LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DATAFLOW ANALYSIS 2

Christoph Reichenbach

Welcome back!

» No new homework this week
» Quiz deadline clarification by Friday
» Questions?

2/40

Data Flow Analysis on CFGs

> joiny: Join Function
» transy: Transfer Function

> iny: knowledge at entrance of b
iny, = join, (outy,, ... outy,)
» out,: knowledge at exit of b

outy,, = transp, (inp,)

» Forward Analysis shown here
» Backward Analysis: flip edge direction

3/40

Join and Transfer Functions

» [: Abstract Domain

> Ordered by (C) C L x L
Tel forall x: xC T Top element
L el forall x: 1L Cx Bottom element (optional)

»trans, : L — L x C y
» monotonic 4
cjoimg i Lx .. oxL— L el Eotrans(y)
» pointwise monotonic x C vy
3
Jjoing(z1, ... zk, Xy ..y zy) E joing(zy, ..., Zk, Y,

4/40

Monotone Frameworks

Monotone Framework Lattice
Abstract Domain L= (L,C,m,L)
Joiny(xi, ..., xn) x1U...Uxp

xMy (Used next week)
‘Unknown’ start value 4L
‘Could be anything’ end value T

» Monotone Frameworks (Killdall '77):

» Lattice L of finite height
(= satisfies Ascending Chain Condition)
» Monotone trans
> ‘compatible’ with semantics

—> Data flow analysis with Soundness and Termination guarantee

» Don't need M yet, so technically we can get by with a
Semilattice.

6/40

Product Lattices and Values

» Consider Constant Propagation + Folding on lattice Z |

.
-3 -2 -1 0 1 2 3
1

» Program with three variables: x, y, z
» Lattice value that represents the

@ outcome of this code:
var x := 0
var y := 1 X y z
var z := 2 < .1, 2 >

»Value in Z] x Z| x Z]

7/40

Transfer Functions and Updates

» With n program variables, abstract domain is (Z])"
» For each CFG node b;:

> Transfer functions trans; = [b;]
> [bi] update lattice elements (monotonically):

[6:] : (Z])" — (Z1)"

» For readability: denote o € (Z])" as finite maps (i.e., write
[varname — abstract value]):

var x := 0
var y := 0 transg(o) = [bo](c) =[x — O;
_ y — 0

var z := 0
z — 0]

8/40

Simplified notation

bl
?y =7 transy(o) = [k1](0) =[x — o(x);
z =z + 1 y — T,
z = o(z2)+1]
transy (o) = [b1](c) = |
y — T,
z = o(z)+1]
transy(o) =[] o) =y — T,
z — olz)+1]
trans; = [[bl]] = [y = T,
z = z+1]

9/40

Formalising a Naive Algorithm

outgy = transy(ing) = transp(L)
out; = transi(iny) = transi(outy L outy)
out, = transi(inp) = transy(out;)
out; = transi(in3) = transs(out;)
» Lattices outy : Lg, ..., outs : L3

» Can build lattice for entire program:
> LO...3 = Lo X L1 X L2 X L3
» Lo.3= (Lo, L1, 12, 13)
» Monotone transfer function:

transo..3({(00,01,02,03)) =
transp(oo),
trans (oo U 02),
transy(o1),
trans3(o1)

10/40

Reaching a Solution

» Abstract approach:
» Program P:
> “Program Lattice” Lp = Lo x --- X L,
» 1p={(Llog,...,Ln): initial analysis state
> transp: Compute one step of naive analysis
» Repeat transp until solution fp :

fp, = transp(Lp)
» n is the minimum number of steps until result does not change
any more (= we have a solution)
» fp, is Fixpoint of transp:
fp, = transi(fp,)

» Fixpoint exists in Lp iff transs satisfies Ascending Chain
Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

11/40

Naive Iteration

Analysis on x :=1 transp([))
Z] xZ] if y =[x —1,]

transp({ino, outo, outy, outz)) =

in07
transo(ino),
trans; (outo),
)

trans,(outo L out;

transi(c) = o

trans([))
=1 , ¥ = X]

| Lp | transp(Lp) transi(Lp) transp(Lp)

ing 1 | L 1 L

outg 1L | x—=1 x+—1 x—1

out; 1 | L x—1 x+—1

out, 1L x—ly—1l x—1ly—1

12/40

Fixpoints

» Repeat transp until we reach a fixpoint
» Can start from any point a
» Multiple fixpoints possible
» Each is a sound solution
(for compatible transfer functions)

» Form a lattice
(Knaster-Tarski, 1933)

» Least Fixpoint: Highest Precision

Starting from any point? Even T7?

