LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 1

Christoph Reichenbach

Welcome back!

» Moodle notification mails seem back online

Questions?

2/43

Analysing Realistic Programs

Challenges:
» Semantics:

» Language semantics may be imprecisely defined
(e.g., custom or domain-specific languages)
» Certain language features intrinsically hard to analyse

» Non-Semantic Properties:

» Property of interest may not be part of semantics
» Examples: execution time, energy usage

3/43

Reflection

Java
Class<?> cl = Class.forName(string);
Object obj = cl.getConstructor().newIlnstance();
System.out.println(obj.toString()) ;

» Instantiates object by string name
» Similar features to call method by name
» Challenge:

» obj may have any type = imprecision

» Sound call graph construction very conservative
» Approaches

» Dataflow: what strings flow into string?

» Common: code draws from finite set or uses string prefix/suffix

(e.g., ("com.x.plugins." + ...))
> Class.forName: class only from some point in package hierarchy

» Dynamic analysis

4/43

Dynamic Loading
C

handle = dlopen("module.so", RTLD_LAZY);
op = (int (*)(int)) dlsym(handle, "my_fn");

» Dynamic library and class loading:
» Add new code to program that was not visible at analysis time
» Challenge:
» Can't analyse what we can't see
» Approaches:
» Conservative approximation
> Tricky: External code may modify all that it can reach
» With dynamic support and static annotation:
> Allow only loading of signed/trusted code
> signature must guarantee properties we care about
> annotation provides properties to static analysis
» Proof-carrying code

» Code comes with proof that we can check at run-time
5/43

Native Code

Java
class A {

public native Object op(Object arg);
+

» High-level language invokes code written in low-level

language

» Usually C or C++

» May use nontrivial interface to talk to high-level language
» Challenge:

» High-level language analyses don't understand low-level

language

» Approaches:

» Conservative approximation

> Tricky: External code may modify anything
» Manually model known native operations (e.g., Doop)
» Multi-language analysis (e.g., Graal)
6/43

‘eval’ and dynamic code generation

Python

eval (raw_input ())

» Execute a string as if it were part of the program
» Challenge:

» Cannot predict contents of string in general
» Approaches:

» Conservative approximation

> Tricky: code may modify anything
» Dynamically re-run static analysis
> Special-case handling (cf. reflection)

7/43

Summary

» Static program analysis faces significant challenges:

» Decidability requires lack of precision or soundness for most of
the interesting analyses

> Reflection allows calling methods / creating objects given by
arbitrary string

» Dynamic module loading allows running code that the
analysis couldn’t inspect ahead of time

» Native code allows running code written in a different
language

» Dynamic code generation and eval allow building arbitrary
programs and executing them

» No universal solution

» Can try to ‘outlaw’ or restrict problematic features, depending
on goal of analysis

» Can combine with dynamic analyses

8/43

Soundiness

» Can't analyse language feature?

—> We get T if we want soundness
—> Potentially many false positives
= Tool may be useless
» Google SWE practice: Bug checkers with > 5% false positives
disabled automatically

» Soundness may not be useful
» Alternative proposal from research community: Soundiness

» Be explicit about unsupported language features
» Example: “Sound unless the code uses features X, Y, Z"

Soundiness: “capture all dynamic behaviour within reason”

B. Livshits, M. Sridharan, Y. Smaragdakis et al.: “In defense of
Soundiness: A Manifesto”, Communications of the ACM, 2015

9/43

Lecture Overview

_ . : Dynamic
Foundations Static Analysis Ar}:alysis
Properties Control Flow
0l)Foundations ‘ g‘ﬂTypes ‘ @Instrumentation ‘
02)Constructing gg Data Flow ‘@Intraprocedural ‘@Analysis ‘
Program Analyses |07
in JastAdd gaMemory ‘@Interprocedural ‘
)indirect ‘
14)Review ‘

10/43

Static Analysis: Limitations

Static program analysis challenges:

» Semantics:
> hard to be sound / precise
» Non-semantic properties:

» Underspecified in language specification
» May be machine/implementation-dependent
» Examples:

> Resource usage

> Execution time

> Latency

> Throughput

Dynamic Analysis can help with both

11/43

More Difficulties for Static Analysis

» Does a certain piece of code actually get executed?
» How long does it take to execute this piece of code?
» How important is this piece of code in practice?

