LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
INTRODUCTION

Christoph Reichenbach

Welcome!

» EDAP15: Program Analysis

» Instructor: Christoph Reichenbach
christoph.reichenbach@cs.1lth.se

» Teaching Assistants:

» Alexandru Dura
» Erik Prantare

» Course Homepage:
http://cs.1th.se/EDAP15

2/48

http://cs.lth.se/EDAP15

Course Format

» Moodle: Sign up today!
» Lectures
> In Person
» Partially ‘Flipped’:
» Check Moodle for videos to watch before lecture
» Core material
> Lectures (bring your questions!)
» Videos
» Self-Study material
» Online Quizzes
> Textbook (optional)
» Questions
» Ask in class
> Ask-and-Upvote system (or just raise your hand!)
» Online forum
» Office hours

» Mandatory Activities: Homework & Quizzes
3/48

Topics

» Concepts and techniques for understanding programs

» Analysing program structure
» Analysing program behaviour

» Practical concerns in program analysis

Language focus: Teal, a teaching language
» Concepts generalise to other mainstream languages:

» Imperative
» Object-Oriented

4/48

Goals

» Understand:
» What is program analysis (not) good for?
» What are strenghts and limitations of given analyses?
» How do analyses influence each other?
» How do programming language features influence analyses?
» What are some of the most important analyses?
> Be able to:

» Implement typical program analyses
» Critically assess typical program analyses

5/48

Textbooks

Static Program Analysis

Principles of Program Analysis

Mgller & Schwartzbach
» Optional
» PDF online from authors

Nielson, Nielson & Hankin

Principles
of Program
+_Analysis

» Very optional
» 3 copies in the library
» Theory-driven

6/48

How to Pass This Course

» This Week

today: register in Moodle
2025-01-23, 14:00: Find lab partner, register for lab slot
2025-01-27, 18:00: Mandatory quizzes in Moodle (see below)
» Every Week
Work on homework exercises
Present homework solutions to TAs (labs)
Fri: Lab slots (for help & presenting solutions)
Mon, 18:00: Mandatory quizzes in Moodle
> Score 70% to pass
> Your best attempt counts
> No limit on number of retries

7/48

Passing vs. Grades

» Passing these requirements gives you a grade of 3

» TAs must have approved all homework exercise solutions
» For higher grades (4, 5):

> Additional oral exam

» Registration opens after course completion

8/48

Homework Exercises

» Lab Exercises:

> Lab 0: Group lab, W4 (this week!)

» Lab 1: Group lab, W5-6

» Labs 2—4: Solo labs, following weeks
» To pass:

» Pass automatic tests

» Explain(!) implementation and rationale to TA
> Presenting to TAs

» You can present once a week
Additional slots depend on TA capacity
» During lab hours

» Labs for help with / presenting homework exercises

» Get started on on exercises before coming to lab
> Every Friday (7 weeks)
> Current lab has priority (specifics will be on website)

9/48

Course Representative

» D-Sektionen is asking for:
> two course representatives
» Will meet with me in 3rd or 4th week of classes
» To be selected today

10/48

Uses of Program Analysis

y

Static

Checker Static Analysis

Bug-checking, Optimisation

verification

Compiler

[}

] Program Program
Automatic | Adaptive
Repair Optimisation

A Understanding » Highlighting
» Search
IDE Language
Runtime

» Refactoring
Testing Profiling
(Testing][Profiling

Il

Dynamic Analysis

Categories of Program Analyses

(-)
Manual / Interactive

Static Analysis

> Examines structure

> Sees entire program
(mostly. . .)

Automatic

Interactive Theorem
Provers

Dynamic Analysis

> Examines behaviour

> Sees interactions
program < world

> (Most) Type Checkers

> Static Checkers
(FindBugs,
SonarQube, ...)

» Compiler Optimisers

Debuggers

> Unit Tests
» Benchmarks

> Profilers

Our Focus P

12/48

Summary

» Program analyses are key components in Software Tools:
» IDEs
» Compilers
» Bug and Vulnerability Checkers
» Run-time systems

» Main Categories:
» Static Analysis:
Examine program structure
» Dynamic Analysis:
Examine program run-time behaviour
» Automatic Analysis:
“Black Box": Minimal user interaction

> Manual / Interactive Analysis:
User in the loop

» Advanced manual analyses exploit automatic analysis

13/48

Examples of Program Analysis

Questions:

> ‘Is the program well-formed?’
gcc —c program.c
javac Program. java
At least for C, C++, Java; not so easy for JavaScript!