13/40

Naive Iteration

Analysis on x :=1 transp([))
ARV if y =[x—1,]

transp({ino, outo, outy, outz)) = transy(c) = o

ino7

transo(ino), transy([’ 1)
trans (outy), O s x]
trans,(outo Ll out;) - » Y

| Tp | transp(Tp) transs(T p) transy(T p)

ing T 1T T T

outg || T | x—=1ly—T x—=ly—=T x—=1lLy—T
out; T | T x—1ly—T x—L1Ly—T
out, T | T T x—1ly—1

14 /40

Starting from 1 vs T

» Starting from T works fine

» Naive iteration can increase precision of imprecise starting
assumptions

16 /40

Summary

» Monotone Frameworks:
» Combine:

» Monotone transfer functions trans
> Finite-Height Lattices

Jjoiny(o1,...,06) = o1 U...Uok

» Guarantee:
» Termination
» Soundness
» With Monotone Frameworks, iterating trans, and join,
produces Fixpoint (or Fixed Point)
» Works from any starting point, possibly different fixpoint
> Fixpoints form Fixpoint Lattice
> Least Fixpoint (Bottom element) is most precise solution

» (Soundness only if trans, are compatible)

17/40

An Algorithm for Fixpoints

» So far: naive algorithm for computing fixpoint
» Produces a fixpoint
> Keeps iterating all transy, / join, functions, even if nothing
changed

» Optimise processing with worklist
» Set-like datastructure:
> add element (if not already present)
> contains test: is element present?
> pop element: remove and return one element
» Tracks what's left to be done
= "MFP" (Minimal Fixed Point) Algorithm

(Does not always produce best result — will see later today)

18/40

Example: Constant Propagation +
Folding with Size Limit

» For next example, we use the following lattice:
» Elements:
ZU{S|S CZand #S <3}
» Relations and operations:
»al b« aCh

»U=U
> =N
» T =7
>J_:@

» Lattice has finite height
Longest chains have five elements:

DE{}CE{xyt E{xy,z2} CZ

19/40

MFP Example:

by,
return [x, y, z]

b

inputs

transy,
PAE:

bo

0

by

{bo, by, b3}

x+1

b

{h1}

bs

{b1}

by

{bo, b2, b3}

X

<= [N

NI [N|N|H

joiny, (01,02) = |

N < X

—
—
—

[
g
(e

1
1
1

—_—— —

x) U oz(x),
y)Uoa(y),
z)Uoa(2)]

Worklist
bo — b1
by — by
by — by
b1 — b3
by — by
by — b1
b3 — by
bz — b1

21/40

MFP Example:

by,
return [x, y, z]

b

inputs

transy,
PAE:

bo

0

by

{bo, by, b3}

x+1

b

{h1}

bs

{b1}

by

{bo, b2, b3}

X

<= [N

NI [N|N|H

joiny, (01,02) = |

N < X

—
—
—

[
g
(e

1
1
1

—_—— —

x) U oz(x),
y)Uoa(y),
z)Uoa(2)]

Worklist
[bg — b
by — by
by — b2
b1 — b3
by — by
b, — by
b3 — by
b3 — by

21/40

MFP Example:

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
({0}, {0}, {1}) bs {b1} y 1y
X y z by | {bo, ba, b3} | x y |z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;: by — b1l
> out, = transo(ino) 2(1) : Z;
b1 — b3
by — by
by — b1
b3 — by
b,) b3 — by
return [x, y, z]

21/40

MFP Example:

transy
b inputs X ‘ y ‘ z
: bg [0 01
= o= 1l by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
(RO {1}] b By [|v|y
X KK by | {bo, b2, b3} | x y |z
C7 P - joiny (01,02) = [x = o1(x)Uoa(x),
b=* y = oai(y)Uoay),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;: by — b1l
> out, := transo(ino) 2(1) : Z;
> Is out, IZ in;?
b1 — b3
by — by
by — b1
Fiva
b, ¥ by — by
return [x, y, z]

21/40

MFP Example:

({0}, {0}, {1}))

y

\
(LU {0}, {0}, {1})]

| h/

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
b3 {b1} vy
b4 {b07 b27 b3} X y 4
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z — o1(z)Uoa(z)]
Worklist
For edge b, — b;: by — b1l
> out, := transo(ino) 20 : 24
> Is out, IZ in;? 1 2
b1 — b3
> Yes: by — by
> in; :=in; L out, by — by
b3 — by
bz — b1

21/40

MFP Example:

hd

(

h/

return [x, y, z]

transp
b inputs X ‘ y ‘ z
bo 0 0 0|1
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} x vy
b4 {b07 b27 b3} X y 4
Jjoiny, (01, 02) [x — o1(x)Uoa(x),
y = oa(y)Uoaly),
z — o1(z)Uoa(z)]
Worklist
For edge b, — b;: by — b1l
> out, := transo(ino) 2(1) : Z:
> in:?
Is out, [Z in;? by —s by
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges by — by
from b, to worklist b3 = b1
(if not already there)

21/40

MFP Example:

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
(bs {b1} x vy
X by | {bo, b2, b3} | x y |z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;: bo—rt7
> out, := transo(ino) 2(1) : g;
> in:?
Is out, [Z in;? by —s bs
> Yes: by — by
> in; :=in; L out, b, — by
h / > Add all outgoing edges by — by
b, ¥ from b, to worklist b3 = b1
return [x, z] (if not already there)

21/40

MFP Example:

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
({0}, {0}, {1})] b | () | |v|y
Xy \Z by | {bo,bobs} | x|y |-
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
b
> out, := transo(ino) bo = b
> Is out, IZ in;? by — b,
° " b1 — b3
> Yes: by — by
> in; :=in; Uout, by — by
> Add all outgoing edges b3 — by
b,y from b, to worklist b3 — by
return [x, y, z] (if not already there)

21/40

MFP Example:

({0}, {0}, {1})]

y

@ 100 {01 {1})

{1 {0 h

lu <{1} {0} {1}))

b,y /
return [x y, zJ

transp
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
b4 {b07 b27 b3} X y 4
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
> out, = transo(ino) 20 : 24
> Is out, IZ in;?
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges by — by
from b, to worklist b3 — by
(if not already there)

21/40

MFP Example:

<{0},{0},{1@

y
{0} {0}, {1})

I {1}, {0}, {1}) I

<{1} {0} {1}>

h/

b4 h
return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07 by, b3} X Yy | Z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, := transo(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — bi
> in; :=in; L out, b, — by
> Add all outgoing edges b3 — by
from b, to worklist b3 — by
(if not already there)

21/40

MFP Example:

transp
b inputs X ‘ y ‘ z
bo 0 0 0|1
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
({0}, {0}, {1})] b | () | |v|y
Xy \z bs | {bo, bp, b3} | x y |z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, = transo(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, by — by
> Add all outgoing edges b3 — by
b,y from b, to worklist b3 — by
return [x, y, z] (if not already there)

21/40

MFP Example:

(

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07 by, b3} X Yy | Z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, = transo(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges b3 — by
from b, to worklist b3 = by
(if not already there)

21/40

MFP Example:

(

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07 by, b3} X Yy | Z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, = transo(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges b3 — by
from b, to worklist b3 — b
(if not already there)

21/40

MFP Example:

(

{1} {03 {1})
‘ ({13,403, 1)
(v = 7] |-
[({1}.{0. {o))

return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 01
by {bo,bz,bg,} x+1|y|z
by {b1} X 7|z
bs {b1} vy
by {b07 by, b3} X Yy | Z
joiny (01,02) = [x = o1(x)Uoa(x),
y = oa(y)Uoaly),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, = transo(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges b3 — by
from b, to worklist b3 — b
(if not already there)

21/40

MFP Example:

transy
b inputs X ‘ y ‘ z
bo 0 0 01
bi | {bo,bo, b3} | x+1 |y |z
by {b1} X 7]z
(b3 {b1} vy
X by | {bo, b2, b3} | x vz
joiny (01,02) = [x = o1(x)Uoa(x),
y = oi(y)Uoa(y),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, := transy(ino)
> s OTJtO Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, b, — by
> Add all outgoing edges by — by
X from b, to worklist [Ba—1]
return [x, v, z] (if not already there)

