
EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 1DYNAMIC PROGRAM ANALYSIS 1

Christoph Reichenbach



Welcome back!

▶ Moodle notification mails seem back online

Questions?

2 / 43



Analysing Realistic Programs

Challenges:Challenges:
▶ Semantics:

▶ Language semantics may be imprecisely defined
(e.g., custom or domain-specific languages)

▶ Certain language features intrinsically hard to analyse
▶ Non-Semantic Properties:

▶ Property of interest may not be part of semantics
▶ Examples: execution time, energy usage

3 / 43



Reflection
Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newInstance();
System.out.println(obj.toString());

▶ Instantiates object by string name
▶ Similar features to call method by name
▶ Challenge:

▶ obj may have any type ⇒ imprecision
▶ Sound call graph construction very conservative

▶ Approaches
▶ Dataflow: what strings flow into string?

▶ Common: code draws from finite set or uses string prefix/suffix
(e.g., ("com.x.plugins." + . . . ))

▶ Class.forName: class only from some point in package hierarchy
▶ Dynamic analysis

4 / 43



Dynamic Loading
C
handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

▶ Dynamic library and class loading:
▶ Add new code to program that was not visible at analysis time

▶ Challenge:
▶ Can’t analyse what we can’t see

▶ Approaches:
▶ Conservative approximation

▶ Tricky: External code may modify all that it can reach
▶ With dynamic support and static annotation:
▶ Allow only loading of signed/trusted code

▶ signature must guarantee properties we care about
▶ annotation provides properties to static analysis

▶ Proof-carrying code
▶ Code comes with proof that we can check at run-time

5 / 43



Native Code
Java
class A {

public native Object op(Object arg);
}

▶ High-level language invokes code written in low-level
language
▶ Usually C or C++
▶ May use nontrivial interface to talk to high-level language

▶ Challenge:
▶ High-level language analyses don’t understand low-level

language
▶ Approaches:

▶ Conservative approximation
▶ Tricky: External code may modify anything

▶ Manually model known native operations (e.g., Doop)
▶ Multi-language analysis (e.g., Graal)

6 / 43



‘eval’ and dynamic code generation

Python
eval(raw_input())

▶ Execute a string as if it were part of the program
▶ Challenge:

▶ Cannot predict contents of string in general
▶ Approaches:

▶ Conservative approximation
▶ Tricky: code may modify anything

▶ Dynamically re-run static analysis
▶ Special-case handling (cf. reflection)

7 / 43



Summary

▶ Static program analysis faces significant challenges:
▶ Decidability requires lack of precision or soundness for most of

the interesting analyses
▶ Reflection allows calling methods / creating objects given by

arbitrary string
▶ Dynamic module loading allows running code that the

analysis couldn’t inspect ahead of time
▶ Native code allows running code written in a different

language
▶ Dynamic code generation and eval allow building arbitrary

programs and executing them
▶ No universal solution
▶ Can try to ‘outlaw’ or restrict problematic features, depending

on goal of analysis
▶ Can combine with dynamic analyses

8 / 43



Soundiness

▶ Can’t analyse language feature?
⇒ We get ⊤ if we want soundness
⇒ Potentially many false positives
⇒ Tool may be useless

▶ Google SWE practice: Bug checkers with > 5% false positives
disabled automatically

▶ Soundness may not be useful
▶ Alternative proposal from research community: Soundiness

▶ Be explicit about unsupported language features
▶ Example: “Sound unless the code uses features X, Y, Z”

Soundiness: “capture all dynamic behaviour within reason”

B. Livshits, M. Sridharan, Y. Smaragdakis et al.: “In defense of
Soundiness: A Manifesto”, Communications of the ACM, 2015

9 / 43



Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

10 / 43



Static Analysis: Limitations

Static program analysis challenges:Static program analysis challenges:
▶ Semantics:

▶ hard to be sound / precise
▶ Non-semantic properties:

▶ Underspecified in language specification
▶ May be machine/implementation-dependent
▶ Examples:

▶ Resource usage
▶ Execution time
▶ Latency
▶ Throughput

. . .

