LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
INTERPROCEDURAL ANALYSIS

Christoph Reichenbach

Welcome back!

» Lab 2: Bugfix pushed
» Lab 3: Simplified (but still two parts)

» Office hours:

» Wednesdays 14:30-15:30
» Thursdays 13:15-14:00

Questions?

2/43

Lecture Overview

_ . : Dynamic
Foundations Static Analysis Azalysis
Properties Control Flow
01)Foundations ‘gﬂTypes ‘ 12)|nstrumentation ‘
92)Constructing gg Data Flow ‘@Intraprocedural ‘@Analysis ‘
Program Analyses (07
in JastAdd gﬂMemory ‘@Interprocedural ‘
Wndirect ‘
14)Review ‘

3/43

What about subroutines?

Teal

var x := max(0, 5);
print(10 / x); // Division by zero?

» Understanding code usually requires understanding
subroutines like max

4/43

Inter- vs. Intra-Procedural Analysis

» Intraprocedural: Within one procedure
» Data flow analysis so far
» Interprocedural: Across multiple procedures
» Type Analysis, especially. with polymorphic type inference

5/43

Limitations of Intra-Procedural Analysis

Teal-0

a = 7;

d := f(a, 2);
e := a + d;

Teal-0

fun f(x, y) = {

3

var z := 0;
if x >y {
Z = X;

} else {
zZ = y;
}

return z;

How can we compute Constant Propagation here?

6/43

A Naive Inter-Procedural Analysis

x = {7} fx, y) =
* e
Z =
TP

inbg = out,, L outp, :Outbg

»out,,: e — {9, 14}

Works rather straightforwardly!

7/43

Inter-Procedural Control Flow Graph

subroutine start

__»| ENTER

@e = £(1, 5)[
1

(return) |

— EXIT

subroutine end

» Split call sites b, into call (bS) and return (b}) nodes
» Intra-procedural edge bS — b’ carries environment /store
> Inter-procedural edge (=):

» Call site — callee: substitutes parameters
» Call site <= return: substitutes result
» Otherwise like intra-procedural data flow edge

8/43

A Naive Inter-Procedural Analysis

x> {7} Ty =

by v 2

x— {1,7}
y = {2,5}

=)
zZ :=

z—{1,2,5,7}

e {1,2,5,7}

Imprecision!

9/43

Valid Paths

{ return

by

4 [b5, bg, bO, bla b3> b4a é]

] NqNawalidafidtbatither \

| Context-sensitive interprocedural analyses consider only valid paths |

10/43

Summary

» Intraprocedural Analysis:

» Considers one subroutine at a time
» Calls to other subroutines treated as “worst-case”
(e.g., T for dataflow analysis)

» Interprocedural Analysis:

» Analyses calls to subroutines
> For Dataflow analysis: uses Interprocedural CFG (ICFG)

> ICFG represents subroutine calls as two nodes:
call and return

» Special Call/Return edges caller < callee

> Naive interpretation of ICFG call/return edges “spills” analysis
results across call sites

11/43

Interprocedural Data Flow Analysis

» Call-site insensitive

» Use same abstraction for each call site
» Examples for dataflow analysis:

> Treat ICFG call/return edges like “regular” call/return edges
> Use same transfer function everywhere (e.g., for builtin functions)

» Call-site sensitive
» Use different abstractions at different call sites

12/43

Call-Site Insensitive Analysis

x = {7} £G, y) =

Oy gdadtl

x = {1,7}
y = {2,5}

z—{1,2,5,7}

e {1,5,2,7}

Call-site insensitive: analysis merges all callers to £ ()

13/43

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

14/43

Inlining

:= £(1, 5)

x — {1} >

o 15}

e {1,5}

return z

Clone subroutine IRs for each calling context

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

16 /43

Call Strings of Length 1

f(x, y) =

X = {7[b6]}

@ y = {259}

x = {71 {16
¥ = {205 H{5, }

e = {1[p,}, Sip1}

17/43

Degrees of Call-Site Sensitivity

» We used call strings to make call sites explicit:
> [be] in 2(p
» “Strings" because this idea generalises
» Can keep track of multiple callers
» Example: 2-call-site sensitivity: [bo, bs] vs [b1, bs]

