

Welcome back!

- ▶ No new homework this week
- Quiz deadline clarification by Friday
- Questions?

Data Flow Analysis on CFGs

- ▶ join_b: Join Function
- ▶ trans_b: Transfer Function
- ightharpoonup in_b: knowledge at entrance of b

$$\mathsf{in}_{b_1} = \mathit{join}_{b_1}(\mathsf{out}_{b_2}, \dots, \mathsf{out}_{b_k})$$

▶ out_b: knowledge at exit of b

$$\operatorname{out}_{b_1} = \operatorname{trans}_{b_1}(\operatorname{in}_{b_1})$$

- Forward Analysis shown here
- ► Backward Analysis: flip edge direction

Join and Transfer Functions

- ► L: Abstract Domain
 - ▶ Ordered by $(\sqsubseteq) \subseteq L \times L$

$$\top \in L$$
 for all $x : x \sqsubseteq \top$ Top element $\bot \in L$ for all $x : \bot \sqsubseteq x$ Bottom element (optional)

- trans_b : $L \rightarrow L$
 - ► monotonic
- ▶ $join_b: L \times ... \times L \rightarrow L$
 - pointwise monotonic

 $trans_b(x) \sqsubseteq trans_b(y)$

 $\downarrow join_b(z_1, \ldots, z_k, x, \ldots, z_n) \quad \sqsubseteq \quad join_b(z_1, \ldots, z_k, y, \ldots, z_n)$

Monotone Frameworks

Monotone Framework	Lattice
Abstract Domain	$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup angle$
$join_b(x_1,\ldots,x_n)$	$x_1 \sqcup \ldots \sqcup x_n$
	$x \sqcap y$ (Used next week)
'Unknown' start value	\perp
'Could be anything' end value	Т

- Monotone Frameworks (Killdall '77):
 - ► Lattice *L* of *finite height* (= satisfies Ascending Chain Condition)
 - ► Monotone *trans_b*
 - 'compatible' with semantics
- ⇒ Data flow analysis with Soundness and Termination guarantee
- Don't need □ yet, so technically we can get by with a Semilattice.

Product Lattices and Values

ullet Consider Constant Propagation + Folding on lattice $\mathbb{Z}_{\perp}^{\top}$

var x := 0 var y := 1 var z := 2

- ▶ Program with three variables: x, y, z
- ► Lattice value that represents the outcome of this code:

$$\langle \begin{array}{cccc} x & y & z \\ \langle & \mathbf{0}, & \mathbf{1}, & \mathbf{2} \end{array} \rangle$$

▶ Value in $\mathbb{Z}_{\perp}^{\top} \times \mathbb{Z}_{\perp}^{\top} \times \mathbb{Z}_{\perp}^{\top}$

Transfer Functions and Updates

- ▶ With *n* program variables, abstract domain is $(\mathbb{Z}_{\perp}^{\top})^n$
- ▶ For each CFG node b_i:
 - ▶ Transfer functions $trans_i = \llbracket b_i \rrbracket$
 - ▶ $[b_i]$ update lattice elements (monotonically):

$$\llbracket b_i
rbracket: (\mathbb{Z}_{\perp}^{\top})^n o (\mathbb{Z}_{\perp}^{\top})^n$$

▶ For readability: denote $\sigma \in (\mathbb{Z}_{\perp}^{\top})^n$ as finite maps (i.e., write [varname \mapsto abstract value]):

$$trans_0(\sigma) = \llbracket b_0 \rrbracket (\sigma) = \llbracket x \mapsto 0; \\ y \mapsto 0; \\ z \mapsto 0$$

Simplified notation

```
y := 7
z := z + 1
                                   trans_1(\sigma) = [b_1](\sigma) = [x \mapsto \sigma(x);
                                                                            y \mapsto 7;
                                                                            z \mapsto \sigma(z) + 1
                                    trans_1(\sigma) = \llbracket b_1 \rrbracket(\sigma) = \llbracket \times \mapsto \sigma(\times) ;
                                                                            y \mapsto 7;
                                                                            z \mapsto \sigma(z) + 1
                                    trans_1(\sigma) = [b_1](\sigma) = [y \mapsto 7;
                                                                            z \mapsto \sigma(z) + 1
                                    \mathit{trans}_1 = \llbracket b_1 \rrbracket = \llbracket y \mapsto 7; \\ z \mapsto z+1 \rrbracket
```