» ‘Does my factorial function produce the right output for
inputs in the range 0-57’

Java
QTest // Unit Test
public void testFactorial() {
int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {
assertEquals(expected[i], factorial(i));

}}

14 /48

Let’s Analyse a Program!

» MISRA-C standard specifies:
“The library functions ..., gets, ...shall not be used.”

» Given some program.c:

user@host$ grep ’gets’ program.cl # string search
gets (input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = O;
user@host$ I

At least 2 of 3 resuls were wrong: “False Positives”

15/48

A First Challenge, Continued

user@host$ grep ’gets(’ program.c
gets(input_buffer);
user@host$

» More precise: no false positives!
» Will this catch all calls to gets?

C: program2.c

#include <stdio.h>

void f(char* target_buffer) {
char *(*kdummy) (char*) = gets;
dummy (target_buffer) ;

String search not smart enough: “False Negative”

16/48

A First Challenge, Continued Again

C: program2.c

#include <stdio.h>

void f(char* target_buffer) {
char *(*kdummy) (char*) = gets;
dummy (target_buffer) ;

}

user@host$ cc -c program.c -o program.ol
user@host$ nm program.o
check symbol table in compiled program
0000000000000000 T £
U gets +— Ahal
U _GLOBAL_OFFSET_TABLE_
user@host$ I

Using a more powerful analysis yielded better results

17/48

A First Challenge, Solved?

C: program3.c

#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {
void* handle = dlopen("/1ib/x86_64-1linux-gnu/libc.so.6",
RTLD_LAZY) ;
void* sym = dlsym(handle, "gets");
void (*p) (char*) = sym;
p(target_buffer);
return O;

» Dynamic library loading: gets will not show up in symbol
table

Fancier program — harder analysis

18/48

Analysis vs. Property-of-Interest

» Distinguish:
> Property of interest: P(y)

e ®

¥
2

» Analysis A(p) that approximates P(y)

P(¢) = A(p)

19/48

And How Good Is It?

» As we saw, program analyses may be incorrect
» We often describe them with Information Retrieval
terminology:
ris... || reA(y) | r ¢ A(p)
r € P(¢) || True Positive | False Negative
r ¢ P(yp) || False Positive | True Negative

» How well does A approximate P?
> Assume A(¢p) returns n = #.A(p) reports
n = #True Positives + #False Positives reports
> Are the reports good?
Precision = #1rue Positives
» Are the reports comprehensive?

o #True Positives
Recall = #True Positives+#False Negatives

» #False Negatives (and thus Recall) is usually impossible to
determine in program analysis

20/48

Summary

» Purpose of Analysis A:
» Compute Property-of-interest P
» Program Analysis is nontrivial

» Programs can hide information that A wants
» Analysis A can misunderstand parts of the program

21/48

Soundness and Completeness

Can we always build a A with A(y) = P(¢)?

» Connection to Mathematical Logic:
» A is sound (with respect to P) iff:

A(p) € P(p) (Perfect Precision)
» A is complete (with respect to P) iff:
A(p) 2 P(p) (Perfect Recall)

» A(¢) = P(yp) iff A is both sound & complete

What if P(p) checks whether © terminates?

22/48

The Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”
— Anders Mgller, paraphrasing H.G. Rice [1953]

We must choose:
» Soundness

» Completeness
» Decidability

... pick any two.

23/48

Soundness and Completeness: Caveat

» Beware: “sound” and “complete” be confusing:
» Example: P(p) is “¢ has a bug”
> If you now want to check P, the negation of P:
> P(p) is “¢ does not have a bug” B
> Acomplete (= run Acomplete and invert output) is sound wrt P

24/48

Soundness and Completeness: Caveat

» Beware: “sound” and “complete” be confusing:
» Example: P(p) is “¢ has a bug”
» If you now want to check P, the negation of P:
» P(p) is " does not have a bug”
> Acomplete (= run Acomplete and invert output) is sound wrt P
» Asound is complete wrt P

24/48

Summary

» Given property P and analysis A:
» A is sound if it triggers only on P
P = “program has bug”: A reports only bugs
» A is complete if it always triggeres on P
P = “program has bug”: A reports all bugs
> If P is nontrivial (i.e., depends on behaviour):