» How well does this code collaborate with hardware devices?

» Harddisks?

» Networking devices?

» Caches that speed up memory access?

» Branch predictors that speed up conditional jumps?
> The ALU(s) that perform arithmetic in the CPU?

» The TLB that helps look up memory?

Impossible to predict for all practical situations

12/43

Static vs. Dynamic Program Analyses

| Static Analysis | Dynamic Analysis
Examines Program structure Program execution
Input
Independent Dependent
Hardware/0OS
Independent Dependent (for some properties)

Perspective
Sees anything that | Sees that which does happen

could happen

False Negatives

Avoidable Need all possible inputs
False Positives
Unavoidable Avoidable
tjasl:add f ciikon
,’

woot

14 /43

Summary

» Static analysis has key limitations:

> Information missing from code (cf. Soundiness)
» Dependency on hardware details (e.g. Execution Time))

» This limits:
» Optimisation: which optimisations are worthwhile?
» Bug search: which potential bugs are ‘real’?

» Can use dynamic analysis to examine run-time behaviour

15/43

Probes

» Probes: devices for measuring property of interest

» Software probe: code artefact
» Hardware probe: physical device

» CPU, OS kernel etc. come with probes preinstalled
» Generally need to be flipped on

» Want to probe custom location / property:
» Instrumentation: insert new probes

16/43

Gathering Dynamic Data

» Instrumentation and Software Probes
» Simulation
» Hardware Probes

17/43

Gathering Dynamic Data: Java

Foo.java

Foo.class

Compiler

Foolnstr.class

» Source-level instrumentation

Foolnstr.java

> Binary-level instrumentation VM

» Load-time instrumentation Runtime
-

(Performed by classloader)

» Runtime System instrumentation
» Debug APlIs

Dynamic
Classloader

JVM
Runtime
Instrumented

18/43

Comparison of Approaches

> Source-level instrumentation:
- Flexible
— Must handle syntactic issues, name capture, ...
— Only applicable if we have all source code
> Binary-level instrumentation:
+ Flexible
— Must handle binary encoding issues
— Only applicable if we know what binary code is used
> Load-time instrumentation:
-+ Flexible
—+ Can handle even unknown code
— Requires run-time support, may clash with custom loaders
> Runtime system instrumentation:
—+ Flexible
~+ Can see everything (gc, JIT, ...)
— Labour-intensive and error-prone
— Becomes obsolete quickly as runtime evolves
> Debug APIs:
-+ Typically easy to use and efficient
— Limited capabilities 1943

Instrumentation Tools

] \ C/C++ (Linux) \ Java

Source-Level | C preprocessor, DMCE | ExtendJ
Binary Level pin, 1lvm soot, asm, bcel, As-
pectJ, ExtendJ
Load-time ? Classloader, Aspect)
Debug APIs strace JVMTI

> Low-level data gathering:
» Command line: perf
> Time: clock_gettime() / System.nanoTime ()
» Process statistics: getrusage()
» Hardware performance counters: PAPI

20/43

Practical Challenges in Instrumentation

» Measuring:
> Need access to relevant data
(e.g., Java: source code can't access JIT internal)
> May need to insert software probes (measuring device)

> Representing (optional):
> Store data in memory until it can be emitted (optional)
» May use memory, execution time, perturb measurements

» Emitting:
» Write measurements out for further processing
> May use memory, execution time, perturb measurements

21/43

Summary

» Different instrumentation strategies:

» Instrument source code or binaries

» Instrument statically or dynamically

» Instrument input program or runtime system
» Challenges when handling analysis:

» In-memory representation of measurements

(for compression or speed)
» Emitting measurements

22/43

Unit Tests

Teal
fun cmp(a, b) = {
if a > b {
return 1;
}
if a < b {
return -1;
}

return O;

}

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

Unit tests are a simple form of dynamic program analysis | 2,4

Unit Test Quality
CB:f a>b

1 7 P
O v
‘zgf g’> a

()=
eturn O

Teal

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

| Have | toacted all hehavicnive? |

24/43

Test Coverage

b

0
’éisited_bb[O]

if a > b

b.

