



#### **EDAP15:** Program Analysis

#### INTERPROCEDURAL ANALYSIS

#### **Christoph Reichenbach**

#### Welcome back!

- Lab 2: Bugfix pushed
- Lab 3: Simplified (but still two parts)
- Office hours:
  - ▶ Wednesdays 14:30–15:30
  - **Thursdays** 13:15–14:00

#### Questions?

Lecture Overview



#### What about subroutines?

 Understanding code usually requires understanding subroutines like max

#### Inter- vs. Intra-Procedural Analysis

- Intraprocedural: Within one procedure
  - Data flow analysis so far
- Interprocedural: Across multiple procedures
  - ► Type Analysis, especially. with polymorphic type inference

# **Limitations of Intra-Procedural Analysis**

#### Teal-0

a := 7; d := f(a, 2); e := a + d;

#### **Teal-0**

```
fun f(x, y) = {
  var z := 0;
  if x > y {
    z := x;
  } else {
    z := y;
  }
  return z;
}
```

How can we compute Constant Propagation here?

#### A Naïve Inter-Procedural Analysis



•  $\mathsf{out}_{b_7}$ :  $e \mapsto \{9, 14\}$ 

Works rather straightforwardly!

# Inter-Procedural Control Flow Graph



- Split call sites  $b_x$  into call  $(b_x^c)$  and return  $(b_x^r)$  nodes
- $\blacktriangleright$  Intra-procedural edge  $b^c_x \longrightarrow b^r_x$  carries environment/store
- ► Inter-procedural edge (→):
  - Call site callee: substitutes parameters
  - Call site return: substitutes result
  - Otherwise like intra-procedural data flow edge

#### A Naïve Inter-Procedural Analysis



#### Imprecision!

Valid Paths



 $\blacktriangleright$  [ $b_5, b_6^c, b_0, b_1, b_3, b_4, b_6^r$ ]

Context-sensitive interprocedural analyses consider only valid paths

# Summary

#### Intraprocedural Analysis:

- Considers one subroutine at a time
- Calls to other subroutines treated as "worst-case" (e.g., ⊤ for dataflow analysis)
- Interprocedural Analysis:
  - Analyses calls to subroutines
  - ▶ For Dataflow analysis: uses Interprocedural CFG (ICFG)
    - ICFG represents subroutine calls as two nodes: call and return
    - Special Call/Return edges caller  $\Leftrightarrow$  callee
    - Naïve interpretation of ICFG call/return edges "spills" analysis results across call sites

# **Interprocedural Data Flow Analysis**

#### Call-site insensitive

- Use same abstraction for each call site
- Examples for dataflow analysis:
  - ► Treat ICFG call/return edges like "regular" call/return edges
  - ▶ Use same transfer function everywhere (e.g., for builtin functions)

#### Call-site sensitive

Use different abstractions at different call sites

#### Call-Site Insensitive Analysis



Call-site insensitive: analysis merges all callers to f()

# **Precise Interprocedural Dataflow**

- Precision via one of:
  - **I Inlining** or **AST cloning**
  - 2 Call Strings
  - **3** Procedure Summaries

Inlining



15 / 43

# **Precise Interprocedural Dataflow**

- Precision via one of:
  - 1 Inlining or AST cloning
  - 2 Call Strings
  - **3** Procedure Summaries

# Call Strings of Length 1



# **Degrees of Call-Site Sensitivity**

- ▶ We used *call strings* to make call sites explicit:
  - ▶ [*b*<sub>6</sub>] in 2<sub>[*b*<sub>6</sub>]</sub>
- "Strings" because this idea generalises:
  - Can keep track of multiple callers
  - ▶ Example: 2-call-site sensitivity: [b<sub>0</sub>, b<sub>6</sub>] vs [b<sub>1</sub>, b<sub>6</sub>]

# Teal fun g(y: int): int = { return y } fun f(x: int): int = { return g(x) // b<sub>6</sub> + g(5); // b<sub>7</sub> } ... f(1); // b<sub>0</sub> f(2): // b<sub>1</sub>

