

EDAP15: Program Analysis

DATA FLOW ANALYSIS 1

Christoph Reichenbach

Some Administrativa:

- Labs:
- \blacktriangleright Ideally: done with exercise 0, working on exercise 1
- No new exercise this week
- Optional polls on how much time exercises took in Moodle

Questions?

Getting More out of Type Inference (1/4)

▶ Recall our typing rules from last lecture:

 true : BOOL
 false : BOOL

 e1 : BOOL
 e2 : 7
 e3 : 7

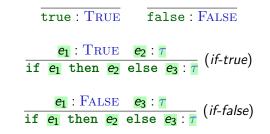
if e_1 then e_2 else e_3 : τ

▶ Could we make them more precise so we can e.g. tell that:

- ▶ if false then false else true evaluates to true
- ▶ if true then false else false evaluates to false

Getting More out of Type Inference (2/4)

Replacing BOOL by more precise types TRUE and FALSE:



We can now infer:

false : FALSEtrue : TRUEif false then false else true : TRUE(if-false)

Getting More out of Type Inference (3/4)

Consider:

$fun(\underline{x}) = if \underline{x}$ then false else true

- Can't know $\underline{\times}$ in general \Rightarrow we must allow both:
 - $\blacktriangleright \underline{x}$: True
 - $\blacktriangleright \underline{x}$: False
- \Rightarrow We don't have a principal type any more
- How would this work for int?

Getting More out of Type Inference (4/4)

- Let's try it:
 - ▶ Using types: 0, 1, 2, ...

if \underline{x} then 0 else 1 : 0 if \underline{x} then 0 else 1 : 1

- No principal type, but two typings
- In larger programs:

```
Python
print( (1 if a[0] else 0)
    + (2 if a[1] else 0)
    + (4 if a[2] else 0)
    ...
    + (2**999 if a[999] else 0) )
```

▶ 2¹⁰⁰⁰ possible types!

Exponential analysis cost \implies too slow to analyse real programs!

Towards Abstract Interpretation

Consider the following language:

$$E ::= zero$$

$$| one$$

$$| \langle E \rangle + \langle E \rangle$$

$$| neg \langle E \rangle$$

Property of Interest:

Does a given program $\varphi \in E$ compute a number ≥ 0 ?

- ► We will use a different theoretical framework now: Abstract Interpratation
- Similar in many ways, but more suitable for the "subtyping"-like behaviour we just saw

Abstract Domains

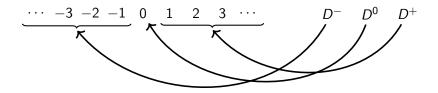
• Abstract Interpretation:

- Map all values to a simpler abstract domain
- Example: set *abstract domain* \mathcal{D} :

$$\mathcal{D}= \{ egin{array}{ccc} D^0, & \operatorname{Program} \ \operatorname{computes} 0 \ D^+, & \operatorname{Program} \ \operatorname{computes} a \ \operatorname{positive} \ \operatorname{value} \ D^- & \operatorname{Program} \ \operatorname{computes} a \ \operatorname{negative} \ \operatorname{value} \ \} \end{array}$$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract



Abstract Domains

• Abstract Interpretation:

- Map all values to a simpler abstract domain
- Example: set *abstract domain* \mathcal{D} :

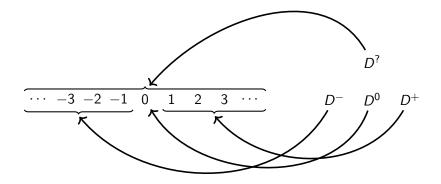
$$\mathcal{D} = \{ egin{array}{ccc} D^0, & \operatorname{Program\ computes\ 0} & \ D^+, & \operatorname{Program\ computes\ a\ positive\ value} & \ D^- & \operatorname{Program\ computes\ a\ negative\ value} & \ \} \end{array}$$

• Notation:
$$\llbracket \varphi \rrbracket^{\mathcal{D}} = a$$
, where $a \in \mathcal{D}$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Abstract Interpretation

Correspondence: Concrete and Abstract



Abstract Domains

Abstract Interpretation:

- Map all values to a simpler abstract domain
- ▶ For each operation, build corresponding abstract operation

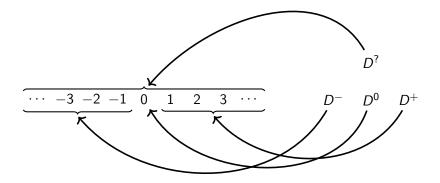
• Example: set *abstract domain* \mathcal{D} :

$$\mathcal{D} = \begin{cases} D^0, & \text{Program computes 0} \\ D^+, & \text{Program computes a positive value} \\ D^-, & \text{Program computes a negative value} \\ D^? & \text{Program computes any value} \\ \end{cases}$$

$$\bullet \text{ Notation: } \boxed{\llbracket \varphi \rrbracket^{\mathcal{D}} = a}, \text{ where } a \in \mathcal{D}$$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract



Also:

- ► ⊖ *"is compatible with"* neg
- \oplus "is compatible with" +

Will return later to examine connections between elements in \mathcal{D}

7/5

Summary

• Abstract Interpretation maps

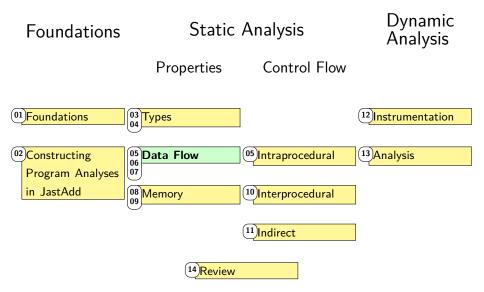
concrete values to "abstract value" in Abstract Domain

Mapping may describe interpretation of values, expressions, statements, whole programs:

 $[\![-]\!]^{\mathcal{D}}:\textit{Program} \rightarrow \mathcal{D}$

- ▶ Maps operations to *compatible* operations on abstract domain
- Many design options for abstract domain:
 - ► Can trade off between precision and efficiency
- ► Theoretical foundation/generalisation of other analysis theories
- $\llbracket \rrbracket^{\mathcal{D}}$ must be a *function*
 - Example: type inference with principal types
 - Non-example: type inference without principal types

Lecture Overview



Teal

Teal-0	Imperative and Procedural
Teal-1	Minor extensions to Teal-0

- Small enough for homework exercises
- Big enough to exhibit real challenges
- "Nonsensical" operations in Teal trigger dynamic *failures*:
 - null dereference:

```
Teal
var a := null;
print(a[0]);
```

Array-out-of-bounds access:

Imperative Code Rears its Head

```
Teal
var a := [0, 0];
var x := 0; // D<sup>0</sup>
print(a[x]); // A
if z {
    a[x] := 2; // B
    x := -1; // D<sup>-</sup>
}
a[x] := 1; // C
```

- ► Analyse: Can there be a *failure* at B or C?
- Could we use type variables and unification? No:
 - ▶ Can't unify: $\llbracket x \rrbracket = D^0$ vs. $\llbracket x \rrbracket = D^-$
 - [x] should be different at different lines
- ▶ Must distinguish between x at A vs. x at B and C
- Need to model program flow: Flow-Sensitive Analysis
 - ► Type inference is not Flow-Sensitive

Evaluation Order

Teal-0

```
fun p(a) = { print(a); return 1; }
fun main() = {
    p(p(0) + p(1));
}
```

Teal-0 with explicit order

```
fun main() = {
    var tmp1 := p(0);
    var tmp2 := p(1);
    var tmp3 := tmp1 + tmp2;
    var tmp4 := p(tmp3);
}
```

Evaluation order specified in language definition

Every analysis must remember the evaluation order rules!

Evaluation Order: Other Languages

Complex subexpressions / evaluation order:

```
Java / C / C++
// Many challenging constructions:
a[i++] = b[i > 10 ? i-- : i++] + c[f(i++, --i)];
```

- Beware: exact evaluation order is *undefined* in C and C++!
- Short-Circuit Evaluation:

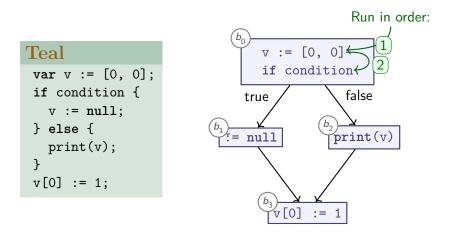
The assignment a2 = a is executed while computing v ... but only if a == null is not true!