Formalising a Naïve Algorithm

- ▶ Lattices $\mathbf{out}_0 : L_0, \ldots, \mathbf{out}_3 : L_3$
- ► Can build lattice for entire program:
 - $L_{0...3} = L_0 \times L_1 \times L_2 \times L_3$
 - $ightharpoonup \bot_{0...3} = \langle \bot_0, \bot_1, \bot_2, \bot_3 \rangle$
 - Monotone transfer function:

$$trans_{0...3}(\langle \sigma_0, \sigma_1, \sigma_2, \sigma_3 \rangle) = trans_0(\sigma_0), \ \langle trans_1(\sigma_0 \sqcup \sigma_2), \ trans_2(\sigma_1), \ trans_3(\sigma_1)$$

Reaching a Solution

- Abstract approach:
 - ▶ Program *P*:
 - ▶ "Program Lattice" $L_P = L_0 \times \cdots \times L_n$
 - $ightharpoonup \perp_P = \langle \perp_0, \dots, \perp_n \rangle$: initial analysis state
 - ▶ trans_P: Compute one step of naïve analysis
 - ▶ Repeat trans_P until solution fp_⊥:

$$\mathit{fp}_{\perp} = \mathit{trans}_{P}^{n}(\perp_{P})$$

- ▶ n is the minimum number of steps until result does not change any more (= we have a solution)
- fp_{\perp} is Fixpoint of trans_P:

$$fp_{\perp} = trans_{P}^{+}(fp_{\perp})$$

Fixpoint exists in L_P **iff** $trans_P^k$ satisfies Ascending Chain Condition

Cousot & Cousot (1979), based on Kleene (1952), based on Knaster & Tarski (1933)

Naïve Iteration

			$\mathit{trans}^2_P(\perp_P)$	$\mathit{trans}^3_P(\perp_P)$
in ₀		$ \begin{array}{c} \bot \\ x \mapsto 1 \\ \bot \\ \bot \end{array} $		T
\mathbf{out}_0		$x \mapsto 1$	$x\mapsto 1$	$x \mapsto 1$
\mathbf{out}_1			$x \mapsto 1$	$x \mapsto 1$
\mathbf{out}_2			$x \mapsto 1, y \mapsto 1$	$x \mapsto 1, y \mapsto 1$

Fixpoints

- ▶ Repeat *trans*_P until we reach a fixpoint
- Can start from any point a
- Multiple fixpoints possible
 - ► Each is a *sound* solution (for *compatible* transfer functions)
 - ► Form a lattice (Knaster-Tarski, 1933)
- ▶ Least Fixpoint: Highest Precision

Starting from any point? Even \top ?

Naïve Iteration

	$ \top_P$	$trans^1_P(op_P)$	$\mathit{trans}_P^2(\top_P)$	
in ₀	T	Т	Т	T
out_0	T	$x \mapsto 1, y \mapsto \top$	$x\mapsto 1, y\mapsto \top$	$x\mapsto 1, y\mapsto \top$
out_1	T	T	$x\mapsto 1, y\mapsto \top$	$x\mapsto 1, y\mapsto \top$
out ₂	T	$ \begin{array}{c} \top \\ x \mapsto 1, y \mapsto \top \\ \top \\ \top \end{array} $	Τ	$x \mapsto 1, y \mapsto 1$

Starting from \perp vs \top

- ▶ Starting from ⊤ works fine
- ► *Naïve iteration* can increase precision of imprecise starting assumptions

Summary

- Monotone Frameworks:
 - Combine:
 - Monotone transfer functions transb
 - ► Finite-Height Lattices

$$join_b(\sigma_1,\ldots,\sigma_k)=\sigma_1\sqcup\ldots\sqcup\sigma_k$$

- Guarantee:
 - ► Termination
 - Soundness
- With Monotone Frameworks, iterating trans_b and join_b produces Fixpoint (or Fixed Point)
 - ▶ Works from *any* starting point, possibly different fixpoint
 - ► Fixpoints form **Fixpoint Lattice**
 - ▶ Least Fixpoint (Bottom element) is most precise solution
- ► (Soundness only if *trans_b* are *compatible*)

