
EDAP15: Program Analysis
ADVANCED INTERPROCEDURAL ANALYSISADVANCED INTERPROCEDURAL ANALYSIS

Christoph Reichenbach



Welcome back!

▶ Lab 3: More automated tests up
▶ Guest Lecture: First half of Thursday:

▶ Patrik Åberg & Magnus Templing, Ericsson: Code
Instrumentation with DMCE

2 / 49



Lattice Design

✓ Lattices that represent sets of values
▶ Simplification?
▶ ⊥ vs ⊤?
▶ Lattices for properties that are not values

▶ Side effects?
▶ Liveness / Dead Assignment?
▶ Available Expressions?

3 / 49



Simplifying Lattices (1/2)

⊤

⊥

null nonnull

Null/Nonnull lattice

⊤ = null

nonnull

⊥

May-Null

⊤ = nonnull

null

⊥

Must-Null

Can only go up in lattice: “May” = “Must Not” as top

4 / 49



Simplifying Lattices (2/2)

⊤ = nonnull

null

⊥

Must-Null

⊤ = nonnull

⊥ = null

Must-Null (Binary)

No practical difference between ⊥ and “middle” state

5 / 49



Lattices for Non-Value Properties
Unreachable Path Elimination
▶ “Which CFG edges can never be taken?”
▶ Usually depends on constant propagation / folding
▶ Forward analysis

x := 0x := 0

if y > 0if y > 0

if 1 == 0if 1 == 0
x := 1x := 1

print(y)print(y)

return y+xreturn y+x

never true

Lattice:

⊤

unreachable

⊥

No need to distinguish between unreachable and ⊥
6 / 49



Summary

▶ Lattice design is a bit of an art
▶ Can often simplify lattice structure
▶ Depending on analysis client: “Bottom”/“Top” may have

specific meaning

7 / 49



Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

8 / 49



Challenges Towards OO Support

▶ (+) Flow-sensitivity
▶ (+) Points-to information
▶ Dynamic Dispatch
▶ Advanced features:

▶ Pointer arithmetic
▶ Dynamic Class Loading
▶ “Native Calls” (into C/assembly/Syscalls)
▶ Reflection

9 / 49



Interprocedural Analysis in Java

Java
public static void main(String[] args) {

Object obj = MyClass.getObj();
System.err.println(obj.toString());

}

Subroutine call
▶ Analogous to Teal-0 calls
▶ . . . need to know MyClass

Method call
▶ Dynamic Dispatch
▶ Exact subroutine depends on

dynamic type of obj

10 / 49



Challenges

▶ Other modules:
▶ Must have access to analysable representation of module
▶ Not always available

▶ Dynamic Dispatch:

obj.toString()

▶ Which toString method are we calling?
▶ Worst case assumption: any class (Integer.toString(),

HashSet.toString(), . . . )
▶ Can we do better?

11 / 49



The Call Graph

Example in C
(No dynamic dispatch
yet. . . )

int main(int argc,
char *argv) {

if (argc > 1) {
f(argv[0]);

}
g();
return 0;

}

void f(char *s) {
for (char *p = s; *p; p++) {

*p = up(*p);
}
puts(s);

}

void g(void) {
puts("Hello, World!");

}

char up(char c) {
if (c >= ’a’ && c <= ’z’) {

return c - (’a’ - ’A’);
}
return c;

}

12 / 49



The Call Graph
▶ Gcall = ⟨P, Ecall⟩
▶ Connects procedures from P via call edges from Ecall
▶ ‘Which procedure can call which other procedure?’
▶ Often refined to:

‘Which call site can call which procedure?’
▶ Used by program analysis to find procedure call targets

main

f up

g

13 / 49



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

15 / 49



Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

16 / 49



Summary

▶ Call Graphs capture which procedure calls which other
procedure

▶ For program analysis, further specialised to map:

Callsite → Procedure

▶ Direct calls: straightforward
▶ Virtual calls (dynamic dispatch):

▶ Multiple targets possible for call
▶ No fully sound/precise solution in general

17 / 49



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

18 / 49



Class Hierarchy Analysis

Object

Main
main(String[])

A
f()
g()

B C D
g() g() g()

▶ Use declared type to determine possible targets
▶ Must consider all possible subtypes
▶ In our example: assume a.f can call any of:

A.f(), B.f(), C.f(), D.f()

19 / 49



Class Hierarchy Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

CHA prediction

20 / 49



Summary

▶ Call Hierarchy Analysis resolves virtual calls a.f () by:
▶ Examining static types T of receivers (a : T )
▶ Finding all subtypes S <: T
▶ Creating call edges to all S.f , if S.f exists

▶ Sound
▶ Assuming strongly and statically typed language with subtyping
▶ Assuming whole-program knowledge (no dynamic classloading)

▶ Not very precise
▶ Java: ((Object) obj).toString():

Will use all toString() methods anywhere

21 / 49



Rapid Type Analysis

▶ Intuition:
▶ Only consider reachable code
▶ Ignore unused classes
▶ Ignore classes instantiated only by unused code