Dynamic Analysis can help with both

11 / 43



More Difficulties for Static Analysis

▶ Does a certain piece of code actually get executed?
▶ How long does it take to execute this piece of code?
▶ How important is this piece of code in practice?
▶ How well does this code collaborate with hardware devices?

▶ Harddisks?
▶ Networking devices?
▶ Caches that speed up memory access?
▶ Branch predictors that speed up conditional jumps?
▶ The ALU(s) that perform arithmetic in the CPU?
▶ The TLB that helps look up memory?

. . .

Impossible to predict for all practical situations

12 / 43



Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Examines Program structure Program execution
Input

Independent Dependent
Hardware/OS

Independent Dependent (for some properties)
Perspective

Sees anything that
could happen

Sees that which does happen

False Negatives
Avoidable Need all possible inputs

False Positives
Unavoidable Avoidable

14 / 43



Summary

▶ Static analysis has key limitations:
▶ Information missing from code (cf. Soundiness)
▶ Dependency on hardware details (e.g. Execution Time))

▶ This limits:
▶ Optimisation: which optimisations are worthwhile?
▶ Bug search: which potential bugs are ‘real’?

▶ Can use dynamic analysis to examine run-time behaviour

15 / 43



Probes

▶ Probes: devices for measuring property of interest
▶ Software probe: code artefact
▶ Hardware probe: physical device

▶ CPU, OS kernel etc. come with probes preinstalled
▶ Generally need to be flipped on

▶ Want to probe custom location / property:
▶ Instrumentation: insert new probes

16 / 43



Gathering Dynamic Data

▶ Instrumentation and Software Probes
▶ Simulation
▶ Hardware Probes

17 / 43



Gathering Dynamic Data: Java

Foo.java Foo.class

Dynamic
Classloader

JVM
Runtime

Compiler

FooInstr.classFooInstr.java

JVM
Runtime
Instrumented

Debug
Inter-
face

▶ Source-level instrumentation
▶ Binary-level instrumentation
▶ Load-time instrumentation

(Performed by classloader)
▶ Runtime System instrumentation
▶ Debug APIs

18 / 43



Comparison of Approaches
▶ Source-level instrumentation:
+ Flexible
– Must handle syntactic issues, name capture, . . .
– Only applicable if we have all source code

▶ Binary-level instrumentation:
+ Flexible
– Must handle binary encoding issues
– Only applicable if we know what binary code is used

▶ Load-time instrumentation:
+ Flexible
+ Can handle even unknown code
– Requires run-time support, may clash with custom loaders

▶ Runtime system instrumentation:
+ Flexible
+ Can see everything (gc, JIT, . . . )
– Labour-intensive and error-prone
– Becomes obsolete quickly as runtime evolves

▶ Debug APIs:
+ Typically easy to use and efficient
– Limited capabilities 19 / 43



Instrumentation Tools

C/C++ (Linux) Java
Source-Level C preprocessor, DMCE ExtendJ
Binary Level pin, llvm soot, asm, bcel, As-

pectJ, ExtendJ
Load-time ? Classloader, AspectJ

Debug APIs strace JVMTI

▶ Low-level data gathering:
▶ Command line: perf
▶ Time: clock_gettime() / System.nanoTime()
▶ Process statistics: getrusage()
▶ Hardware performance counters: PAPI

20 / 43



Practical Challenges in Instrumentation

▶ Measuring:
▶ Need access to relevant data

(e.g., Java: source code can’t access JIT internal)
▶ May need to insert software probes (measuring device)

▶ Representing (optional):
▶ Store data in memory until it can be emitted (optional)
▶ May use memory, execution time, perturb measurements

▶ Emitting:
▶ Write measurements out for further processing
▶ May use memory, execution time, perturb measurements