An Algorithm for Fixpoints

- ▶ So far: naïve algorithm for computing fixpoint
 - ▶ Produces a fixpoint
 - ► Keeps iterating all trans_b / join_b functions, even if nothing changed
- Optimise processing with worklist
 - ► Set-like datastructure:
 - add element (if not already present)
 - **contains** test: is element present?
 - ▶ pop element: remove and return one element
 - ► Tracks what's left to be done
- \Rightarrow "MFP" (Minimal Fixed Point) Algorithm (Does not always produce best result \rightarrow will see later today)

Example: Constant Propagation + Folding with Size Limit

- ▶ For next example, we use the following lattice:
- ▶ Elements:

$$\mathbb{Z} \cup \{S \mid S \subseteq \mathbb{Z} \text{ and } \#S \leq 3\}$$

- ▶ Relations and operations:
 - ▶ $a \sqsubseteq b \iff a \subseteq b$
 - $ightharpoonup \sqcup = \cup$
 - $ightharpoonup \sqcap = \cap$
 - ► T = Z
 - $\perp = \emptyset$
- Lattice has finite height
 Longest chains have five elements:

$$\emptyset \sqsubseteq \{x\} \sqsubseteq \{x,y\} \sqsubseteq \{x,y,z\} \sqsubseteq \mathbb{Z}$$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{llll} \textit{join}_{b_i}(\sigma_1,\sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

Worklist

 $b_0
ightarrow b_1$ $b_0
ightarrow b_4$ $b_1
ightarrow b_2$ $b_1
ightarrow b_3$ $b_2
ightarrow b_4$ $b_2
ightarrow b_1$ $b_3
ightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{lcl} \textit{join}_{b_j}(\sigma_1,\sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

	OI K	136
b_0	\rightarrow	b_1
b_0	\rightarrow	
b_1	\rightarrow	b_2
b_1	\rightarrow	<i>b</i> ₃
b_2	\rightarrow	b_4
b_2	\rightarrow	b_1
b_3	\rightarrow	b_4
b_3	\rightarrow	b_1

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{llll} \textit{join}_{b_i}(\sigma_1,\sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

VVOIKIISL				
b_0	\rightarrow	b_1		
b_0	\rightarrow	b_4		
b_1	\rightarrow	b_2		
b_1	\rightarrow	b_3		
b_2	\rightarrow	b_4		
b_2	\rightarrow	b_1		
b_3	\rightarrow	b_4		
bз	\rightarrow	b_1		

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{llll} \textit{join}_{b_i}(\sigma_1,\sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

Worklist

b_0	\rightarrow	b_1
b_0	\rightarrow	<i>b</i> ₄
b_1	\rightarrow	b_2
b_1	\rightarrow	<i>b</i> ₃
b_2	\rightarrow	b_4
b_2	\rightarrow	b_1
1-		L

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- out_o := trans_o(in_o)
 Is out_o \(\psi\$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o

Worklist

	OI K	
b_0	\rightarrow	b_1
b_0	\rightarrow	<i>b</i> ₄
b_1	\rightarrow	b_2
b_1	\rightarrow	b_3
b_2	\rightarrow	b_4
b_2	\rightarrow	b_1

 $b_3 \rightarrow b_4$ $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- $ightharpoonup \operatorname{out}_o := trans_o(\operatorname{in}_o)$
- ▶ Is out_o $\not\sqsubseteq$ in_i?

Yes:

- ightharpoonup in; := in; \sqcup out_o
- Add all outgoing edges from b_o to worklist (if not already there)

Worklist

b_0	\rightarrow	b_1
b_0	\rightarrow	b_4
b_1	\rightarrow	b_2
b_1	\rightarrow	b_3
b_2	\rightarrow	b_4
b_2	\rightarrow	b_1
h-	_	h.