Must bound length of call strings to ensure termination

# Summary

#### Strategies for call-site sensitive analysis:

#### Inlining

- Copy subroutine bodies for each caller
- Performance cost
- Recursion: fall back to  $\top$

#### Call Strings

- Call string length:
  - Unbounded: Maximum precision, may not terminate with recursion
  - Bounded to length k: k degrees of call site sensitivity (speed/precision trade-off)

# **Precise Interprocedural Dataflow**

- Precision via one of:
  - 1 Inlining or AST cloning
  - 2 Call Strings
  - **8** Procedure Summaries

#### **Summarising Procedures**

f(x, y) =



#### Compose transfer functions:

- $trans_{b_0} \circ trans_{b_1} = [z \mapsto 0]$
- ▶  $trans_{b_0} \circ trans_{b_1} \circ trans_{b_2} = [z \mapsto \{x\}]$
- ▶  $trans_{b_0} \circ trans_{b_1} \circ trans_{b_3} = [z \mapsto \{y\}]$
- ▶  $trans_{b_0} \circ trans_{b_1} \circ (trans_{b_2} \sqcup trans_{b_3}) = [z \mapsto \{x, y\}]$
- ▶  $trans_{b_0} \circ trans_{b_1} \circ (trans_{b_2} \sqcup trans_{b_3}) \circ trans_{b_4} = [z \mapsto \{x, y\}]$

#### Procedure Summaries vs Recursion

f calls g calls h calls f

- Requires additional analysis to identify who calls whom
- Compute summaries of mutually recursive functions together
- Recursive call edges analogous to loops
- Loops/recursion require fixpoint computation over function composition!

# **Procedure Summaries**

Composing transfer functions yields a combined transfer function for f():

```
\mathit{trans_f} = [\mathbf{return} \mapsto \{x, y\}]
```

▶ Use *trans*<sup>f</sup> as transfer function for f(), discard f's body

#### Opportunities:

- Can yield compact subroutine descriptions
- Can speed up call site analysis dramatically

#### Challenges:

- More complex to implement
- Loops / recursion are challenging

#### Limitations:

- Requires suitable representation for summary
- ▶ Requires mechanism for abstracting and applying summary
- Worst cases:
  - ▶ *trans*<sub>f</sub> is symbolic expression more complex than f itself

#### **Procedure Summaries for Dataflow**

- ▶ Procedure Summaries *can* be as precise as inlining/call strings
- ... but only for Distributive Frameworks
  - ► Algorithm for Gen/Kill analyses: IFDS
  - Algorithm for other analyses: IDE

# Summary

Making interprocedural dataflow precise:

Call-site sensitive approaches:

- Inlining
- Call strings

#### ► Call-site insensitive approaches:

- Procedure Summaries
  - Precise + compact summaries only possible for distributive frameworks

# Procedure Summaries with Gen/Kill-sets

- ► Special case: Gen/Kill sets
- Transfer functions always consist of
  - ► Gen-set
  - Kill-set
- No symbolic reasoning needed:
  - Compose gen-sets, kill-sets, receive combined gen/kill-set for subroutine
- Maybe there are other such cases?

Greta Yorsh, Eran Yahav, Satish Chandra: "Generating Precise and Concise Procedure Summaries", in Principles of Programming Languages 2008

#### **Procedure Summaries for Dataflow**

- ▶ Procedure Summaries *can* be as precise as inlining/call strings
- ... but only for Distributive Frameworks
  - ► Algorithm for Gen/Kill analyses: IFDS
  - Algorithm for other analyses: IDE

#### **Representation Relations**

Example procedure summary representation:



'May be null' analysis

► 
$$c \rightarrow d$$
:  
if  $P(c) \in in_b$  then  $P(d) \in out_b$ 

- Representation Relations relate
   in<sub>b</sub> and out<sub>b</sub> variables V
- $\blacktriangleright R \subseteq (\mathcal{V} \cup \{\mathbf{0}\}) \times (\mathcal{V} \cup \{\mathbf{0}\})$
- if  $\langle \mathbf{0}, X \rangle \in R$ :
  - X always 'may be null' in  $\mathbf{out}_b$
- ▶ if  $\langle Y, X \rangle \in R$ :
  - If Y 'may be null' in  $in_b$ :
  - $\Rightarrow X$  'may be null' in **out**<sub>b</sub> 28/43