21 / 43



Summary

▶ Different instrumentation strategies:
▶ Instrument source code or binaries
▶ Instrument statically or dynamically
▶ Instrument input program or runtime system

▶ Challenges when handling analysis:
▶ In-memory representation of measurements

(for compression or speed)
▶ Emitting measurements

22 / 43



Unit Tests

Teal
fun cmp(a, b) = {

if a > b {
return 1;

}
if a < b {

return -1;
}
return 0;

}

fun test() = {
assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}

Unit tests are a simple form of dynamic program analysis 23 / 43



Unit Test Quality

if a > bif a > b
b0

return 1return 1
b1

if b > aif b > a
b2

return -1return -1
b3

return 0return 0
b4

Teal
fun test() = {

assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}

Have I tested all behaviours? 24 / 43



Test Coverage

visited_bb[0] := 1
if a > b
visited_bb[0] := 1
if a > b

b0

visited_bb[1] := 1
return 1
visited_bb[1] := 1
return 1

b1

visited_bb[2] := 1
if b > a
visited_bb[2] := 1
if b > a

b2

visited_bb[3] := 1
return -1
visited_bb[3] := 1
return -1

b3

visited_bb[4] := 1
return 0
visited_bb[4] := 1
return 0

b4

▶ Test coverage = fraction of visited_bb elements updated

25 / 43



Test Coverage Properties
▶ Statement Coverage: % of executed CFG nodes

or “Basic Blocks” of contiguous non-branching operations
▶ Mark nodes/blocks as visited while testing

▶ Edge Coverage: % of taken CFG edges
▶ Challenge: distinguish edges e1 from e2?

if ...if ...
b0 print(1)

if ...
print(1)
if ...

b1

returnreturn
b2print(2)print(2)

b3
print(2)print(2)

b3

e1
e2

(mark e1 visited)(mark e1 visited)
be1

(mark e2 visited)(mark e2 visited)
be2

▶ Path Coverage: % of CFG paths

▶ Must limit iterations
▶ Must restart tracking block coverage on every method entry

27 / 43



Test Coverage Properties
▶ Statement Coverage: % of executed CFG nodes

or “Basic Blocks” of contiguous non-branching operations
▶ Mark nodes/blocks as visited while testing

▶ Edge Coverage: % of taken CFG edges
▶ Challenge: distinguish edges e1 from e2?

if ...if ...
b0 print(1)

if ...
print(1)
if ...

b1

returnreturn
b2print(2)print(2)

b3
print(2)print(2)

b3

e1
e2

(mark e1 visited)(mark e1 visited)
be1

(mark e2 visited)(mark e2 visited)
be2

▶ Path Coverage: % of CFG paths
▶ Must limit iterations
▶ Must restart tracking block coverage on every method entry

27 / 43



Summary

▶ Unit Tests are a simple form of dynamic program analysis
▶ Minimal tooling needed
▶ Custom checks
▶ Limited to what underlying language can express directly

▶ Test Coverage tells us how much of our code gets analysed
by at least one unit test

▶ Implement by setting markers on relevant CFG nodes /
blocks
▶ Source-level: e.g. via DMCE (C/C++)
▶ Binary-level: e.g. via JaCoCo/JCov (Java)

▶ Different criteria, such as:
▶ Statement Coverage
▶ Edge Coverage: may require helper CFG nodes
▶ Path Coverage: paths through CFG (usually excluding loops)

28 / 43



General Data Collection

▶ Probes: How we measure
▶ Events: When we measure
▶ Characteristics: What we measure
▶ Measurements: Individual observations
▶ Samples: Collections of measurements

29 / 43



Events

▶ Subroutine call
▶ Subroutine return
▶ Memory access (read or write or either)
▶ System call
▶ Page fault

. . .