Violates most coding styles, but allowed by language!

Summary

- Understanding differences before/after variable updates requires Flow-Sensitive Analysis
- Type inference is not flow sensitive
- "Flow" is complicated, influenced by:
 - Expression evaluation order
 - Short-circuit evaluation
 - Statement execution order

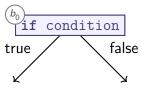
Control-Flow Graphs (CFGs)



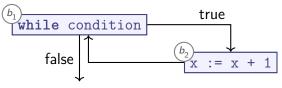
Control Flow Graphs encode statement execution order

Control-Flow-Graphs

- Encode statement order by *nodes* $\stackrel{(b_0)}{\frown}_{\text{code}}$ and edges \rightarrow
- ► *Multiple* outgoing edges (branches): Add label:



Uniform representation for control statements:



Summary

Control-Flow Graph (CFG):

Motivation:

- Universal representation of control flow
- Computed once before running analyses
- ► Flow-sensitive analyses can utilise CFG

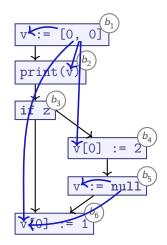
Idea:

- ► Represent control flow as **Blocks** and **Control-Flow Edges**
- Edges represent control flow, labelled to identify conditionals

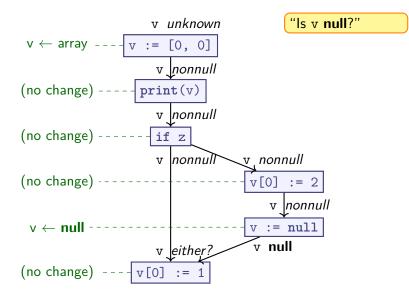
Control Flow

Understanding data flow requires understanding control flow:

Teal
<pre>var v := [0, 0];</pre>
<pre>print(v);</pre>
if z {
v[0] := 2;
v := null;
}
v[0] := 1;

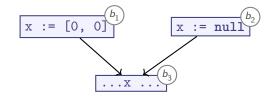


Intuition behind Data Flow Analysis



Knowledge about data "flows" through CFG

What does "either?" mean?



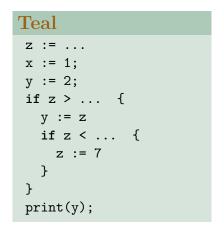
Should analysis report x as null or as nonnull?

- New category: either
- "Can I safely dereference without a check?"
 - \Rightarrow better assume **null**
- "Is this guaranteed to be null?"
 - \Rightarrow better assume **nonnull**
- We might not need extra either category, depending on what properties we are looking for

"May" vs "Must" Analysis

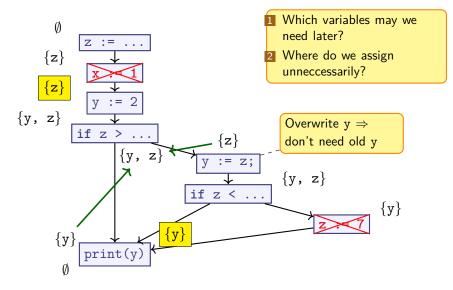
- "May" analysis: we cannot rule out property
 - "either?" becomes true
 - Avoids False Negatives
- "Must" analysis: we can guarantee property
 - "either?" becomes false
 - Avoids False Positives

Another Analysis



- Which assignments are unnecessary?
- ⇒ Possible oversights / bugs (Live Variables Analysis)

Unnecessary Assignments: Intuition

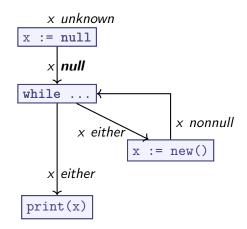


Analysis effective: found useless assignments to z and x $\frac{3}{51}$

Observations

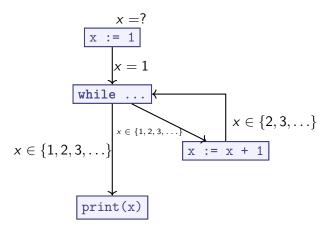
Data Flow analysis can be run *forward* or *backward* May have to *join* results from multiple sources