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- $ightharpoonup \operatorname{out}_o := trans_o(\operatorname{in}_o)$
- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

workist $b_0 \rightarrow b_1$ $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- out_o := trans_o(in_o)
 Is out_o \(\psi\$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{rcl}
join_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right]$$

For edge $b_o \rightarrow b_i$:

- $\mathbf{out}_o := trans_o(\mathbf{in}_o)$
- ▶ Is $\mathbf{out}_o \not\sqsubseteq \mathbf{in}_i$?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $\boxed{b_1 \rightarrow b_3}$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	x	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{rcl}
join_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right]$$

For edge $b_o \rightarrow b_i$:

- out_o := trans_o(in_o)
 Is out_o \(\psi\$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

Worklist

 $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$ $b_1 \rightarrow b_3$ $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{rcl}
\text{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right]$$

For edge $b_o \rightarrow b_i$:

- $ightharpoonup out_o := trans_o(in_o)$ ▶ Is out_o $\not\sqsubseteq$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_1 \rightarrow b_2$$
 $b_2 \rightarrow b_4$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$

$$b_3 \rightarrow b_4$$

 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- out_o := trans_o(in_o)
 Is out_o \(\psi\$ in_i?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

$$\begin{array}{c} b_0 \rightarrow b_4 \\ b_1 \rightarrow b_2 \end{array}$$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x+1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{cccc} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

- out_o := trans_o(in_o)
 Is out_o \(\notin in_i \)?
- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ▶ Add all outgoing edges from b_o to worklist (if not already there)

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$
 $b_3 \rightarrow b_4$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	y	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{llll} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

b out_o := trans_o(in_o)
b Is out_o

ightharpoonup in_i?

- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - Add all outgoing edges from b_o to worklist (if not already there)

$$b_0 \rightarrow b_4$$

 $b_1 \rightarrow b_2$

$$b_2 \rightarrow b_4$$
 $b_2 \rightarrow b_1$

$$b_3 \rightarrow b_1$$
 $b_3 \rightarrow b_1$

		trans _b		
Ь	inputs	X	у	z
<i>b</i> ₀	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
<i>b</i> ₂	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_1\}$	X	У	y
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

 $join_{b_i}(\sigma_1, \sigma_2) = [x \mapsto \sigma_1(x) \cup \sigma_2(x),$ $y \mapsto \sigma_1(y) \cup \sigma_2(y),$ $z \mapsto \sigma_1(z) \cup \sigma_2(z)$

For edge $b_o \rightarrow b_i$:

ightharpoonup out_o := $trans_o(in_o)$

- Yes:
 - ightharpoonup in; := in; \sqcup out_o
 - ► Add all outgoing edges from b_o to worklist (if not already there)

- $b_0 \rightarrow b_4$ $b_1 \rightarrow b_2$
- $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$
- $b_3 \rightarrow b_4$

		trans _b		
Ь	inputs	X	y	z
b_0	Ø	0	0	1
b_1	$\{b_0, b_2, b_3\}$	x + 1	У	Z
b_2	$\{b_1\}$	X	7	Z
<i>b</i> ₃	$\{b_{1}\}$	X	У	у
<i>b</i> ₄	$\{b_0, b_2, b_3\}$	X	У	Z

$$\begin{array}{rcl} \textit{join}_{b_i}(\sigma_1, \sigma_2) & = \left[\begin{array}{ccc} x & \mapsto & \sigma_1(x) \cup \sigma_2(x), \\ y & \mapsto & \sigma_1(y) \cup \sigma_2(y), \\ z & \mapsto & \sigma_1(z) \cup \sigma_2(z) \end{array} \right] \end{array}$$

For edge $b_o \rightarrow b_i$:

out_o := trans_o(in_o)
Is out_o \(\psi\$ in_i?

