LUND ——10

f EDAP15: Program Analysis
ADVANCED INTERPROCEDURAL ANALYSIS

Christoph Reichenbach

Welcome back!

» Lab 3: More automated tests up
» Guest Lecture: First half of Thursday:

> Patrik Aberg & Magnus Templing, Ericsson: Code
Instrumentation with DMCE

2/49

Lattice Design

V" Lattices that represent sets of values
» Simplification?
» L vs T7
» Lattices for properties that are not values

» Side effects?
> Liveness / Dead Assignment?
» Available Expressions?

3/49

Simplifying Lattices (1/2)

T = null T T = nonnull
nonnull null nonnull null

1 1 1
May-Null Null/Nonnull lattice Must-Null

Can only go up in lattice: “May” = “Must Not” as top

4/49

Simplifying Lattices (2/2)

T = nonnull T = nonnull
null
1 = null 1
Must-Null (Binary) Must-Null

No practical difference between 1 and “middle” state

5/49

Lattices for Non-Value Properties

Unreachable Path Elimination

» “Which CFG edges can never be taken?”

» Usually depends on constant propagation / folding
» Forward analysis

Lattice: x :=0

if 1 == }neven_'_true

; 5 x = 1
: print (y)
L e

No need to distinguish between unreachable and L |

6/49

Summary

» Lattice design is a bit of an art
» Can often simplify lattice structure

» Depending on analysis client: “Bottom”/"Top” may have
specific meaning

7/49

Lecture Overview

Foundations

Properties

Static Analysis

Dynamic
Analysis

Control Flow

01)Foundations ‘ glﬂTypes

‘ 12)Instrumentation ‘

‘@Intraprocedural

‘@Analysis ‘

02)Constructing gg Data Flow
Program Analyses (07

in JastAdd 08
In_Jas 09WMemory

‘@Interprocedural ‘

1)Indirect ‘

14)Review

8/49

Challenges Towards OO Support

> (4) Flow-sensitivity

> (+) Points-to information
» Dynamic Dispatch

» Advanced features:

» Pointer arithmetic

» Dynamic Class Loading

> “Native Calls” (into C/assembly/Syscalls)
> Reflection

9/49

Interprocedural Analysis in Java

Java
public static void main(String[] args) {
Object obj MyClass.getObj () ;

System.err.primntdn(obj.toString ;

Method call
» Dynamic Dispatch

Subroutine call
» Exact subroutine depends on

» Analogous to Teal-0 calls >
dynamic type of obj

> ...need to know MyClass

10/49

Challenges

» Other modules:

» Must have access to analysable representation of module
» Not always available

» Dynamic Dispatch:
obj.toString()
» Which toString method are we calling?
» Worst case assumption: any class (Integer.toString(),

HashSet.toString(), ...)
» Can we do better?

11/49

The Call Graph

int main(int argc,

void f(char *s) {

for (char *p = s; *p; p++) {
*p =*p);

}

puts(s);

1

3

char up(char c) {

if (c >= ’a’ && c <= ’z’) {
return ¢ - (Ca’ - ’A’);
}

return c;

if (argc

}

(8Y);

return—0

}

Example in C
(No dynamic dispatch
yet...)

\\\\\\\4

3

void g(void) {

puts("Hello, World!");

1273

The Call Graph

> QGeall = <P> Eca||>
» Connects procedures from P via call edges from Ey
» ‘Which procedure can call which other procedure?’

» Often refined to:
‘Which call site can call which procedure?’

» Used by program analysis to find procedure call targets

f—up

e
.