22 / 49



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

23 / 49



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

23 / 49



Rapid Type Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

RTA prediction

24 / 49



Rapid Type Analysis Algorithm Sketch
Procedure RTA(mainproc, <:):
begin

Worklist := {mainproc}
VirtualCalls := ∅
LiveClasses := ∅
while s ∈ mainproc do

foreach call c ∈ s do
if c is direct call to p then

addToWorklist(p)
registerCallEdge(c → p)

else if c = v.m() and v : T then begin
VirtualCalls := VirtualCalls ∪ {c}
foreach S <: T do

addToWorklist(S.m)
registerCallEdge(c → S.m)

done
end else if c = new C() and C /∈ LiveClasses then begin

LiveClasses := LiveClasses ∪ {C}
foreach v .m() ∈ VirtualCalls with v : T and C <: T do

addToWorklist(C.m)
registerCallEdge(c → C.m)

done
end

done done end
25 / 49



Summary

▶ Rapid Type Analysis resolves virtual calls a.f () as follows:
▶ Find all classes that can be instantiated in reachable code
▶ Expand reachable code:

▶ For direct calls to p, add p as reachable
▶ For all virtual calls to v .m() with v : T :

⇒ Add S.m() as reachable
▶ Iterate until we reach a fixpoint

▶ Sound
▶ Assuming strongly and statically typed language with subtyping

▶ More precise than Class Hierarchy Analysis

26 / 49



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

27 / 49



Dependencies

Points-to analysis

Call graph Dataflow analyses

▶ Mutual dependencies across program analyses

28 / 49



Analysis Composition

How do we handle mutual dependencies?

29 / 49



Analysis Composition: Example

Teal
var x := 10;
var i := 0;
while i < 100 {

if x == 10 {
print(i);

} else {
x := x + 1;

}
i := f(i);

}

Always true

Adapted from Sorin Lerner, David Grove, Craig Chambers: “Composing Dataflow
Analyses and Transformations”, ACM SIGPLAN Conference on Principles of
Programming langauges (POPL 2002)
Partly attributed to Mark N. Wegman and F. Kenneth Zadeck: “Constant
Propagation with Conditional Branches”, TOPLAS vol. 13(2), April 1991, 181–210

30 / 49



Analysis Composition: Loose (1/2)
x := 10
i := 0
x := 10
i := 0

while i < 100while i < 100

if x == 10if x == 10

x := x + 1x := x + 1print(i)print(i)

i := f(i)i := f(i)

· · ·· · ·

falsetrue

▶ First: Unreachable Path Elimination
▶ Second: Constant Propagation / Constant Folding

Unreachable Path Elimination can’t evaluate any
conditionals here 31 / 49



Analysis Composition: Loose (2/2)
x := 10
i := 0
x := 10
i := 0

while i < 100while i < 100

if x == 10if x == 10

x := x + 1x := x + 1print(i)print(i)

i := f(i)i := f(i)

· · ·· · ·

falsetrue

JxK = 10

JxK = 10

JxK = 11JxK = 10

JxK = 10 ⊔ 11 = ⊤

▶ First: Constant Propagation / Constant Folding
▶ Second: Dead Path Elimination

With JxK = ⊤, Dead Path Elimination can’t proceed

33 / 49



Analysis Composition: Loose (2/2)
x := 10
i := 0
x := 10
i := 0

while i < 100while i < 100

if x == 10if x == 10

x := x + 1x := x + 1print(i)print(i)

i := f(i)i := f(i)

· · ·· · ·

falsetrue

JxK = 10

JxK = ⊤

JxK = ⊤JxK = ⊤

JxK = ⊤

▶ First: Constant Propagation / Constant Folding
▶ Second: Dead Path Elimination

With JxK = ⊤, Dead Path Elimination can’t proceed
33 / 49



Analysis Composition: Tight
x := 10
i := 0
x := 10
i := 0

while i < 100while i < 100

if x == 10if x == 10

x := x + 1x := x + 1print(i)print(i)

i := f(i)i := f(i)

· · ·· · ·

falsetrue

JxK = 10

JxK = 10

never false

“Tight Composition”: Run analyses together:
Constant Propagation / Folding & Dead Path Elimination

Executing at the same time gives correct result!

35 / 49



Analysis Composition: Tight
x := 10
i := 0
x := 10
i := 0

while i < 100while i < 100

if x == 10if x == 10

x := x + 1x := x + 1print(i)print(i)

i := f(i)i := f(i)

· · ·· · ·

falsetrue

JxK = 10

JxK = 10

never false

JxK = ⊥JxK = 10

JxK = 10 ⊔ ⊥ = 10

“Tight Composition”: Run analyses together:
Constant Propagation / Folding & Dead Path Elimination

Executing at the same time gives correct result!
35 / 49



Loose Composition

Loose Composition: Split analyses into multiple passes

▶ Each pass finishes before next pass starts
▶ Standard approach in compilers

36 / 49



Tight Composition

Tight Composition: Analyses depend on each other’s
intermediate results

▶ Analyses run “together”
▶ Not widely supported
▶ Systemic support:

▶ Reference Attribute Grammars (JastAdd etc.) with circular
attributes

▶ Logic programming (Datalog, Prolog)
▶ Term Rewriting (Vortex/Cyclone/)

▶ Challenges:
▶ Traditional worklist algorithms:

▶ Complex manual engineering needed
▶ Declarative approaches (JastAdd, Logic Programming):

▶ Must guarantee Monotonicity
37 / 49



Summary

▶ Mutual dependencies between program analyses are common
▶ Two approaches:

▶ Loose composition:
▶ One analysis after the other
▶ May need to run analyses multiple times
▶ Strictly less powerful than tight composition

▶ Tight composition:
▶ Analyses can use each other’s intermediate results
▶ Difficult to engineer for worklist algorithms
▶ Easier with declarative approaches (attribute grammars, logic

programming, term rewriting)
▶ Caveat: Lattices must be “aligned”: monotone updates in one

lattice must not require nonmonotone updates in another!

38 / 49



Analysing Realistic Programs

Challenges:Challenges:
▶ Semantics:

▶ Language semantics may be imprecisely defined
(e.g., custom or domain-specific languages)

▶ Certain language features intrinsically hard to analyse
▶ Non-Semantic Properties:

▶ Property of interest may not be part of semantics
▶ Examples: execution time, energy usage

39 / 49



Reflection
Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());

▶ Instantiates object by string name
▶ Similar features to call method by name
▶ Challenge:

▶ obj may have any type ⇒ imprecision
▶ Sound call graph construction very conservative

▶ Approaches
▶ Dataflow: what strings flow into string?

▶ Common: code draws from finite set or uses string prefix/suffix
(e.g., ("com.x.plugins." + . . . ))

▶ Class.forName: class only from some point in package hierarchy
▶ Dynamic analysis

40 / 49



Dynamic Loading
C
handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

▶ Dynamic library and class loading:
▶ Add new code to program that was not visible at analysis time

▶ Challenge:
▶ Can’t analyse what we can’t see

▶ Approaches:
▶ Conservative approximation

▶ Tricky: External code may modify all that it can reach
▶ With dynamic support and static annotation:
▶ Allow only loading of signed/trusted code

▶ signature must guarantee properties we care about
▶ annotation provides properties to static analysis

▶ Proof-carrying code
▶ Code comes with proof that we can check at run-time

41 / 49



Native Code
Java
class A {

public native Object op(Object arg);
}

▶ High-level language invokes code written in low-level
language
▶ Usually C or C++
▶ May use nontrivial interface to talk to high-level language

▶ Challenge:
▶ High-level language analyses don’t understand low-level

language
▶ Approaches:

▶ Conservative approximation
▶ Tricky: External code may modify anything

▶ Manually model known native operations (e.g., Doop)
▶ Multi-language analysis (e.g., Graal)

42 / 49



‘eval’ and dynamic code generation

Python
eval(raw_input())

▶ Execute a string as if it were part of the program
▶ Challenge:

▶ Cannot predict contents of string in general
▶ Approaches:

▶ Conservative approximation
▶ Tricky: code may modify anything

▶ Dynamically re-run static analysis
▶ Special-case handling (cf. reflection)

43 / 49



Summary

▶ Static program analysis faces significant challenges:
▶ Decidability requires lack of precision or soundness for most of

the interesting analyses
▶ Reflection allows calling methods / creating objects given by

arbitrary string
▶ Dynamic module loading allows running code that the

analysis couldn’t inspect ahead of time
▶ Native code allows running code written in a different

language
▶ Dynamic code generation and eval allow building arbitrary

programs and executing them
▶ No universal solution
▶ Can try to ‘outlaw’ or restrict problematic features, depending

on goal of analysis
▶ Can combine with dynamic analyses

44 / 49



Soundiness

▶ Can’t analyse language feature?
⇒ We get ⊤ if we want soundness
⇒ Potentially many false positives
⇒ Tool may be useless

▶ Google SWE practice: Bug checkers with > 5% false positives
disabled automatically

▶ Soundness may not be useful
▶ Alternative proposal from research community: Soundiness

▶ Be explicit about unsupported language features
▶ Example: “Sound unless the code uses features X, Y, Z”

Soundiness: “capture all dynamic behaviour within reason”

B. Livshits, M. Sridharan, Y. Smaragdakis et al.: “In defense of
Soundiness: A Manifesto”, Communications of the ACM, 2015

45 / 49



Building a Program Analysis
Input Program

Language
Frontend

Language
Runtime

Fact Extraction

Language
Definition

Theory

Specialised
Theory

Model

Abstraction

Step 1:

Step 2: ???

Step 3:

Analysis Result

Analysis Core

Language
Frontend

Language
Runtime

Language
Definition

Theory

Starting Points

47 / 49



Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

48 / 49



Outlook

▶ Next lecture: Partly Guest Lecture
▶ Patrik Åberg & Magnus Templing, Ericsson: Code

Instrumentation with DMCE

http://cs.lth.se/EDAP15

49 / 49

http://cs.lth.se/EDAP15