Yes:

- ightharpoonup in; := in; \sqcup out_o
- Fadd all outgoing edges from Re-add previously (if no removed edge

Worklist

 $b_0
ightarrow b_4 \ b_1
ightarrow b_2$

 $b_2 \rightarrow b_4$ $b_2 \rightarrow b_1$ $b_3 \rightarrow b_4$

h. \ h-

 $\rightarrow b_1 \rightarrow b_3$

The MFP Algorithm

```
Procedure MFP(\bot, \Box, \subseteq, CFG, trans_-, is-backward):
begin
  if is-backward then reverse edges(CFG);
  worklist := edges(CFG); -- edges that we need to look at
  foreach n \in nodes(CFG) do
    in[n] := \bot; -- state of the analysis
  done
  while not empty(worklist) do
    \langle n, n' \rangle := pop(worklist); -- Edge <math>n \rightarrow n'
    out n := trans_n(in[n]); -- Consider caching out n
    if out n \not\sqsubseteq in[n'] then begin
       in[n'] := in[n'] \sqcup out n;
       foreach n'' \in successor-nodes(CFG, n') do
         push(worklist, \langle n', n'' \rangle);
      done
    end
  done
  return in;
end
```

Summary: MFP Algorithm

- ▶ **Product Lattice** allows analysing multiple variables at once
- ► Compute data flow analysis:
 - ▶ Initialise all nodes with ⊥
 - ▶ Repeat until nothing changes any more:
 - ▶ Merge updates monotonically via
 - Apply transfer function
 - ▶ Propagate changes along control flow graph
- ► Compute **fixpoint**
- ▶ Use worklist to increase efficiency
- ▶ Distinction: Forward/Backward analyses

MFP revisited

Reaching Definitions analysis: which *program location* might a given value be coming from?

- ▶ All subsets of $\{\ell_0, \ldots, \ell_4\}$
- Finite height
- $ightharpoonup \sqcup = \cup$

MFP revisited: Transfer Functions

$$trans_{b_0} = [x \mapsto \{\ell_0\}, y \mapsto \{\ell_1\}, z \mapsto \{\ell_2\}]$$
 $trans_{b_1} = [x \mapsto \{\ell_3\}]$
 $trans_{b_2} = [y \mapsto \{\ell_4\}]$
 $trans_{b_3} = [z \mapsto y]$

MFP solution at b_4

$$\begin{array}{ccc}
x & \mapsto & \{\ell_0, \ell_3\} \\
y & \mapsto & \{\ell_1, \ell_4\} \\
z & \mapsto & \{\ell_1, \ell_2, \ell_4\}
\end{array}$$

- Least Fixpoint!
- ▶ Do we always get LFP from MFP?

▶ Lattice: \mathbb{Z}_{+}^{\top}

▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$

▶ Lattice: \mathbb{Z}_{+}^{\top}

▶ Lattice:
$$\mathbb{Z}_{\perp}^{\top}$$

▶
$$1 \sqcup 3 = \top = 3 \sqcup 1$$

- ▶ Lattice: $\mathbb{Z}_{\perp}^{\top}$
 - ▶ $1 \sqcup 3 = \top = 3 \sqcup 1$
- ▶ MFP **does** compute the Least Fixpoint in our equations. . .
- ▶ . . . but the fixpoint is worse than expected!

Execution paths

▶ Idea: Let's consider all *paths* through the program:

$$\begin{array}{lll} path_{b_0} & = & \{()\} \\ path_{b_1} & = & \{(b_0)\} \\ path_{b_2} & = & \{(b_0)\} \\ path_{b_3} & = & \{(b_0,b_1);(b_0,b_2)\} \end{array}$$

The MOP algorithm for Dataflow Analysis

- ► Compute the MOP ('meet-over-all-paths') solution:
 - ▶ Iterate over all paths (p_0, \ldots, p_k) in $path_{b_i}$
 - ▶ Compute *precise* result for that path
 - ▶ Merge (i.e., join, □) with all other precise results

$$\mathsf{out}_{b_i} = \bigsqcup_{(p_0, ..., p_k) \in \mathit{path}_{b_i}} \mathit{trans}_{b_i} \circ \mathit{trans}_{p_k} \circ \cdots \circ \mathit{trans}_{p_0}(\bot)$$

