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Welcome back!

» Lab 3: Fixes available upstream (git) for Task 1
» nullReport () — nullReports() in task description and
code-prober script
> If you followed only the . jrag / .java code, you might not
have noticed the discrepancy
» Fixes merged in if you hadn't pushed any updates yet

Questions?
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Focus on Dynamic Analysis

» Recall: Precise but Unsound
» False positives: none
(if what you are measuring is observable!)

» False negatives: unbounded
(no insight over how much we are missing)
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Unit Tests

Teal
fun cmp(a, b) = {
if a > b {
return 1;
}
if a <b {
return -1;
}

return O;

}

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

Unit tests are a simple form of dynamic program analysis | /15



Unit Test Quality
CB:f a>b
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fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

| Have | toacted all hehavicnive? |
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Test Coverage

b

0/
visited_bb[0] := 1
if a > b b, 1
/visited_bb[l] =1
b < return 1
2/
visited_bb[2] := 1
if b > a b, 3
/visited_bb [3] := 1
b ~ return -1
4/
visited_bb[4] := 1
return O

» Test coverage = fraction

of visited bb elements updated
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Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations
> Mark nodes/blocks as visited while testing

» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edge e; from ey?

1
(o) Jprint (1)

€1 /
b. hd AL

3 b
print(2) @ eturn

b
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Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations
> Mark nodes/blocks as visited while testing

» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edge e; from ey?

b
\lprint ¢D)
Tif ...

mark e, visited)

!p rint(2) - eg;lrn

» Alternative: track last CFG node ID
» Path Coverage: % of CFG paths (less common)
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Summary

» Unit Tests are a simple form of dynamic program analysis

» Minimal tooling needed
» Custom checks
» Limited to what underlying language can express directly

» Test Coverage tells us how much of our code gets analysed
by at least one unit test

» Implement by setting markers on relevant CFG nodes /
blocks

> Source-level: e.g. via DMCE (C/C++)
> Binary-level: e.g. via JaCoCo/JCov (Java)

» Different criteria, such as:

» Statement Coverage
» Edge Coverage: may require helper CFG nodes
» Path Coverage: paths through CFG (usually excluding loops)
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Outlook

» No quizzes for today

http://cs.1lth.se/EDAP15
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