
EDAP15: Program Analysis
INTERPROCEDURAL ANALYSISINTERPROCEDURAL ANALYSIS

Christoph Reichenbach

Welcome back!

▶ Lab 2: Bugfix pushed
▶ Lab 3: Simplified (but still two parts)
▶ Office hours:

▶ Wednesdays 14:30–15:30
▶ Thursdays 13:15–14:00

Questions?

2 / 43

Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

3 / 43

What about subroutines?

Teal
var x := max(0, 5);
print(10 / x); // Division by zero?

▶ Understanding code usually requires understanding
subroutines like max

4 / 43

Inter- vs. Intra-Procedural Analysis

▶ Intraprocedural: Within one procedure
▶ Data flow analysis so far

▶ Interprocedural: Across multiple procedures
▶ Type Analysis, especially. with polymorphic type inference

5 / 43

Limitations of Intra-Procedural Analysis

Teal-0
a := 7;
d := f(a, 2);
e := a + d;

Teal-0
fun f(x, y) = {

var z := 0;
if x > y {

z := x;
} else {

z := y;
}
return z;

}

How can we compute Constant Propagation here?

6 / 43

A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)(return)
br

6

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 ⊔ outb4 = outbr
6

▶ outb7 : e 7→ {9, 14}

Works rather straightforwardly!
7 / 43

Inter-Procedural Control Flow Graph

e := f(1, 5)e := f(1, 5)
bc

x

(return)(return)
br

x

ENTERENTER
subroutine start

EXITEXIT
subroutine end

▶ Split call sites bx into call (bc
x) and return (br

x) nodes
▶ Intra-procedural edge bc

x br
x carries environment/store

▶ Inter-procedural edge ():
▶ Call site callee: substitutes parameters
▶ Call site return: substitutes result
▶ Otherwise like intra-procedural data flow edge

8 / 43

A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := f(1, 5)e := f(1, 5)
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

(return)(return)
br

6

(return)(return)
br

7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
9 / 43

Valid Paths

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)(return)
br

6

(return)(return)
br

7

▶ [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive interprocedural analyses consider only valid paths
10 / 43

Summary

▶ Intraprocedural Analysis:
▶ Considers one subroutine at a time
▶ Calls to other subroutines treated as “worst-case”

(e.g., ⊤ for dataflow analysis)
▶ Interprocedural Analysis:

▶ Analyses calls to subroutines
▶ For Dataflow analysis: uses Interprocedural CFG (ICFG)

▶ ICFG represents subroutine calls as two nodes:
call and return

▶ Special Call/Return edges caller ⇔ callee
▶ Naïve interpretation of ICFG call/return edges “spills” analysis

results across call sites

11 / 43

Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Use same abstraction for each call site
▶ Examples for dataflow analysis:

▶ Treat ICFG call/return edges like “regular” call/return edges
▶ Use same transfer function everywhere (e.g., for builtin functions)

▶ Call-site sensitive
▶ Use different abstractions at different call sites

12 / 43

Call-Site Insensitive Analysis

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Call-site insensitive: analysis merges all callers to f()
13 / 43

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

14 / 43

Inlining

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

z := 0

if ...

z := x z := y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context
15 / 43

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

16 / 43

Call Strings of Length 1

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7[b6]}
y 7→ {2[b6]}

x 7→ {1[b7]}
y 7→ {5[b7]}

x 7→ {7[b6]}|{1[b7]}
y 7→ {2[b6]}|{5[b7]}

z 7→ {1[b7], 5[b7]}|{2[b6], 7[b6]}d 7→ {2[b6], 7[b6]}

e 7→ {1[b7], 5[b7]}

17 / 43

Degrees of Call-Site Sensitivity
▶ We used call strings to make call sites explicit:

▶ [b6] in 2[b6]
▶ “Strings” because this idea generalises:

▶ Can keep track of multiple callers
▶ Example: 2-call-site sensitivity: [b0, b6] vs [b1, b6]

Teal
fun g(y: int): int = { return y }
fun f(x: int): int = {

return g(x) // b6
+ g(5); // b7

}
...

f(1); // b0
f(2); // b1

Must bound length of call strings to ensure termination
18 / 43

Summary

Strategies for call-site sensitive analysis:
▶ Inlining

▶ Copy subroutine bodies for each caller
▶ Performance cost
▶ Recursion: fall back to ⊤

▶ Call Strings
▶ Call string length:

▶ Unbounded: Maximum precision, may not terminate with
recursion

▶ Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

19 / 43

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

20 / 43

Summarising Procedures

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

▶ Compose transfer functions:
▶ transb0 ◦ transb1 = [z 7→ 0]
▶ transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
▶ transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) = [z 7→ {x , y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) ◦ transb4 = [z 7→ {x , y}]

21 / 43

Procedure Summaries vs Recursion

f calls g calls h calls f

▶ Reqiures additional analysis to identify who calls whom
▶ Compute summaries of mutually recursive functions together
▶ Recursive call edges analogous to loops
▶ Loops/recursion require fixpoint computation over function

composition!

22 / 43

Procedure Summaries
▶ Composing transfer functions yields a combined transfer

function for f():

transf = [return 7→ {x , y}]
▶ Use transf as transfer function for f(), discard f’s body
▶ Opportunities:

▶ Can yield compact subroutine descriptions
▶ Can speed up call site analysis dramatically

▶ Challenges:
▶ More complex to implement
▶ Loops / recursion are challenging

▶ Limitations:
▶ Requires suitable representation for summary
▶ Requires mechanism for abstracting and applying summary
▶ Worst cases:

▶ transf is symbolic expression more complex than f itself
23 / 43

Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE

24 / 43

Summary

Making interprocedural dataflow precise:
▶ Call-site sensitive approaches:

▶ Inlining
▶ Call strings

▶ Call-site insensitive approaches:
▶ Procedure Summaries

▶ Precise + compact summaries only possible for distributive
frameworks

25 / 43

Procedure Summaries with
Gen/Kill-sets

▶ Special case: Gen/Kill sets
▶ Transfer functions always consist of

▶ Gen-set
▶ Kill-set

▶ No symbolic reasoning needed:
▶ Compose gen-sets, kill-sets, receive combined gen/kill-set for

subroutine
▶ Maybe there are other such cases?
Greta Yorsh, Eran Yahav, Satish Chandra: “Generating Precise and Concise
Procedure Summaries”, in Principles of Programming Languages 2008

26 / 43

Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE

27 / 43

Representation Relations
Example procedure summary representation:

x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x
x := y
y := t }

0

0

x

x

y

y

‘May be null’ analysis

▶ P(v): v may be null
▶ P(0) always holds

▶ c d :
if P(c) ∈ inb then P(d) ∈ outb

▶ Representation Relations relate
inb and outb variables V

▶ R ⊆ (V ∪ {0}) × (V ∪ {0})
▶ if ⟨0, X ⟩ ∈ R :

X always ‘may be null’ in outb
▶ if ⟨Y , X ⟩ ∈ R :

If Y ‘may be null’ in inb:
⇒ X ‘may be null’ in outb 28 / 43

Composing Representation Relations

Representation Relations (may be null analysis):
x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x;
x := y;
y := t; }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

29 / 43

Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

31 / 43

Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

31 / 43

Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
31 / 43

Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)

▶ Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)

▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

32 / 43

Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)
▶ Equivalently for ‘Must’ analysis:

‘x must be null’ = not (‘x may be non-null’)
▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

32 / 43

A Dataflow Worklist Algorithm: IFDS

▶ Call-site sensitive interprocedural data flow algorithm
▶ IFDS = (Interprocedural Finite Distributive Subset problems)
▶ ‘Exploded Supergraph’: G ♯ = (N ♯, E ♯)

