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Welcome back!

▶ Lab 2: Bugfix pushed
▶ Lab 3: Simplified (but still two parts)
▶ Office hours:

▶ Wednesdays 14:30–15:30
▶ Thursdays 13:15–14:00

Questions?
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What about subroutines?

Teal
var x := max(0, 5);
print(10 / x); // Division by zero?

▶ Understanding code usually requires understanding
subroutines like max
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Inter- vs. Intra-Procedural Analysis

▶ Intraprocedural: Within one procedure
▶ Data flow analysis so far

▶ Interprocedural: Across multiple procedures
▶ Type Analysis, especially. with polymorphic type inference
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Limitations of Intra-Procedural Analysis

Teal-0
a := 7;
d := f(a, 2);
e := a + d;

Teal-0
fun f(x, y) = {

var z := 0;
if x > y {

z := x;
} else {

z := y;
}
return z;

}

How can we compute Constant Propagation here?
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A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)(return)
br

6

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 ⊔ outb4 = outbr
6

▶ outb7 : e 7→ {9, 14}

Works rather straightforwardly!
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Inter-Procedural Control Flow Graph

e := f(1, 5)e := f(1, 5)
bc

x

(return)(return)
br

x

ENTERENTER
subroutine start

EXITEXIT
subroutine end

▶ Split call sites bx into call (bc
x ) and return (br

x) nodes
▶ Intra-procedural edge bc

x br
x carries environment/store

▶ Inter-procedural edge ( ):
▶ Call site callee: substitutes parameters
▶ Call site return: substitutes result
▶ Otherwise like intra-procedural data flow edge
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A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := f(1, 5)e := f(1, 5)
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

(return)(return)
br

6

(return)(return)
br

7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
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Valid Paths

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)(return)
br

6

(return)(return)
br

7

▶ [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive interprocedural analyses consider only valid paths
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Summary

▶ Intraprocedural Analysis:
▶ Considers one subroutine at a time
▶ Calls to other subroutines treated as “worst-case”

(e.g., ⊤ for dataflow analysis)
▶ Interprocedural Analysis:

▶ Analyses calls to subroutines
▶ For Dataflow analysis: uses Interprocedural CFG (ICFG)

▶ ICFG represents subroutine calls as two nodes:
call and return

▶ Special Call/Return edges caller ⇔ callee
▶ Naïve interpretation of ICFG call/return edges “spills” analysis

results across call sites
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Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Use same abstraction for each call site
▶ Examples for dataflow analysis:

▶ Treat ICFG call/return edges like “regular” call/return edges
▶ Use same transfer function everywhere (e.g., for builtin functions)

▶ Call-site sensitive
▶ Use different abstractions at different call sites
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Call-Site Insensitive Analysis

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Call-site insensitive: analysis merges all callers to f()
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries
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Inlining

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

z := 0

if ...

z := x z := y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries
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Call Strings of Length 1

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7[b6]}
y 7→ {2[b6]}

x 7→ {1[b7]}
y 7→ {5[b7]}

x 7→ {7[b6]}|{1[b7]}
y 7→ {2[b6]}|{5[b7]}

z 7→ {1[b7], 5[b7]}|{2[b6], 7[b6]}d 7→ {2[b6], 7[b6]}

e 7→ {1[b7], 5[b7]}
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Degrees of Call-Site Sensitivity
▶ We used call strings to make call sites explicit:

▶ [b6] in 2[b6]
▶ “Strings” because this idea generalises:

▶ Can keep track of multiple callers
▶ Example: 2-call-site sensitivity: [b0, b6] vs [b1, b6]

Teal
fun g(y: int): int = { return y }
fun f(x: int): int = {

return g(x) // b6
+ g(5); // b7

}
...

f(1); // b0
f(2); // b1

Must bound length of call strings to ensure termination
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Summary

Strategies for call-site sensitive analysis:
▶ Inlining

▶ Copy subroutine bodies for each caller
▶ Performance cost
▶ Recursion: fall back to ⊤

▶ Call Strings
▶ Call string length:

▶ Unbounded: Maximum precision, may not terminate with
recursion

▶ Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

20 / 43



Summarising Procedures

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

▶ Compose transfer functions:
▶ transb0 ◦ transb1 = [z 7→ 0]
▶ transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
▶ transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) = [z 7→ {x , y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) ◦ transb4 = [z 7→ {x , y}]
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Procedure Summaries vs Recursion

f calls g calls h calls f

▶ Reqiures additional analysis to identify who calls whom
▶ Compute summaries of mutually recursive functions together
▶ Recursive call edges analogous to loops
▶ Loops/recursion require fixpoint computation over function

composition!
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Procedure Summaries
▶ Composing transfer functions yields a combined transfer

function for f():

transf = [return 7→ {x , y}]
▶ Use transf as transfer function for f(), discard f’s body
▶ Opportunities:

▶ Can yield compact subroutine descriptions
▶ Can speed up call site analysis dramatically

▶ Challenges:
▶ More complex to implement
▶ Loops / recursion are challenging

▶ Limitations:
▶ Requires suitable representation for summary
▶ Requires mechanism for abstracting and applying summary
▶ Worst cases:

▶ transf is symbolic expression more complex than f itself
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Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE
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Summary

Making interprocedural dataflow precise:
▶ Call-site sensitive approaches:

▶ Inlining
▶ Call strings

▶ Call-site insensitive approaches:
▶ Procedure Summaries

▶ Precise + compact summaries only possible for distributive
frameworks
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Procedure Summaries with
Gen/Kill-sets