Teal

fun g(y: int): int

fun f(x: int): int
return g(x) // bs

{ return y }
{

+ g(5); // by
}
£(1); // bo
£(2); // b

Must bound length of call strings to ensure termination |

18/43

Summary

Strategies for call-site sensitive analysis:
> Inlining
» Copy subroutine bodies for each caller

» Performance cost
» Recursion: fall back to T

» Call Strings
» Call string length:

» Unbounded: Maximum precision, may not terminate with
recursion

» Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

19/43

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

20/43

Summarising Procedures

» Compose transfer functions:
> transp, o transp, = [z + 0]
transp, o transp, o transp, = [z — {x}]
transp, o transp, o transp, = [z — {y}]
transp, o transp, o (transp, Ll transp,) = [z — {x, y}]
transp, o transp, o (transp, LI transp,) o transp, = [z — {x, y}]

vV vYyVvyy

21/43

Procedure Summaries vs Recursion

f calls g calls h calls £

» Reqiures additional analysis to identify who calls whom
» Compute summaries of mutually recursive functions together
» Recursive call edges analogous to loops

» Loops/recursion require fixpoint computation over function
composition!

22/43

Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():

transy = [return — {x, y}]

» Use transy as transfer function for £ (), discard f's body
» Opportunities:
» Can yield compact subroutine descriptions
» Can speed up call site analysis dramatically
» Challenges:
» More complex to implement
» Loops / recursion are challenging
» Limitations:
» Requires suitable representation for summary
» Requires mechanism for abstracting and applying summary
» Worst cases:
> transs is symbolic expression more complex than f itself
23/43

Procedure Summaries for Dataflow

» Procedure Summaries can be as precise as inlining/call strings

but only for Distributive Frameworks

> Algorithm for Gen/Kill analyses: IFDS
» Algorithm for other analyses: IDE

24/43

Summary

Making interprocedural dataflow precise:
» Call-site sensitive approaches:

» Inlining

» Call strings
» Call-site insensitive approaches:

» Procedure Summaries

> Precise + compact summaries only possible for distributive
frameworks

25/43

Procedure Summaries with
Gen/Kill-sets

» Special case: Gen/Kill sets

» Transfer functions always consist of
» Gen-set
> Kill-set

» No symbolic reasoning needed:

» Compose gen-sets, kill-sets, receive combined gen/kill-set for
subroutine

» Maybe there are other such cases?

Greta Yorsh, Eran Yahav, Satish Chandra: “Generating Precise and Concise

Procedure Summaries”, in Principles of Programming Languages 2008

26 /43

Procedure Summaries for Dataflow

» Procedure Summaries can be as precise as inlining/call strings

but only for Distributive Frameworks

> Algorithm for Gen/Kill analyses: IFDS
» Algorithm for other analyses: IDE

27 /43

Representation Relations

Example procedure summary representation:

null;
MBS

=y {

=y,

1;

nnn
<

N\

O=-—O

O=-—O

X

X

‘May be null’ analysis

» c—d:
if P(c) € in, then P(d) € out,
» Representation Relations relate
iny and out, variables

»RC (VU{0}) x (Yu{0})
»if (0, X) € R:

X always ‘may be null’ in out,
»if (Y, X) € R:

If Y ‘may be null’ in ing:

= X ‘mav be null’ in out, 28/43

Composing Representation Relations

Representation Relations (may be null analysis):

0 x 0 x

X := null; \\ T y
y ._.J?, 0 x y
if x 1=y { 0 x i

X 1= y;
) /
y = 1, o X y

: i

{t :=x; 0 x vy

X 1= y; ‘)X(

y =t} 0 x y 0 x y

Composed representation relations are again representation relations

29/43

Joining Control-Flow Paths

e NN

X := null; Z := null
y =7
if x 1=y A{

X = y; 0 x y =z 0 x y =z
}
y :=1
{t:=x

X =y

yi=t} 0 x y z

I LNV

> €

31/43

Joining Control-Flow Paths

/o x. y z
NGaNSN

X := null; 2 := null
y =Y
if x 1=y {

X 1= y; 0 x ¥y =z 0 x vy z
¥
y :=1
{t :=x

X =y

vi=t} 0 x y z

! (NI

> €

31/43

Joining Control-Flow Paths

null

% X y z
X := null; -
y =¥
if x 1=y {
X 1=y;
¥
y =
{t:=x
X 1=y ' LU B
vi=t} 0 x y z
I N,
7 A)
Logical “Or”