What about Loops? (1/2)



- Analysis: Null Pointer Dereference
- May need to analyse each node/edge more than once
- Stop when we're not learning anything new any more

What about Loops? (2/2)



- Two analyses in one:
 - Constant Propagation: compute constant 'reaching values'
 - with Constant Folding: performs arithmetic on constants

We need to bound repetitions!

Summary: Data-Flow Analysis (Introduction)

- Data flow depends on control flow
- Data flow analysis examines how variables or other program state change across control-flow edges
- May have to join multiple results
- ▶ When joining "yes" and "no", must decide:
 - "May" analysis: optimistically report what is possible
 - "Must" analysis: conservatively report what is guaranteed
 - Alternative: introduce value for "don't know"
- Can run forward or backward relative to control flow edges
- Handling loops is nontrivial

Summary: Some Analyses

I Constant Propagation + Constant Folding:

- What values might our variables contain?
- Forward analysis
- Most common as a Must analysis:
 - ► 'v has constant value c', or
 - 'v might not have constant value'
- ▶ We will also use it as *May* analysis

2 Live Variables

- Which variables might still be read later in the program?
- Backward analysis
- May analysis

B Unnecessary Assignments (also "Dead Assignments"):

- Refinement of Live Variables analysis
- Flags assignments on variables that are not live

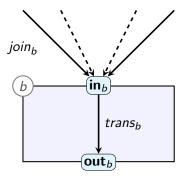
Engineering Data Flow Algorithms

1 General Algorithm

- Keep updating until nothing changes
- JastAdd: Circular Attributes
- 2 Termination
 - Assumption: Operate on Control Flow Graph
 - Theory: Ensure termination
- 3 (Correctness)

Data Flow Analysis on CFGs

- ► in_b: knowledge at entrance of basic block b
- out_b: knowledge at exit of basic block b
- ▶ join_b: combines all **out**_{bi} for all basic blocks b_i that flow into b "Join Function"
- *trans_b*: updates **out**_b from **in**_b "Transfer Function"



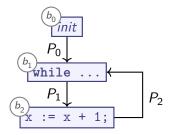
Characterising Data Flow Analyses

Characteristics:

- Forward or backward analysis
- L: Abstract Domain (the 'analysis domain')
- $trans_b : L \to L$
- ▶ join_b : $L \times L \rightarrow L$

Require properties of *L*, *trans*_b, *join*_b to ensure termination

Limiting Iteration



Does the following ever stop changing:

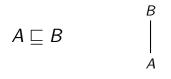
$$\begin{array}{rcl} \mathbf{in}_{b_1} &=& join_{b_1}(P_0,P_2) \\ \mathbf{in}_{b_2} &=& trans_{b_1}(\mathbf{in}_{b_1}) \\ P_2 &=& trans_{b_2}(\mathbf{in}_{b_2}) \end{array}$$

Intuition: we keep generalising information

- Growth limit: bound amount of generalisation
- ▶ Make sure *join_b*, *trans_b* never throw information away

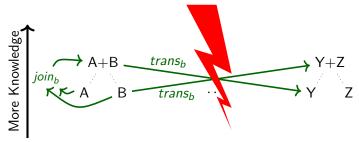
Eventually, either nothing changes or we hit growth limit

Ordering Knowledge



- ▶ B describes at least as much knowledge as A
- Either:
 - A = B (i.e., $A \sqsubseteq B \sqsubseteq A$), or
 - B has strictly more knowledge than A

Intuition: Knowing Less, Knowing More Structure of *L*:



- join_b must not lose knowledge
 - $A \sqsubseteq join_b(A, B)$
 - $\blacktriangleright B \sqsubseteq join_b(A, B)$
- transb must be monotonic over amount of knowledge:

$$x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)$$

▶ Introduce bound: ⊤ means 'too much information'