13/49

Finding Calls and Targets

class Main {
public void
main(String[] args) {

ALl as = {G@ew AO3G@ev BODY;

for (A a: as) {

class A {
public A

——}f() { return }

public String
-__-“‘-)g() { return "A"; }
}

class D extends A {
@Override
public String
g() { return "D"; }
}

N
class C extends class B extends A {
@0verride @Override
ublic String public String
() { return "C"; } \\ﬁig() { return "B"; }
} T

15/49

Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:

o

a0
» B.<init>()

-

)

Main.m;y)/

O
@A C.<init>(
a2.g

==

direct call D.<init>()
N

irtual call

virtual ca } D.g0

16 /49

Summary

» Call Graphs capture which procedure calls which other
procedure

» For program analysis, further specialised to map:
Callsite — Procedure

» Direct calls: straightforward
» Virtual calls (dynamic dispatch):

» Multiple targets possible for call
> No fully sound/precise solution in general

17/49

Finding Calls and Targets

class Main {
public void

main(String[] args) { class A {
A[l as = { new A(Q), new B() }; public A
for (A a: as) { £f() { return new C(Q); }
A a2 =a.f();

print(a.g());
print(a2.g());
}
}
}

}

public String
g() { return "A"; }

class D extends A {
@Override
public String
g() { return "D"; }
}

class C extends A {
@0verride
public String
g { return "C"; }
}

class B extends A {
@Override
public String
g() { return "B"; }
}

18/49

Class Hierarchy Analysis

Object

7N

Main A
main(String[]) £Q)

g0
/TN
B C D
gO g0 gO

» Use declared type to determine possible targets
» Must consider all possible subtypes

> In our example: assume a.f can call any of:
A.£(),B.£0,C.£0),D.£0

19/49

Class Hierarchy Analysis: Example

Main. m;i%)/

direct call R %, |D.<init>()
|

2,
2,

virtual call
—_—) (D.gO)
CHA predicti

20/49

Summary

» Call Hierarchy Analysis resolves virtual calls a.f() by:

» Examining static types T of receivers (a: T)
» Finding all subtypes S <: T
» Creating call edges to all S.f, if S.f exists

» Sound

» Assuming strongly and statically typed language with subtyping
> Assuming whole-program knowledge (no dynamic classloading)

» Not very precise

» Java: ((Object) obj).toString():
Will use all toString() methods anywhere

21/49

Rapid Type Analysis

» |ntuition:

» Only consider reachable code
» Ignore unused classes
» Ignore classes instantiated only by unused code

22/49

Finding Calls and Targets

class Main {
public void

main(String[] args) { class A {
A[l as = { new A(Q), new B() }; public A
for (A a: as) { £f() { return new C(Q); }
A a2 =a.f(Q);

print(a.g());
print(a2.g());
}
}
}

}

public String
g() { return "A"; }

class D extends A {
@Override
public String
g() { return "D"; }
}

class C extends A {
@0verride
public String
g { return "C"; }
}

class B extends A {
@Override
public String
g() { return "B"; }
}

23/49

class Main {

public void

Finding Calls and Targets

main(String[] args) {
A[] as

for (A a: as) {
A a2 =3

{@evw A C@ew BODOY;
f e,

}

class A {
public A
)f() { return }
..‘:‘? m(s‘)‘;
printla. g O s, public String
print €32 . &Q)’.ﬂ: 72 '-'-'mm--)g() { return "A"; }
} '.,"‘ —._-- ':.,.,""'"",,""'
¥
class D extends A { T iclass C extené"s':zkz;ff,' class B extends A {
@Override % @Override """""4'.',//,,, @Override
public String ublic String Ut
g { return "D"; } () { return "C"; }
}

» public String
“4g() { return "B"; }
}

23/49

Rapid Type Analysis: Example

¥ B.<init>()

Main. m:iy)/

w . C.<init>()

direct call D.<init>()
_

virtual call
—_—) -D. O
RTA predictign g

24/49

Rapid Type Analysis Algorithm Sketch

Procedure RTA(mainproc, <:):
begin
WORKLIST := {mainproc}
VIRTUALCALLS :=
LivECLASSES := ()
while s € mainproc do
foreach call c € s do
if c is direct call to p then
addToWorklist(p)
registerCallEdge(c — p)
else if c = v.m() and v : T then begin
VIRTUALCALLS := VIRTUALCALLS U {c}
foreach S <: T do
addToWorklist(S.m)
registerCallEdge(c — S.m)
done
end else if c = new C() and C ¢ LIVECLASSES then begin
L1vECLASSES := LIVECLASSES U {C}
foreach v.m() € VIRTUALCALLS with v: T and C <: T do
addToWorklist(C.m)
registerCallEdge(c — C.m)
done
end
done done end

