40/45

Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state

» Reason: Adaptive Systems
» Hardware:

> Cache: Speed up some memory accesses
» Branch Prediction: Speed up some jumps
> Translation Lookaside Buffer

» Software:
» Operating System / Page Table
> Operating System / Scheduler
> Just-in-Time compiler
» Understanding performance: what to measure?

» Latency: measure first run
Reset system before every run

» Throughput: later runs
Discard initial n measurements

41/45

Ignored Parameters

» Performance affected by subtle effects

» Systems developers must “think like researchers” to spot
potential influences

Beware of generalising measurement results!

42/45

Summary

» Modern computers are complex:

» Caches make memory access times hard to predict
» Multi-tasking may cause sudden interruptions
» CPU frequency scaling changes speed based on temperature

» This makes measurements difficult:
» Must carefully consider what assumptions we are making
» Must measure repeatedly to gather distribution
» Must check for warm-up effects
» Must try to understand causes for performance changes
» Measurements are often not normally distributed

» Mean + Standard Deviation may not describe samples well
» If in doubt, use box plots or violin plots

43 /45

Summary: Dynamic Analysis

» Collecting Measurements of Characteristics at Events via
Probes:

» In software, hardware, or indirectly via simulation
» Applications include:

> Purely to observe (program understanding etc.)
> Efficiency (JIT compilation etc.)
» Prevent undesirable behaviour (Safety, Security)

» Sampling to reduce overhead:
> Finite set of inputs/workloads, hardware etc.

» Some characteristics (esp. performance) influenced by sources
of variability outside of program and program input

» Can usually avoid false positives, cannot usually avoid false
negatives

44 /45

Outlook

» Oral exam information on Thursday
» Oral exam registration on Friday
» Final Lecture: (Mostly) review session— bring your questions!

http://cs.1lth.se/edaplb

45 /45

http://cs.lth.se/edap15