Aggregating Knowledge

$$P_1 = join_{b_0}(A, B) \xrightarrow{b_0} P_2 = trans_{b_0}(join_{b_0}(A, B)) \xrightarrow{b_1}$$

- ▶ Interplay between *trans_b* and *join_b* helps preserve knowledge
- $A \sqsubseteq join_b(A, B)$: As we add knowledge, P_1 either:
 - Stays the same
 - Increases knowledge
- Monotonicity of *trans*_b: If P_1 goes up, then P_2 either:
 - Stays the same
 - Increases knowledge
- \Rightarrow At each node, we either stay equal or grow

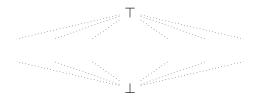
Now we must only prevent infinite growth...

Ascending Chains

	► A (possibly infinite) sequence a ₀ , a ₁ , a ₂ , is an ascending chain iff:
$a_k = a_{k+1} = \dots$	
	$a_i \sqsubseteq a_{i+1}$ (for all $i \ge 0$)
; a3	Ascending Chain Condition:
 a ₂	For every ascending chain a ₀ , a ₁ , a ₂ , in abstract domain L:
	• there exists $k \ge 0$ such that:
a ₁ 	$a_k = a_{k+n}$ for any $n \ge 0$
<i>a</i> ₀	

ACC is formalisation of growth limit

Top and Bottom



► *Convention*: We introduce two distinguished elements:

- ▶ **Top**: \top : $A \sqsubseteq \top$ for all A
- **Bottom**: \bot : $\bot \sqsubseteq A$ for all A

Since
$$A \sqsubseteq join_b(A, B)$$
 and $B \sqsubseteq join_b(A, B)$:

▶
$$join_b(\top, A) = \top = join_b(A, \top)$$

$$\perp \sqsubseteq A \sqsubseteq join_b(\bot, A)$$

In practice, it is safe and simple to set:

$$join_b(\bot, A) = A = join_b(A, \bot)$$

Intuition:

- ► T: means 'contradictory / too much information'
- \perp : means 'no information known yet'

Summary

- Designing a Forward or backward analysis:
- Pick Abstract Domain L
 - ▶ Must be **partially ordered** with $(\sqsubseteq) \subseteq L \times L$: $A \sqsubset B$ iff B 'knows' at least as much as A
 - ► Unique top element ⊤
 - Unique bottom element \perp
- $trans_b : L \to L$
 - Must be monotonic:

 $x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)$

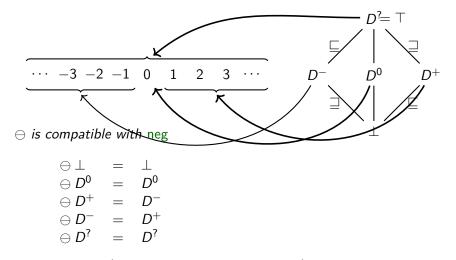
▶ $join_b : L \times L \rightarrow L$ must produce an *upper bound* for its parameters:

- $A \sqsubseteq join_b(A, B)$
- $\blacktriangleright B \sqsubseteq join_b(A, B)$

Satisfy Ascending Chain Condition to ensure termination

Easiest solution: make L finite

Abstract Domains Revisited



 \ominus is monotonic (and \oplus extended with \perp is, too)

Summary

 \blacktriangleright We can extend $\{D^+, D^-, D^0, D^?\}$ by adding \bot

$$L_D = \{D^+, D^-, D^0, D^?, \bot\}$$

- ▶ ⊥ representing "not known" not needed for our example analysis ($[-]^{\mathcal{D}}$), but would be needed if we had variables / control flow in that language
- L_D is finite, so the DCC holds trivially
- Our *Transfer Functions* \ominus , \oplus are monotonic
 - ▶ Concretely, \oplus is "pointwise monotonic", meaning: if $d \in L_D$ is constant, then
 - $x \mapsto d \oplus x$ is monotonic
 - $x \mapsto x \oplus d$ is monotonic

Outlook

▶ We will continue on Dataflow Analysis

http://cs.lth.se/EDAP15