25 /49

Summary

» Rapid Type Analysis resolves virtual calls a.f() as follows:

» Find all classes that can be instantiated in reachable code
» Expand reachable code:

» For direct calls to p, add p as reachable
> For all virtual calls to v.m() with v : T:
= Add S.m() as reachable

» Iterate until we reach a fixpoint
» Sound

» Assuming strongly and statically typed language with subtyping
» More precise than Class Hierarchy Analysis

26 /49

Finding Calls and Targets

class Main {
public void

main(String[] args

A[] as =
for (A a: agj
A a2 =)

print(a.g());
print 0
¥
}
}

class A {

public A

£O { retu

public Striwmg
rn llAll; }

class D extends A {

H ul o 4 A AL

class B extends A {

public String

@Override Use points-to analysis? @Override
public String T PUDIIC SUIINE
g0

}

But what call graph should the points-to analysis use?

bturn "B"; }

Il

I

27 /49

Dependencies

Points-to analysis

NN

Call graph Dataflow analyses

» Mutual dependencies across program analyses

28/49

Analysis Composition

How do we handle mutual dependencies?

29/49

Analysis Composition: Example

Teal

var x := 10;
var i := 0;

Always true

Adapted from Sorin Lerner, David Grove, Craig Chambers: “Composing Dataflow
Analyses and Transformations”, ACM SIGPLAN Conference on Principles of
Programming langauges (POPL 2002)

Partly attributed to Mark N. Wegman and F. Kenneth Zadeck: "Constant
Propagation with Conditional Branches”, TOPLAS vol. 13(2), April 1991, 181-210

30/49

Analysis Composition: Loose (1/2)

x := 10
i:=0

Il

while i < 100 [

» First: Unreachable Path Elimination
» Second: Constant Propagation / Constant Folding

Unreachable Path Elimination can’t evaluate any
conditionals here

31/49

Analysis Composition: Loose (2/2)

x = 10
i:=0
lx] =10
while i < 100 [x] = 10
true l false
print (i) x :=x + 1
[x] =10 i = £(3) [x] =11

» First: Constant Propagation / Constant Folding
» Second: Dead Path Elimination

33/49

Analysis Composition: Loose (2/2)

x = 10
i:=0
lIx =10
while i < 100 [T
true l false
print (i) x :=x + 1
[x] =T i = £(1) [x] =T
b=l Het

» First: Constant Propagation / Constant Folding
» Second: Dead Path Elimination

With [x] = T, Dead Path Elimination can’t proceed

33/49

Analysis Composition: Tight

x := 10
i:=20
lx] =10

while i < 100 [

x| =10
lH

false

never false
print (i)
—>|i = £f(i) K

“Tight Composition”: Run analyses together.
Constant Propagation / Folding & Dead Path Elimination

true

35/49

Analysis Composition: Tight

x := 10
i:=0
lIx =10

while i < 100 [

x| =10
lH

true false

never false

-

print (i)
[[X]]:10—>|i = £(1) # [x] =L

“Tight Composition”: Run analyses together.
Constant Propagation / Folding & Dead Path Elimination

| Executing at the same time gives correct result! 540

Loose Composition

Loose Composition: Split analyses into multiple passes

» Each pass finishes before next pass starts
» Standard approach in compilers

36/49

Tight Composition

Tight Composition: Analyses depend on each other’s
intermediate results

» Analyses run “together”
» Not widely supported
» Systemic support:
> Reference Attribute Grammars (JastAdd etc.) with circular
attributes
> Logic programming (Datalog, Prolog)
» Term Rewriting (Vortex/Cyclone/)
» Challenges:
» Traditional worklist algorithms:
» Complex manual engineering needed
» Declarative approaches (JastAdd, Logic Programming):
> Must guarantee Monotonicity

37/49

Summary

» Mutual dependencies between program analyses are common

» Two approaches:
» Loose composition:
> One analysis after the other
> May need to run analyses multiple times
> Strictly less powerful than tight composition
» Tight composition:
> Analyses can use each other’s intermediate results
> Difficult to engineer for worklist algorithms
» Easier with declarative approaches (attribute grammars, logic
programming, term rewriting)
» Caveat: Lattices must be “aligned”: monotone updates in one
lattice must not require nonmonotone updates in another!