31/43

Dataflow via Graph Reachability

n=(b,v)

» Assume binary latice ({T, L}, C, 1M, 1)
»TUy=T=xUTand LUL=_1
» Typical for ‘May" analysis (P(x) = ‘x may be null’)

» Encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)

» b: CFG node

» v: Variable or 0

> 0: (b1,0)—=(ba,y): P(y) at by holds always
> Variable: (b1, x)—e(ba,y): P(x) at by = P(y) at by

32/43

Dataflow via Graph Reachability

n=(b,v)

» Assume binary latice ({T, L}, C, 1M, 1)
»TUy=T=xUTand LUL=_1
» Typical for ‘May" analysis (P(x) = ‘x may be null’)
» Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)
» Encode Dataflow problem as Graph-Reachability
» Graph nodes n = (b, v)
» b: CFG node
» v: Variable or 0

> 0: (b1,0)—=(ba,y): P(y) at by holds always
> Variable: (b1, x)—e(ba,y): P(x) at by = P(y) at by

32/43

A Dataflow Worklist Algorithm: IFDS

» Call-site sensitive interprocedural data flow algorithm
» IFDS = (Interprocedural Finite Distributive Subset problems)
» ‘Exploded Supergraph’: G* = (N¥, E¥)
> NF = Nerg x (VU {0})
> Plus parameter/return call edges
» Property-of-interest holds if reachable from (bg,.;,, 0)
> by .in is CFG ENTER node of main entry point
» Key ideas:
» Worklist-based

» Construct Representation Relations on demand
» Construct ‘Exploded Supergraph’

» CFG of all functions x VU {0}

33/43

IFDS Datastructures

Instead of ({bo, Vo), (b3, vo)) we also write:
(bo, vo) — (b3, v)

WORKLIST edge All WORKLIST edges are also PATHEDGE edges
(bo, vo) === (b3, vo)
PATHEDGE edge Result of our analysis
Nf-edge

SUMMARYINST Generated from summary nodes
Otherwise equivalent to N*-edges

34/43

IFDS Strategy

» Algorithm distinguishes between three types of
nodes:

» Exit nodes (b¢)
» Call nodes (b°)

» Other nodes @
@ — 5) _NTER f

Hetuny

T v

35/43

On-demand processing

Procedure propagate(n; — n):
begin
if N1 — ny € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — no}
WORKLIST := WORKLIST U {n; — np}
end

36/43

Running Example

Teal-0: main()

var default := null;
fun main() = {
var a := get(3);
default := 1;
var b := get(3);
return b;

Teal-0: get()

fun get(c) = {

if ¢ == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);

+

}

return z;

}

37/43

Coderura o]

39/43

d bO bget 0,2z70xd
o d := null NTER get ;’/‘

==

|
) = 1] Gt = (N!, EY)

[] [] "
@‘ where N C (VU {0}) x Ncgg N
o fn b := get(a) _13\ $
i N
- e bg 4 7
® I T ° \I/(r_e'liliﬂl (rety > >
! I I ! @ - eturn z —)é““

39/43

Initialisation
> WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
b J» Analogous self-loops for

etu] static variables with
- property of interest (d)
et
% %‘g XIT

» e €¢ WORKLIST —
e € PATHEDGE

5

Initialisation
> WORKLIST =

{<brsnain7 0> - <br5nain7 0>}
b J» Analogous self-loops for

etu] static variables with
- property of interest (d)
et
% %‘g XIT

» e €¢ WORKLIST —
e € PATHEDGE

5

Coderura o]

Procedure propagate(n; — m):
begin
if n1 — ny € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — mp}
end

Hi
Step (regular edge)

> Pick e off the work queue
e=n — N

> np neither call (c) nor exit (e)?

o> Find all np — n3
propagate(n; — n3)

2> Remove e from WORKLIST

> e remains in PATHEDGE

39/43

Coderura o]

39/43

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

Coderura o] |

T vzTa

39/43

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?