▶ Special case: Gen/Kill sets
▶ Transfer functions always consist of

▶ Gen-set
▶ Kill-set

▶ No symbolic reasoning needed:
▶ Compose gen-sets, kill-sets, receive combined gen/kill-set for

subroutine
▶ Maybe there are other such cases?
Greta Yorsh, Eran Yahav, Satish Chandra: “Generating Precise and Concise
Procedure Summaries”, in Principles of Programming Languages 2008
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Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE
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Representation Relations
Example procedure summary representation:

x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x
x := y
y := t }

0

0

x

x

y

y

‘May be null’ analysis

▶ P(v): v may be null
▶ P(0) always holds

▶ c d :
if P(c) ∈ inb then P(d) ∈ outb

▶ Representation Relations relate
inb and outb variables V

▶ R ⊆ (V ∪ {0}) × (V ∪ {0})
▶ if ⟨0, X ⟩ ∈ R :

X always ‘may be null’ in outb
▶ if ⟨Y , X ⟩ ∈ R :

If Y ‘may be null’ in inb:
⇒ X ‘may be null’ in outb 28 / 43



Composing Representation Relations

Representation Relations (may be null analysis):
x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x;
x := y;
y := t; }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations
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Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
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Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
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Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
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Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)

▶ Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)

▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2
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Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)
▶ Equivalently for ‘Must’ analysis:

‘x must be null’ = not (‘x may be non-null’)
▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2
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A Dataflow Worklist Algorithm: IFDS

▶ Call-site sensitive interprocedural data flow algorithm
▶ IFDS = (Interprocedural Finite Distributive Subset problems)
▶ ‘Exploded Supergraph’: G ♯ = (N ♯, E ♯)

▶ N♯ = NCFG × (V ∪ {0})
▶ Plus parameter/return call edges

▶ Property-of-interest holds if reachable from ⟨bs
main, 0⟩

▶ bs
main is CFG ENTER node of main entry point

▶ Key ideas:
▶ Worklist-based
▶ Construct Representation Relations on demand
▶ Construct ‘Exploded Supergraph’

▶ CFG of all functions × V ∪ {0}
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IFDS Datastructures

⟨b0, v0⟩ → ⟨b3, v0⟩
⟨⟨b0, v0⟩, ⟨b3, v0⟩⟩Instead of we also write:

⟨b0, v0⟩ ⟨b3, v0⟩
WorkList edge All WorkList edges are also PathEdge edges

PathEdge edge Result of our analysis

N♯-edge

SummaryInst Generated from summary nodes
Otherwise equivalent to N♯-edges
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IFDS Strategy

▶ Algorithm distinguishes between three types of
nodes:
▶ Exit nodes (be

f )
▶ Call nodes (bc

x )
▶ Other nodes

e := f(1, 5)

(return)

bc
x

br
x

ENTER f
bs

f

EXIT f
be

f
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On-demand processing

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
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Running Example

Teal-0: main()
var default := null;
fun main() = {

var a := get(3);
default := 1;
var b := get(3);
return b;

}

Teal-0: get()
fun get(c) = {

if c == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);
}

}
return z;

}
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d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null
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d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d
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property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
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return
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▶ Pick e = n1 → nc

2 off the work queue
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2 is call (c)?
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▶ Find all parameter edges
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2 → ⟨bs
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f , v⟩ → ⟨bs

f , v⟩)
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f , v⟩)
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(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc
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1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
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▶ Find all n → nc
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▶ a may be null
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d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
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The IFDS Algorithm: Initialisation and
Propagation)

Procedure Init():
begin

WorkList := PathEdge := ∅
propagate(⟨bs

main, 0⟩ → ⟨bs
main, 0⟩)

ForwardTabulate()
end

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
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IFDS: Forward Tabulation
Procedure ForwardTabulate():
begin

while n0 → n1 ∈ WorkList do
WorkList := WorkList \ {n0 → n1}
⟨b0, v0⟩ = n0; ⟨b1, v1⟩ = n1
if b1 is neither Call nor Exit node then

foreach n1 → n2 ∈ E ♯:
propagate(n0 → n2)

else if b1 is Call node then begin
foreach call edge n1 → n2 ∈ E ♯:

propagate(n2 → n2)
foreach non-call edge n1 → n2 ∈ E ♯ ∪ SummaryInst:

propagate(n0 → n2)
end else if b1 is Exit node then begin

foreach caller/return node pair bc
i , br

i that calls b0 and vars v0, v1 do
ns = ⟨bc

i , v0⟩; nr = ⟨bc
i , v1⟩

if {ns → n0, n0 → n1, n1 → nr } ⊆ E ♯ and not ns → nr ∈ SummaryInst then begin
SummaryInst := SummaryInst ∪ {ns → nr }
foreach nz → ns ∈ PathEdge:

propagate(nz , nr )
end done end done end
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Summary: IFDS Algorithm
▶ Computes yes-or-no analysis on all variables

▶ Original notion of ‘variables’ is slightly broader)
▶ Represents facts-of-interest as nodes ⟨b, v⟩:

▶ b is node (basic block) in CFG
▶ v is variable that we are interested in

▶ Uses
▶ ‘Exploded Supergraph’ G♯

▶ All CFGs in program in one graph
▶ Plus interprocedural call edges

▶ Representation relations
▶ Graph reachability
▶ A worklist

▶ Distinguishes between Call nodes, Exit nodes, others
▶ Demand-driven: only analyses what it needs
▶ Whole-program analysis
▶ Computes Least Fixpoint on distributive frameworks
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Outlook

▶ More static analysis on Tuesday
▶ Lab 3 will go up today

http://cs.lth.se/EDAP15
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