Decidable

Conservat
W Complete

25/48

Lecture Overview

Foundations

Properties

Static Analysis

Dynamic
Analysis

Control Flow

01)Foundations ‘ glﬂTypes

‘ 12)Instrumentation ‘

‘@Intraprocedural

‘@Analysis ‘

02)Constructing gg Data Flow
Program Analyses (07

in JastAdd 08
In_Jas 09WMemory

‘@Interprocedural ‘

1)indirect ‘

14)Review

26/48

Program Execution Pipeline

program.py . ;
S ‘ Libraries ’
ource ~
Code
Dynamic
Linker
QL) ~
Y ® Interpreter
3

python3.9

Operating
System

Hardware

27 /48

Program Execution Pipeline

program.c

Source
Code

h

Preprocessor | CpPP -

ylibc.so

‘ Libraries
Binary
program
Static Dynamic
Linker Linker
program.o T
]
Compiler Bk
o
-
gcc

Operating
System

Hardware

27 /48

Program Execution Pipeline

C.java

Source

Code

Libraries

Compiler

javac

Loader

’ rt.jar

pynannc ClassLoaders
Linker
Interpreter

Operating

Dynamic System

y .) Yy
Compiler

java

Hardware

27 /48

Program Execution Pipeline

| Libraries ’

Source

Coae\

Instrumentable
Stati
Lin

o Con@ﬁ

D .
We can instrument and yrﬁmlc
Compiler
analyse all of these (to -
some degree) 1= Haraware
[Static Environmentj [Runtime Environment]

27 /48

Static vs. Dynamic Program Analyses

|

Static Analysis

‘ Dynamic Analysis

Principle Analyse program Analyse program execution
structure
Input
Independent Depends on input
Hardware/OS
Independent Depends on hardware and OS

Perspective

Sees everything

Sees that which actually happens

Completeness

(bug-finding) Possible Must try all possible inputs. ..
Soundness
(bug-finding) Possible Always, for free

;-,astadd Valgrind Sy@mrere<

)oot ﬂ

28/48

Summary

» Preprocessor: Transforms source code before compilation

» Static compiler: Tranlates source code into executable
(machine or intermediate) code

» Interpreter: Step-by-step execution of source or
intermediate code

» Dynamic (JIT) compiler: Translates code into
machine-executable code

» Loader: System tool that ensures that OS starts executing
another program

» Linker: System tool that connects references between
programs and libraries
» Static linker: Before running
» Dynamic linker: While running

» Machine code: Code that is executable by a machine

» Static Analysis: Analyse program without executing it

» Dynamic Analysis: Analyse program execution
29 /48

Defining Language Behaviour

The Java® Language
Specification

C:
PROGRAMMING sy

LANGUAGE

» Many languages have multiple language implementations
» Language behaviour defined in language specification:
» Static Semantics:
Behaviour in static environment
» Dynamic Semantics:
Behaviour in runtime environment

30/48

Static vs. Dynamic Semantics

p

» Static semantics:
» Identifier binding
(C, Java)
» Type checking
(C, Java)
» Other well-formedness

constraints
(C, Java)

[Static Environment)

>

» Dynamic semantics:

» Execution, evaluation,
control flow
> |dentifier binding
(Python, JavaScript)
» Type checking
(Python, JavaScript, Java)
» Dynamic dispatch
(Java, Python, JavaScript)

[Runtime Environment]

31/48

Static Analysis

Analysing Program Structure

32/48

Java lexing

int i;

if (2> 0) {
i = "One";

}

return i;

Lexing / Tokenisation

|

; if (2 > 0) i o=

int i = "One" ; return i

b

33/48

Java lexing & parsing

CST = parse tree |
AST stmt

return

return

return

Parsing in general

Translate text files into meaningful in-memory structures
» CST = Concrete Syntax Tree

» Full “parse”, cf. language BNF grammar

» Not usually materialised in memory

» AST = Abstract Syntax Tree

» Standard in-memory representation
» Avoids syntactic sugar from CST, preserves important

nonterminals as [AST nodes

» Converts useful tokens into ’ intrinsic attributes

» The AST is the most common Intermediate
Representation (IR) of program code
» Effective for frontend analyses
» Other IRs focus e.g. on optimisations in the backend