▶ N♯ = NCFG × (V ∪ {0})
▶ Plus parameter/return call edges

▶ Property-of-interest holds if reachable from ⟨bs
main, 0⟩

▶ bs
main is CFG ENTER node of main entry point

▶ Key ideas:
▶ Worklist-based
▶ Construct Representation Relations on demand
▶ Construct ‘Exploded Supergraph’

▶ CFG of all functions × V ∪ {0}

33 / 43

IFDS Datastructures

⟨b0, v0⟩ → ⟨b3, v0⟩
⟨⟨b0, v0⟩, ⟨b3, v0⟩⟩Instead of we also write:

⟨b0, v0⟩ ⟨b3, v0⟩
WorkList edge All WorkList edges are also PathEdge edges

PathEdge edge Result of our analysis

N♯-edge

SummaryInst Generated from summary nodes
Otherwise equivalent to N♯-edges

34 / 43

IFDS Strategy

▶ Algorithm distinguishes between three types of
nodes:
▶ Exit nodes (be

f)
▶ Call nodes (bc

x)
▶ Other nodes

e := f(1, 5)

(return)

bc
x

br
x

ENTER f
bs

f

EXIT f
be

f

35 / 43

On-demand processing

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

36 / 43

Running Example

Teal-0: main()
var default := null;
fun main() = {

var a := get(3);
default := 1;
var b := get(3);
return b;

}

Teal-0: get()
fun get(c) = {

if c == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);
}

}
return z;

}

37 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

39 / 43

The IFDS Algorithm: Initialisation and
Propagation)

Procedure Init():
begin

WorkList := PathEdge := ∅
propagate(⟨bs

main, 0⟩ → ⟨bs
main, 0⟩)

ForwardTabulate()
end

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

40 / 43

IFDS: Forward Tabulation
Procedure ForwardTabulate():
begin

while n0 → n1 ∈ WorkList do
WorkList := WorkList \ {n0 → n1}
⟨b0, v0⟩ = n0; ⟨b1, v1⟩ = n1
if b1 is neither Call nor Exit node then

foreach n1 → n2 ∈ E ♯:
propagate(n0 → n2)

else if b1 is Call node then begin
foreach call edge n1 → n2 ∈ E ♯:

propagate(n2 → n2)
foreach non-call edge n1 → n2 ∈ E ♯ ∪ SummaryInst:

propagate(n0 → n2)
end else if b1 is Exit node then begin

foreach caller/return node pair bc
i , br

i that calls b0 and vars v0, v1 do
ns = ⟨bc

i , v0⟩; nr = ⟨bc
i , v1⟩

if {ns → n0, n0 → n1, n1 → nr } ⊆ E ♯ and not ns → nr ∈ SummaryInst then begin
SummaryInst := SummaryInst ∪ {ns → nr }
foreach nz → ns ∈ PathEdge:

propagate(nz , nr)
end done end done end

41 / 43

Summary: IFDS Algorithm
▶ Computes yes-or-no analysis on all variables

▶ Original notion of ‘variables’ is slightly broader)
▶ Represents facts-of-interest as nodes ⟨b, v⟩:

▶ b is node (basic block) in CFG
▶ v is variable that we are interested in

▶ Uses
▶ ‘Exploded Supergraph’ G♯

▶ All CFGs in program in one graph
▶ Plus interprocedural call edges

▶ Representation relations
▶ Graph reachability
▶ A worklist

▶ Distinguishes between Call nodes, Exit nodes, others
▶ Demand-driven: only analyses what it needs
▶ Whole-program analysis
▶ Computes Least Fixpoint on distributive frameworks

42 / 43

Outlook

▶ More static analysis on Tuesday
▶ Lab 3 will go up today

http://cs.lth.se/EDAP15

43 / 43

http://cs.lth.se/EDAP15

