LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 1

Christoph Reichenbach

Welcome back!

» Lab 3: Fixes available upstream (git) for Task 1
» nullReport () — nullReports() in task description and
code-prober script
> If you followed only the . jrag / .java code, you might not
have noticed the discrepancy
» Fixes merged in if you hadn't pushed any updates yet

Questions?

2/15

Lecture Overview

_ . : Dynamic
Foundations Static Analysis Azalysis
Properties Control Flow
01)Foundations ‘gfﬂypes ‘ 12)Instrumentation ‘
92)Constructing gg Data Flow ‘@Intraprocedural ‘@Analysis ‘
Program Analyses (07
in JastAdd gﬂMemory ‘@Interprocedural ‘
Wndirect ‘
14)Review ‘

3/15

Building a Program Analysis

Language
Input Program h
Definition P g

Language Language
Frontend Runtime
LFact Extraction J
[Abstraction]

Specialised
Theory

— Model |

)(Analysis Core

Analysis Result

5/15

Program Execution Pipeline

Source
Code

‘ Libraries ’

Operating
System

Hardware

7/15

Program Execution Pipeline

program.py
Source
Code

‘ Libraries ’

Operating
System

Hardware

7/15

Program Execution Pipeline

program.py : :
S ‘ Libraries ’
ource
Code
9]
Y ® Interpreter
3

python3.9

Operating
System

Hardware

7/15

Program Execution Pipeline

program.py . ;
S ‘ Libraries ’
ource ~
Code
Dynamic
Linker
QL) ~
Y ® Interpreter
3

python3.9

Operating
System

Hardware

7/15

Program Execution Pipeline

program.c

Source
Code

‘ Libraries ’

Operating
System

Hardware

7/15

Program Execution Pipeline

program.c

Source
Code

h

Preprocessor | CpPP

‘ Libraries ’

Operating
System

Hardware

7/15

Program Execution Pipeline

program.c ‘ Libraries ’

Source

Code

h

Preprocessor | cpp
(Preprocessor]

Linker

Compiler

gcc Operating

System

Hardware

7/15

Program Execution Pipeline

program.c ‘ Libraries ’

Source

Code

h

Preprocessor | cpp
(Preprocessor] cpp

Linker

program.o

Compiler

gcc Operating

System

Hardware

7/15

Program Execution Pipeline

rogram.c
PTo8 ‘ Libraries ’libc.so

Source
Code

Binary
1 program

Preprocessor | CpPP St:tk

Linker

program.o

Compiler

gcc Operating

System

Hardware

7/15

Program Execution Pipeline

program.c

Source
Code

-

P repr:)cessor

Libraries ’libc.so

Cpp v

Binary
program

Static
Linker

program.o

Compiler

gcc

(Loader)

Operating
System

Hardware

7/15

Program Execution Pipeline

program.c

Source
Code

h

Preprocessor | CpPP -

ylibc.so

‘ Libraries
Binary
program
Static Dynamic
Linker Linker
program.o T
]
Compiler Bk
o
-
gcc

Operating
System

Hardware

7/15

Program Execution Pipeline

C.java

Source
Code

‘ Libraries ’

Operating
System

Hardware

7/15

Program Execution Pipeline

C.java

Source
Code

‘ Libraries ’

Compiler

Operating
System

javac

Hardware

7/15

Program Execution Pipeline

C.java

Source
Code

‘ Libraries ’

Compiler

Operating
System

javac

Hardware

7/15

Program Execution Pipeline

C.j .
java ‘ Libraries ’ rt.jar
Source
core
C.class

Compiler

Operating
System

javac

Hardware

7/15

Program Execution Pipeline

C.j .
java ‘ Libraries ’ rt.jar

Source
Code

Compiler

(Loader)

Operating
System

javac

Hardware

7/15

Program Execution Pipeline

C.java

Source

Code

Libraries

Compiler

javac

Loader

’ rt.jar

pynannc ClassLoaders
Linker
Interpreter

Operating

Dynamic System

y .) Yy
Compiler

java

Hardware

7/15

Program Execution Pipeline

Source

Code

Preprocessor

’ Libraries ’

Static Dynamic
Linker Linker

Compiler Interpreter

(Loader)

Dynamic
Compiler

Operating
System

Hardware

7/15

Program Execution Pipeline

| Libraries
Source
e

Preprocessor

Loader

Static Dynamic
Linker Linker

Compiler ' Interpreter

Operating

Dynamic System
Compiler
Hardware
[Static Environment] [Runtime Environment]

7/15

Program Execution Pipeline

| Libraries ’

Source

CoJe\
Preprosessor — Instrumentable
[Sta i

Lin

o Con@ﬁ

D .
We can instrument and y@"c
Compiler
analyse all of these (to
some degree) Haraware
[Static Environmentj [Runtime Environment]

7/15

Focus on Dynamic Analysis

» Recall: Precise but Unsound
» False positives: none
(if what you are measuring is observable!)

» False negatives: unbounded
(no insight over how much we are missing)

8/15

Unit Tests

Teal
fun cmp(a, b) = {
if a > b {
return 1;
}
if a <b {
return -1;
}

return O;

}

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

Unit tests are a simple form of dynamic program analysis | /15

Unit Test Quality
CB:f a>b

1 7 P
O v
‘z!f g’> a

()=
eturn O

Teal

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

| Have | toacted all hehavicnive? |

10/15

Test Coverage

b

0/
visited_bb[0] := 1
if a > b b, 1
/visited_bb[l] =1
b < return 1
2/
visited_bb[2] := 1
if b > a b, 3
/visited_bb [3] := 1
b ~ return -1
4/
visited_bb[4] := 1
return O

» Test coverage = fraction

of visited bb elements updated

11/15

Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations
> Mark nodes/blocks as visited while testing

» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edge e; from ey?

1
(o) Jprint (1)

€1 /
b. hd AL

3 b
print(2) @ eturn

b

13/15

Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations
> Mark nodes/blocks as visited while testing

» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edge e; from ey?

b
\lprint ¢D)
Tif ...

mark e, visited)

!p rint(2) - eg;lrn

» Alternative: track last CFG node ID
» Path Coverage: % of CFG paths (less common)

13/15

Summary

» Unit Tests are a simple form of dynamic program analysis

» Minimal tooling needed
» Custom checks
» Limited to what underlying language can express directly

» Test Coverage tells us how much of our code gets analysed
by at least one unit test

» Implement by setting markers on relevant CFG nodes /
blocks

> Source-level: e.g. via DMCE (C/C++)
> Binary-level: e.g. via JaCoCo/JCov (Java)

» Different criteria, such as:

» Statement Coverage
» Edge Coverage: may require helper CFG nodes
» Path Coverage: paths through CFG (usually excluding loops)

14 /15

Outlook

» No quizzes for today

http://cs.1lth.se/EDAP15

15/15

http://cs.lth.se/EDAP15