38/49

Analysing Realistic Programs

Challenges:
» Semantics:

» Language semantics may be imprecisely defined
(e.g., custom or domain-specific languages)
» Certain language features intrinsically hard to analyse

» Non-Semantic Properties:

» Property of interest may not be part of semantics
» Examples: execution time, energy usage

39/49

Reflection

Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());

> Instantiates object by string name
> Similar features to call method by name
» Challenge:
» obj may have any type = imprecision
» Sound call graph construction very conservative
» Approaches
» Dataflow: what strings flow into string?
» Common: code draws from finite set or uses string prefix/suffix
(e.g., ("com.xx.plugins." + ...))
> Class.forName: class only from some point in package hierarchy
» Dynamic analysis
40/49

Dynamic Loading
C

handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

» Dynamic library and class loading:
» Add new code to program that was not visible at analysis time
» Challenge:
» Can't analyse what we can't see
» Approaches:
» Conservative approximation
> Tricky: External code may modify all that it can reach
» With dynamic support and static annotation:
> Allow only loading of signed/trusted code
> signature must guarantee properties we care about
> annotation provides properties to static analysis
» Proof-carrying code

» Code comes with proof that we can check at run-time
41/49

Native Code

Java
class A {

public native Object op(Object arg);
}

» High-level language invokes code written in low-level

language

» Usually C or C++

» May use nontrivial interface to talk to high-level language
» Challenge:

» High-level language analyses don't understand low-level

language

» Approaches:

» Conservative approximation

> Tricky: External code may modify anything

» Manually model known native operations (e.g., Doop)
> Multi-language analysis (e.g., Graal)

42/49

‘eval’ and dynamic code generation

Python

eval (raw_input ())

» Execute a string as if it were part of the program
» Challenge:

» Cannot predict contents of string in general
» Approaches:

» Conservative approximation

» Tricky: code may modify anything
» Dynamically re-run static analysis
> Special-case handling (cf. reflection)

43 /49

Summary

» Static program analysis faces significant challenges:

» Decidability requires lack of precision or soundness for most of
the interesting analyses

> Reflection allows calling methods / creating objects given by
arbitrary string

» Dynamic module loading allows running code that the
analysis couldn't inspect ahead of time

» Native code allows running code written in a different
language

» Dynamic code generation and eval allow building arbitrary
programs and executing them

» No universal solution

» Can try to ‘outlaw’ or restrict problematic features, depending
on goal of analysis

» Can combine with dynamic analyses

44 /49

Soundiness

» Can't analyse language feature?

= We get T if we want soundness
—> Potentially many false positives
—> Tool may be useless

» Google SWE practice: Bug checkers with > 5% false positives
disabled automatically

» Soundness may not be useful

» Alternative proposal from research community: Soundiness

» Be explicit about unsupported language features
» Example: “Sound unless the code uses features X, Y, Z"

Soundiness: “capture all dynamic behaviour within reason”

B. Livshits, M. Sridharan, Y. Smaragdakis et al.: “In defense of
Soundiness: A Manifesto”, Communications of the ACM, 2015

45 /49

Building a Program Analysis

Language
Input Program h
Definition P g

Language Language

Frontend Runtime
LFact Extraction J
[Abstraction]

Specialised
Theory

— Model |

)(Analysis Core

Analysis Result

47 /49

Lecture Overview

Foundations

Properties

Static Analysis

Dynamic
Analysis

Control Flow

01)Foundations ‘ glﬂTypes

‘ 12)Instrumentation ‘

‘@Intraprocedural

‘@Analysis ‘

02)Constructing gg Data Flow
Program Analyses (07

in JastAdd 08
In_Jas 09WMemory

‘@Interprocedural ‘

1)Indirect ‘

14)Review

48 /49

Outlook

» Next lecture: Partly Guest Lecture

> Patrik Aberg & Magnus Templing, Ericsson: Code
Instrumentation with DMCE

http://cs.1th.se/EDAP15

49 /49

http://cs.lth.se/EDAP15