Program analysis starts on the AST

35/48

In-Memory Representation

block

\

TeiTe

Typical in-memory representations for this AST:

return

» Algebraic values (functional)
» Records (imperative)
» Objects (object-oriented)

36/48

Summary

» Static program analysis operates on an Intermediate

Program Representation (IR)

» Our main IR: Abstract Syntax Trees (ASTs)

> Other IRs can speed up / simplify certain tasks (more later)
» ASTs constructed by Compiler Frontend:

» Scanning/lexing/tokenising

» Parsing

» Translation from parse tree into AST

» Not covered in this course; sce EDANG65: Compiler
Construction for details

37/48

The AST as Data Structure

Root node

parent

[IntConstant] [IntConstant]

IntConstant

child

38/48

Structure of the AST

Abstract Grammar

Program ::= ...; // start symbol
abstract Expr;

IntConstant : Expr ::= <Value:int>;
AddExpr : Expr ::= Left:Expr Right:Expr;

SubExpr : Expr ::= Left:Expr Right:Expr;

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Body:Stmt;

SubExpr
Left
IntConstant

Right Not allowed:

[IntConstant] [IntConstant] WhileStmt is
not an Expr!

39/48

Restricting AST Structure

Lefi
IntConstant

» |ntuition:

» SubExpr wants to subtract values from each other
» WhileStmt does not compute a value

» Parser and type system guarantee that such nonsensical
combinations don't occur

» Otherwise program analyses would have to check for them

40/48

Abstract Grammars

» Grammar specifies all permissible tree constructions
» Consists of production rules:
> Production (AddExpr): Name of the language construct
» Nonterminal (Expr): Category (‘supertype’) for production
» Components (Left:Expr): Child nodes
> Nonterminal components: child nodes
> Terminal components: intrinsic attributes

AddExpr : Expr ::= Left:Expr Right:Expr;

AddExpr
Left Right

' Expr ' Expr |
N AN —

IntConstant : Expr ::= <Value:int>;

IntConstant

Value=. ..
41/48

Summary

» Permissible structure of the AST is governed by the Abstract
Grammar
» The grammar is specified in terms of Production Rules
» Production rules describe the components of one Production
» Each Production belongs to one Nonterminal
» Standard notation: Backus-Naur Form (BNF)
» Exact BNF syntax varies between tools; we will use JastAdd's
variant
» Structure is enforced by parser and type system
—> Simplifies analysis construction
» Common nonterminals:
» Expr: computes a value
> Stmt: triggers a side effect or controls the order of side effects
> Decl: declares or defines a variable/function/. ..

42/48

Some Basic Analyses

» Name Analysis:

» Which name use binds to which declaration?
» Type Analysis:

» What are the types of all expressions?
» Static Correctness Checks:

» Are there type errors?
> Is a variable unused?
» Are we initialising all variables?

43 /48

Example: Name Analysis

» For each id, compute the corresponding decl
» In AST-based IR: keep reference to
» Check that we found a decl node (otherwise Error)

44/48

Example: Type Analysis

» Check that all types are compatible with their operators
» Must first compute types
» assign node: type error!

Trying to assign String to int variable

45/48

Summary

» Program analysis on AST:
» Enrich AST nodes with additional information
» Name Analysis: references to declarations
> Type Analysis: types (computed, propagated)
» Analyses often need to use results of earlier analyses
» Lecture 2 will introduce systematic strategies for computing
such information

46 /48

Moving Forward

» How do we build static program analyses?
» Avoid building from scratch: many frameworks available
» Re-use where you can
> This course: JastAdd: Next lecture (Flipped!)

» How do we design program analyses?
» Theoretical frameworks:

> Type Inference
> Dataflow analysis
> Abstract interpretation

» Language Definition:
» Static Semantics:
Compile-time/load-time behaviour
» Dynamic Semantics:
Run-time behaviour

47/48

Outlook

» Remember:
» Join Moodle today
» Form groups by Wednesday, 18:00
» Continuing on static program analysis:
» Type Analysis
» Data Flow Analysis
» Heap Analysis
» Next Lecture: Thursday, same time & place:
» Topic: Building Program Analyses with Reference Attribute
Grammars in JastAdd
» Flipped Classroom lecture
» Watch videos beforehand
> Bring questions
> We will discuss material from the videos based on your questions

http://cs.1lth.se/EDAP15

48 /48

http://cs.lth.se/EDAP15