Notation: (function composition)

$$(f \circ g)(x) = f(g(x))$$

MOP vs MFP: Example

Transfer functions

Paths

```
\begin{array}{lll} & \textit{trans}_{b_0} & = & \textit{id} & \textit{path}_{b_0} & = & \{()\} \\ & \textit{trans}_{b_1} & = & [x \mapsto 3, y \mapsto 1] & \textit{path}_{b_1} & = & \{(b_0)\} \\ & \textit{trans}_{b_2} & = & [x \mapsto 1, y \mapsto 3] & \textit{path}_{b_2} & = & \{(b_0)\} \\ & \textit{trans}_{b_3} & = & [z \mapsto x + y] & \textit{path}_{b_3} & = & \{(b_0, b_1), (b_0, b_2)\} \\ & \textbf{out}_{b_3} & = & ([z \mapsto x + y][x \mapsto 3, y \mapsto 1](\bot)) \sqcup ([z \mapsto x + y][x \mapsto 1, y \mapsto 3](\bot)) \\ & = & [z \mapsto 3 + 1, x \mapsto 3, y \mapsto 1] \sqcup [z \mapsto 1 + 3, x \mapsto 1, y \mapsto 3] \\ & = & [z \mapsto 4, x \mapsto \top, y \mapsto \top] \end{array}
```

MOP vs MFP (1/2)

In our example:

MFP:
$$[x \mapsto \top, y \mapsto \top, z \mapsto \top]$$

MOP: $[x \mapsto 4, y \mapsto \top, z \mapsto \top]$

- ▶ Both are least fixed points
- ▶ MOP and MFP use same transfer functions, same lattice
- ► However, MOP and MFP set up different equations

MOP vs MFP (2/2)

	MOP	MFP
Soundness	sound	sound
Precision	maximal	sometimes lower
Decidability	undecidable	decidable

- ► MOP: Merge Over all Paths (Originally: "Meet Over all Paths", but we use the Join operator)
- ► MFP: Minimal Fixed Point

Summary

- \triangleright path_b: Set of all paths from program start to b
- ▶ MOP: alternative to MFP (theoretically)
 - ► Termination not guaranteed
 - May be more precise
 - ► Idea:
 - ▶ Enumerate all paths to basic block
 - Compute transfer functions over paths individually
 - Join

Why is MFP sometimes as good as MOP?

MOP vs MFP Fixpoints

Summary

MFP

- Avoids redundant computations
- ▶ Fixpoint ⊒ starting point

Naïve fixpoint iteration

- ▶ Fixpoint may be *above* or *below* starting point
- ▶ Can start with ⊤: always sound
 - ► Can control analysis cost with time budget
 - ► May lose precision with loops

MOP

- ▶ One fixpoint, no "starting point"
- Maximal Precision
- ► Undecidable in general
 - Used in Model Checking
- ▶ This list is not exhaustive
- All fixpoints are sound overapproximations

MFP vs the Least Fixpoint

- ▶ MFP is sometimes equal to MOP
- ► Challenge:

$$trans_b(x \sqcup y) \supset trans_b(x) \sqcup trans_b(y)$$

▶ join-before-transfer: overapproximate before we can reconcile!

Distributive Frameworks

A Monotone Framework is:

- ▶ Lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$
- ► L has finite height (Ascending Chain Condition)
- ▶ All trans_b are monotonic
- Guarantees a Fixpoint

A Distributive Framework is:

- ▶ A Monotone Framework, where additionally:
- ▶ trans_b distributes over \(\square\$:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

Guarantees that MFP gives same Fixpoint as MOP

Distributive Problems

Monotonic:

$$trans_b(x \sqcup y) \supseteq trans_b(x) \sqcup trans_b(y)$$

Distributive:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

- ► Many analyses fit distributive framework
- ▶ Known *counter-example*: transfer functions on $\mathbb{Z}_{\perp}^{\top}$:
 - $\triangleright [z \mapsto x + y]$
 - ► Generally:
 - ▶ depends on ≥ 2 independent inputs
 - can produce same output for different inputs

Summary

▶ **Distributive Frameworks** are *Monotone Frameworks* with additional property:

$$trans_b(x \sqcup y) = trans_b(x) \sqcup trans_b(y)$$

for all programs and all x, y, b

- ► In Distributive Frameworks, MFP produces same least Fixpoint as for MOP
- Some analyses (Gen/Kill analyses, discussed later) are always distributive

Outlook

- Quiz deadline clarification by Friday
- ▶ Lab priority: Lab 1a for Friday

http://cs.lth.se/EDAP15