30 / 43



Characteristics

▶ Value: What is the type / numeric value / . . . ?
▶ Counts: How often does this event happen?
▶ Wallclock times: How long does one event take to finish,

end-to-end?
Derived properties:
▶ Frequencies: How often does this happen

▶ Per run
▶ Per time interval
▶ Per occurrence of another event

▶ Relative execution times: How long does this take
▶ As fraction of the total run-time
▶ As fraction of some surrounding event

31 / 43



Perturbation
Example challenge: can we use total counts to decide whether
to optimise some function f?
▶ On each method entry: get current time
▶ On each method exit: get time again, update aggregate
▶ Reading timer takes: ∼ 80 cycles
▶ Short f calls may be much faster than 160 cycles

▶ fun f(x) = x + 1 // ca. 0.25 cycles
▶ fun f(x) = x // ca. 0 cycles

▶ Also: measurement needs CPU registers
⇒ may require registers
⇒ may slow down code further

1 GHz CPU: 1 cycle = 10−9s (1 nanosecond / ns)

Measurements perturb our results, slow down execution

32 / 43



Sampling

Alternative to full counts: Sampling
▶ Periodically interrupt program and measure
▶ Problem: how to pick the right period?

1 System events (e.g., GC trigger or ‘safepoint’)
System events may bias results

2 Timer events: periodic intervals
▶ May also bias results for periodic applications
▶ Randomised intervals can avoid bias
▶ Short intervals: perturbation, slowdown
▶ Long intervals: imprecision

33 / 43



Samples and Measurements

Samples are collections of measurements
▶ Bigger samples:

▶ Typically give more precise answers
▶ May take longer to collect

▶ Challenge: representative sampling

0 0.5 1 1.5 2
0

0.5
1

1.5

Carefully choose what and how to sample

34 / 43



Summary

▶ We measure Characteristics of Events
▶ Sample: set of Measurements (of characteristics of events)
▶ Measurements often cause perturbation:

▶ Measuring disturbs characteristics
▶ Not relevant for all measurements
▶ Measuring time: more relevant the smaller our time intervals

get
▶ Can measure by:

▶ Counting: observe every event
▶ Gets all events
▶ Maximum measurement perturbation

▶ Sampling: periodically measure
▶ Misses some events
▶ Reduces perturbation

35 / 43



Presenting Measurements

P1 P2
Mean µ 1,001 0,999
Standard Deviation σ 0,273 0,275 Assuming normal

distribution:

0 0.5 1 1.5 2

0.5

1

1.5

36 / 43



Standard Deviation, Assuming Normal
Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1
µ ± σ

Deviation Chance of actual µ being in interval
σ 68,27%

1,96σ 95,00%
2σ 95,45%

2,58σ 99,00%
3σ 99,73%

37 / 43



How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

0 0,5 1 1,5

P1

P2

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

38 / 43



Box Plots

1st Q 4th QMedian

▶ Split data into 4 Quartiles:
▶ Upper Quartile (1st Q): Largest 25% of measurements
▶ Lower Quartile (4th Q): Smallest 25% of measurements
▶ Median: measured value, middle of sorted list of measurements

▶ Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (IQR)

▶ 1st Q whisker shows largest measured value ≤ 1,5 × IQR
(from box)

▶ 4th Q whister analogously
▶ Remaining outliers are marked

39 / 43



Box plot: example

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

40 / 43



Violin Plots

0.
0

0.
5

1.
0

1.
5

2.
0

1 2

●
●

41 / 43



Summary

▶ We don’t usually know our statistical distribution
▶ There exist statistical methods to work precisely with

confidence intervals, given certain assumptions about the
distribution (not covered here)

▶ Visualising without statistical analysis:
▶ Box Plot

▶ Splits data into quartiles
▶ Highlights points of interest
▶ No assumption about distribution

▶ Violin Plot
▶ Includes Box Plot data
▶ Tries to approximate probability distribution function visually
▶ Can help to identify actual distribution

42 / 43



Outlook

http://cs.lth.se/EDAP15

43 / 43

http://cs.lth.se/EDAP15