# **Composing Representation Relations**



Composed representation relations are again representation relations

#### Joining Control-Flow Paths



#### Joining Control-Flow Paths



#### Joining Control-Flow Paths



| Logical "Or" |
|--------------|
|              |

#### **Dataflow via Graph Reachability**

$$n = \langle b, v \rangle$$

- ▶ Assume binary latice  $({\top, \bot}, \sqsubseteq, \sqcap, \sqcup)$ 
  - $\blacktriangleright \top \sqcup y = \top = x \sqcup \top \text{ and } \bot \sqcup \bot = \bot$
  - ▶ Typical for 'May' analysis (P(x) = 'x may be null')

- Encode Dataflow problem as Graph-Reachability
- Graph nodes  $n = \langle b, v 
  angle$ 
  - b: CFG node
  - v: Variable or 0
    - ▶ 0:  $\langle b_1, 0 \rangle$  →  $\langle b_2, y \rangle$ : P(y) at  $b_2$  holds always
    - ▶ Variable:  $\langle b_1, x \rangle \longrightarrow \langle b_2, y \rangle$ : P(x) at  $b_1 \implies P(y)$  at  $b_2$

#### **Dataflow via Graph Reachability**

$$n = \langle b, v \rangle$$

- ▶ Assume binary latice  $({\top, \bot}, \sqsubseteq, \sqcap, \sqcup)$ 
  - $\blacktriangleright \top \sqcup y = \top = x \sqcup \top \text{ and } \bot \sqcup \bot = \bot$
  - ▶ Typical for 'May' analysis (P(x) = 'x may be null')

Equivalently for 'Must' analysis:

'x must be null' = not ('x may be non-null')

- Encode Dataflow problem as Graph-Reachability
- Graph nodes  $n = \langle b, v \rangle$ 
  - b: CFG node
  - v: Variable or 0
    - ▶ 0:  $\langle b_1, 0 \rangle$  →  $\langle b_2, y \rangle$ : P(y) at  $b_2$  holds always
    - ▶ Variable:  $\langle b_1, x \rangle \longrightarrow \langle b_2, y \rangle$ : P(x) at  $b_1 \implies P(y)$  at  $b_2$

# A Dataflow Worklist Algorithm: IFDS

- Call-site sensitive interprocedural data flow algorithm
- ▶ IFDS = (Interprocedural Finite Distributive Subset problems)
- 'Exploded Supergraph':  $G^{\sharp} = (N^{\sharp}, E^{\sharp})$ 
  - $\blacktriangleright N^{\sharp} = N_{\mathsf{CFG}} \times (\mathcal{V} \cup \{0\})$
  - Plus parameter/return call edges
- Property-of-interest holds if reachable from  $\langle b^s_{main}, \mathbf{0} \rangle$ 
  - ▶  $b_{main}^{s}$  is CFG *ENTER* node of main entry point
- Key ideas:
  - Worklist-based
  - Construct Representation Relations on demand
  - Construct 'Exploded Supergraph'
    - CFG of all functions  $\times \mathcal{V} \cup \{\mathbf{0}\}$

#### **IFDS** Datastructures

Instead of  $\langle \langle b_0, v_0 \rangle, \langle b_3, v_0 \rangle \rangle$  we also write:  $\langle b_0, v_0 \rangle \rightarrow \langle b_3, v_0 \rangle$ 







SUMMARYINST

Generated from summary nodes Otherwise equivalent to  $N^{\sharp}$ -edges

# **IFDS Strategy**

Algorithm distinguishes between three types of nodes:



# **On-demand processing**

Procedure propagate $(n_1 \rightarrow n_2)$ : begin if  $n_1 \rightarrow n_2 \in PATHEDGE$  then return PATHEDGE := PATHEDGE  $\cup \{n_1 \rightarrow n_2\}$ WORKLIST := WORKLIST  $\cup \{n_1 \rightarrow n_2\}$ end

# **Running Example**

#### Teal-0: main()

```
var default := null;
fun main() = {
  var a := get(3);
  default := 1;
  var b := get(3);
  return b;
}
```

#### Teal-0: *get()*

```
fun get(c) = \{
  if c == 0 {
    z := default;
  } else {
    z := read_int();
    if z < 0 {
      z := get(c - 1);
    }
  }
  return z;
}
```































































# The IFDS Algorithm: Initialisation and Propagation)

```
\begin{array}{l} \textbf{Procedure Init():}\\ \textbf{begin}\\ \textbf{WORKLIST} := \textbf{PATHEDGE} := \emptyset\\ \texttt{propagate}(\langle b^s_{\mathsf{main}}, \mathbf{0} \rangle \rightarrow \langle b^s_{\mathsf{main}}, \mathbf{0} \rangle)\\ \texttt{ForwardTabulate()}\\ \textbf{end} \end{array}
```

```
Procedure propagate(n_1 \rightarrow n_2): begin
```

if  $n_1 \rightarrow n_2 \in \text{PATHEDGE}$  then

#### return

PATHEDGE := PATHEDGE  $\cup \{n_1 \rightarrow n_2\}$ 

WORKLIST := WORKLIST  $\cup \{n_1 \rightarrow n_2\}$ 

end

# **IFDS: Forward Tabulation**

**Procedure** ForwardTabulate(): begin while  $n_0 \rightarrow n_1 \in \text{WORKLIST}$  do WorkList := WorkList  $\setminus \{n_0 \rightarrow n_1\}$  $\langle b_0, v_0 \rangle = n_0; \langle b_1, v_1 \rangle = n_1$ if *b*<sub>1</sub> is neither *Call* nor *Exit* node then foreach  $n_1 \rightarrow n_2 \in E^{\sharp}$ : propagate( $n_0 \rightarrow n_2$ ) else if b<sub>1</sub> is Call node then begin **foreach** call edge  $n_1 \rightarrow n_2 \in E^{\sharp}$ : propagate( $n_2 \rightarrow n_2$ ) foreach non-call edge  $n_1 \rightarrow n_2 \in E^{\sharp} \cup \text{SUMMARYINST}$ : propagate( $n_0 \rightarrow n_2$ ) end else if b<sub>1</sub> is *Exit* node then begin **foreach** caller/return node pair  $b_i^c$ ,  $b_i^r$  that calls  $b_0$  and vars  $v_0$ ,  $v_1$  do  $n_s = \langle b_i^c, v_0 \rangle; n_r = \langle b_i^c, v_1 \rangle$ if  $\{n_s \to n_0, n_0 \to n_1, n_1 \to n_r\} \subset E^{\sharp}$  and not  $n_s \to n_r \in \text{SummaryINST}$  then SUMMARYINST := SUMMARYINST  $\cup \{n_s \rightarrow n_r\}$ foreach  $n_z \rightarrow n_s \in \text{PATHEDGE}$ : propagate $(n_z, n_r)$ end done end done end

# Summary: IFDS Algorithm

- Computes yes-or-no analysis on all variables
  - Original notion of 'variables' is slightly broader)
- Represents facts-of-interest as nodes  $\langle b, v \rangle$ :
  - b is node (basic block) in CFG
  - $\triangleright$  v is variable that we are interested in

Uses

- 'Exploded Supergraph' G<sup>#</sup>
  - All CFGs in program in one graph
  - Plus interprocedural call edges
- Representation relations
- Graph reachability
- A worklist
- Distinguishes between Call nodes, Exit nodes, others
- Demand-driven: only analyses what it needs
- Whole-program analysis
- Computes Least Fixpoint on distributive frameworks

#### Outlook

- More static analysis on Tuesday
- Lab 3 will go up today

http://cs.lth.se/EDAP15