MFP Example:

{0}, {0}, {1})

y

(

\
({0,1}, {0}, {1})]

b4 h
return [x, y, z]

transy
b inputs X ‘ y ‘ z
bo 0 0 0|1
by {bo, by, b3} x+1|y|z
by {b1} X 7|z
b3 {b1} X vy
b4 {b07 b27 b3} X y z
joiny (01,02) = [x = o1(x)Uoa(x),
y = o(y)Uoe(y),
z = o1(z)Uo(2)]
Worklist
For edge b, — b;:
. bO — b4
> out, = transo(ino)
> s Oflto Z in,-?o ° by — by
> Yes: by — by
> in; :=in; L out, b, — by
> Add bs — by
from| Re-add previously . b
: —
(if n removed edge ! >

21/40

The MFP Algorithm

Procedure MFP(Ll, U, T, CFG, trans_, is-backward):

begin

if is-backward then reverse edges(CFG);

worklist

:= edges(CFG); -- edges that we need to look at

foreach n € nodes(CFG) do

in[n]
done

= 1 -- state of the analysis

while not empty(worklist) do

(n,n)
out_n :
if out_

n

in[n']

pop (worklist); -- Edge n—n’
trans,(in[n]) ; -- Consider caching out_n
[Z in[n’] then begin

:= in[n'] U out_n;

foreach n’ € successor-nodes(CFG, n’) do
push(worklist, (n’,n"”));

done
end
done
return in
end

’

Worklist allows focussing effort!

22/40

Summary: MFP Algorithm

» Product Lattice allows analysing multiple variables at once
» Compute data flow analysis:

> Initialise all nodes with L
» Repeat until nothing changes any more:

> Merge updates monotonically via L
> Apply transfer function
> Propagate changes along control flow graph

» Compute fixpoint
» Use worklist to increase efficiency
» Distinction: Forward/Backward analyses

23/40

MFP revisited

Reaching Definitions analysis: which program location might a
given value be coming from?

—l— — {EOJ Z17 62763764}

! N
.,
,
’,

{€0a£1} 'i {63764}

() {0} {6} {6} {ta)
| =

~

> All subsets of {lo, ..., 04}

@V 4 / » Finite height

return [x, y, z] » Ll =U

24/40

MFP revisited: Transfer Functions

e h'd /

g;

return [x, y, z]

transp, =[x — {lo},
y = {4},
z o (0]
transp, =[x — {{3}]
transp, =[y — {ls}]
transy, =[z — y]

MFP solution at b,

x = {l,ls}
y = {61764}
Z {£1,€2,€4}

» Least Fixpoint!

» Do we always get LFP from MFP?

25 /40

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y = 1] v 1

[[x:3,y:1,z:J_]]

transp, = [z — x + y]

> Lattice: Z]

27 /40

Another Example

transp, = [x+ 1,
y— 3

transp, = [z — x + y]

> Lattice: Z]

27 /40

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
yHl] 7
[[x: 3,y:1,z: JJ]

[x:3,y:1,z: 1]
z :=u(+ y | transy, = [z x+7]
[x:3,y:1,z:4]

> Lattice: Z]

27 /40

Another Example

transp, = [x+ 1,
y— 3

transy, = [x — 3,
y—1] v =1 SN
[[x: 3,y:1,z: JJ] : 13,z 1]

[x:3,y:1,z: 1]
zZ =X + y |transy, =[z—x+7]
[x:3,y:1,z:4]

> Lattice: Z]
»1U3=T=3U1

27 /40

Another Example

transp, = [x+> 3, transy, = [x+— 1,
y—1] v =1 v =3 y 3]
[[x:?;,y:l,z:J_]j [[x:l,y:?;,z:J_]]

AN /

[X:T,y:T,z:J_]]
z :=u(+y |transb3:[z»—>x+y]
[[x:T,y:T,z:T]J

> Lattice: Z]
»1U3=T=3U1
» MFP does compute the Least Fixpoint in our equations. ..
> ... but the fixpoint is worse than expected! 27 /40

Execution paths

> |dea: Let's consider all paths through the program:

{0}

path,,
path,,
path,,
path,,

{
{
{

(
(
(
(

bo) }
bo) }
bO, b1); (bo, b2)}

28/40

The MOP algorithm for Dataflow
Analysis

» Compute the MOP (‘meet-over-all-paths’) solution:
> Iterate over all paths (po, ..., pk) in pathy,
» Compute precise result for that path
» Merge (i.e., join, U) with all other precise results
outy, = |_| transy, o transp, o - - - o transy (L)
(por.wpk)Epathh

Notation: (function composition)

(fog)(x) = f(g(x))

29 /40

MOP vs MFP: Example

z =X +y
Transfer functions Paths
trans,, = id path, = {()}
transp, = [x+— 3,y —1] path, = {(bo)}
transp, = [x+— 1,y — 3] path,, = {(bo)}
transp, = [z x+y] path,, = {(bo, b1), (bo, b2)}
outy, ([z— x4+ y][x — 3,y = (L) U ([z = x + y][x — 1,y — 3](L))

[z—=34+1,x—3,y—=1U[z—= 143, x— 1y 3
[z—=4,x—> T, y—=T]

30/40

MOP vs MFP (1/2)

> In our example:

MFP: [x— T, y—T, z+— T]
MOP: [x—4, y—T, z— T]

» Both are least fixed points
» MOP and MFP use same transfer functions, same lattice
» However, MOP and MFP set up different equations

31/40

MOP vs MFP (2/2)

| ™mopP | MFP
Soundness sound sound
Precision maximal sometimes lower

Decidability || undecidable decidable

» MOP: Merge Over all Paths

(Originally: “Meet Over all Paths”, but we use the Join operator)
> MFP: Minimal Fixed Point

32/40

Summary

» path,: Set of all paths from program start to b
» MOP: alternative to MFP (theoretically)

» Termination not guaranteed

» May be more precise

> ldea:
» Enumerate all paths to basic block
» Compute transfer functions over paths individually
> Join

Why is MFP sometimes as good as MOP?

33/40

MOP vs MFP Fixpoints

MFP
Naive lteration

MOP

Sometimes MOP result
is same as least fixed
point for MFP. ..

34/40

Summary

» MFP
» Avoids redundant computations
» Fixpoint 1 starting point
» Naive fixpoint iteration
» Fixpoint may be above or below starting point
» Can start with T: always sound

> Can control analysis cost with time budget
» May lose precision with loops

» MOP
» One fixpoint, no “starting point”

» Maximal Precision
» Undecidable in general

> Used in Model Checking
» This list is not exhaustive
» All fixpoints are sound overapproximations

35/40

MFP vs the Least Fixpoint

transp, =[x—3, [x := 3 X =1 |transy,, =[x> 1,

y= Ul v o= 1 = 3 v — 3]
[[x:3,y:1,z:J_]J ﬁ:l,y:&zd_]]
AN /

[x:T,y:T,z:J_]J
z ;=u(+y |tran5b3:[z»—>x—|—y]
[[X:T,y:T,z:T]j

» MFP is sometimes equal to MOP
» Challenge:

transy(x LI y) O transy(x) L transp(y)

> join-before-transfer: overapproximate before we can reconcile!

3640

Distributive Frameworks

A Monotone Framework is:
» Lattice L = (£, C, 11, L)
> L has finite height (Ascending Chain Condition)
» All trans, are monotonic

» Guarantees a Fixpoint

A Distributive Framework is:

> A Monotone Framework, where additionally:
» trans, distributes over LI:

transy(x U y) = trans,(x) U transy(y)

for all programs and all x, y, b
» Guarantees that MFP gives same Fixpoint as MOP

37/40

Distributive Problems

» Monotonic:

trans,(x U y) 3 transp(x) U transy(y)
» Distributive:

trans,(x U'y) = transp(x) U transy(y)

» Many analyses fit distributive framework
» Known counter-example: transfer functions on Z]:

> [z x+y]
» Generally:

> depends on > 2 independent inputs
» can produce same output for different inputs

38/40

Summary

» Distributive Frameworks are Monotone Frameworks with
additional property:

transy(x Ll y) = trans,(x) U transy(y)

for all programs and all x, y, b

> In Distributive Frameworks, MFP produces same least
Fixpoint as for MOP

» Some analyses (Gen/Kill analyses, discussed later) are always
distributive

39/40

Outlook

» Quiz deadline clarification by Friday
» Lab priority: Lab 1la for Friday

http://cs.1th.se/EDAP15

40/ 40

http://cs.lth.se/EDAP15