> Init called procedure:

> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((bz, v) — (b7, v))

Coderura o] |

T vzTa

39/43

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)

< 0Z2Cd
39/43

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)

< 0Z2Cd
39/43

Coderura o]

1

Step (call edge)

» Pick e = n; — n§ off the work queue
> n5 is call (c)?
> Init called procedure:
> Find all parameter edges
t = nS — (bg,v) € E*
> propagate((b7, v) — (b7, v))

|_|> Propagate along intra-edges

(As with regular edges)
> Propagate along Summarylnst:

< 0Z2Cd
39/43

Coderura o]

39/43

Coderura o]

39/43

Coderura o]

39/43

1
Step (exit edge)

» Pick e = n; — n5 off the work queue
> n§ is exit (e)?
(n3 is always start node.)
> For each call/return pair nf, n! that
calls the current function,
if nf — nj — nS — nl:
> If nf — nf ¢ SUMMARYINST:
> Add it to SUMMARYINST

> Find all n — nf € PATHEDGE and
propagate(n — nf)

39/43

coer Qlrsvar

IO IT main

get
NTER get

bS

:= null

O
o

TER main

:= get(a)

(return)

'hj‘
®oeo o0 @eturnb
LG I a IT main

39/43

39/43

eturn b
IT main

@ TER main
Ghn)

return)

(

@ TER main

eturn b

IT main

39/43

TER main

(return)

eturn b

IT main

39/43

Qe
e

(return)
(return)

a .

@ TER main

eturn b

IT main

39/43

%A A

-Step (call edge)

> Pick e = n; — n§ off the work queue

> n is call (c)?
> Init called procedure:
» Find all parameter edges
t =nS — (b, v) € E*
> propagate((b3, v) = (b, v))
> Propagate along intra-edges
(As with regular edges)

> Propagate along Summarylnst:
(As with regular edges)

39/43

Te
Qe
e

L) @ TER main

Oz c

¢ 8 QYastumm]

eo0o0 o0 eturnb

IT main

39/43

:= get(a)

bs
(return)

Coerura o]

0
0°=6ld

39/43

/ .

Worklist empty: Done g\

-]
213

> Can now read results off of
PATHEDGE
> e.g. at end of main():
> a may be null
> b and d definitely non-null
U (o8

39/43

The IFDS Algorithm: Initialisation and

Propagation)

Procedure Init():

begin
WORKLIST := PATHEDGE := ()
propagate“brsnaina 0> - <brsnain7 0>)
ForwardTabulate()

end

Procedure propagate(n; — np):
begin
if ni — n, € PATHEDGE then
return
PATHEDGE := PATHEDGE U {n; — ny}
WORKLIST := WORKLIST U {n; — ny}
end

40/43

IFDS: Forward Tabulation

Procedure ForwardTabulate():
begin
while np — n; € WORKLIST do
WorkList := WorkList \ {ng — n;}
(bo, o) = no; (b1, v1) = m
if by is neither Call nor Exit node then
foreach n, — n, € E*:
propagate(ny — m2)
else if b; is Call node then begin
foreach call edge m — np € E*:
propagate(n, —)
foreach non-call edge n1 — ny € E* U SUMMARYINST:
propagate(ng — n2)
end else if b; is Exit node then begin
foreach caller/return node pair bf, b/ that calls by and vars v, v1 do
ns = (b, w); nr = (bf,v1)
if {ns = no,np — m,m — n,} C E* and not n; — n, € SUMMARYINST then
SUMMARYINST := SUMMARYINST U {ns — n,}
foreach n, — n, € PATHEDGE:
propagate(n;, n)

end done end done end
41/43

Summary: IFDS Algorithm

» Computes yes-or-no analysis on all variables
» Original notion of ‘variables’ is slightly broader)
» Represents facts-of-interest as nodes (b, v):
> b is node (basic block) in CFG
» v is variable that we are interested in
» Uses
» ‘Exploded Supergraph’ G*
> All CFGs in program in one graph
> Plus interprocedural call edges

» Representation relations
» Graph reachability
» A worklist

» Distinguishes between Call nodes, Exit nodes, others
» Demand-driven: only analyses what it needs
» Whole-program analysis

» Computes Least Fixpoint on distributive frameworks
42/43

Outlook

» More static analysis on Tuesday
» Lab 3 will go up today

http://cs.1th.se/EDAP15

43 /43

http://cs.lth.se/EDAP15