~

-

2
Z A el]

if b > a

b 4

1
'éisited_bb[l]
return 1

b,

~

-

4
/éisited_bb[4]

return O

» Test coverage = fraction of visited bb elements updated

b 4

3)
visited bb[3]
return -1

25 /43

Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations

» Mark nodes/blocks as visited while testing
» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edges e; from e>?

1
@ Jprint (1)

€1 /
b. v L

3 b
print(2) @ eturn

b

27/43

Test Coverage Properties

» Statement Coverage: % of executed CFG nodes
or “Basic Blocks" of contiguous non-branching operations

» Mark nodes/blocks as visited while testing
» Edge Coverage: % of taken CFG edges

» Challenge: distinguish edges e; from e>?
bl

Jprint (1)

Tif ...

mark e, visited) mark e visited)

- / e
!p rint(2) @ eturn

» Path Coverage: % of CFG paths

» Must limit iterations
» Must restart tracking block coverage on every method entry

27/43

Summary

» Unit Tests are a simple form of dynamic program analysis

» Minimal tooling needed
» Custom checks
» Limited to what underlying language can express directly

» Test Coverage tells us how much of our code gets analysed
by at least one unit test

» Implement by setting markers on relevant CFG nodes /
blocks

> Source-level: e.g. via DMCE (C/C++)
> Binary-level: e.g. via JaCoCo/JCov (Java)

» Different criteria, such as:

» Statement Coverage
» Edge Coverage: may require helper CFG nodes
» Path Coverage: paths through CFG (usually excluding loops)

28/43

General Data Collection

» Probes: How we measure

» Events: When we measure

» Characteristics: What we measure

» Measurements: Individual observations
» Samples: Collections of measurements

29/43

Events

» Subroutine call

» Subroutine return

» Memory access (read or write or either)
» System call

» Page fault

30/43

Characteristics

» Value: What is the type / numeric value / ...7?
» Counts: How often does this event happen?
» Wallclock times: How long does one event take to finish,
end-to-end?
Derived properties:
» Frequencies: How often does this happen
» Per run
» Per time interval
» Per occurrence of another event
» Relative execution times: How long does this take

» As fraction of the total run-time
» As fraction of some surrounding event

31/43

Perturbation

Example challenge: can we use total counts to decide whether
to optimise some function £7

» On each method entry: get current time

» On each method exit: get time again, update aggregate

» Reading timer takes: ~ 80 cycles

» Short £ calls may be much faster than 160 cycles

»fun f(x) =x+ 1 // ca. 0.25 cycles
» fun f(x) = x // ca. 0 cycles

» Also: measurement needs CPU registers
= may require registers
= may slow down code further

1 GHz CPU: 1 cycle = 107%s (1 nanosecond / ns)

Measurements perturb our results, slow down execution

32/43

Sampling

Alternative to full counts: Sampling

» Periodically interrupt program and measure

> Problem: how to pick the right period?

System events (e.g., GC trigger or ‘safepoint’)
System events may bias results

Timer events: periodic intervals

> May also bias results for periodic applications
» Randomised intervals can avoid bias

> Short intervals: perturbation, slowdown

> Long intervals: imprecision

33/43

Samples and Measurements

Samples are collections of measurements
» Bigger samples:

» Typically give more precise answers
» May take longer to collect

» Challenge: representative sampling

15
1
0.5
9 Jtl'lllll
0 0.5 1 1.5 2

Carefully choose what and how to sample

34/43

Summary

» We measure Characteristics of Events
» Sample: set of Measurements (of characteristics of events)
» Measurements often cause perturbation:
» Measuring disturbs characteristics
» Not relevant for all measurements
» Measuring time: more relevant the smaller our time intervals
get
» Can measure by:

» Counting: observe every event

> Gets all events
» Maximum measurement perturbation

» Sampling: periodically measure
> Misses some events
» Reduces perturbation

35/43

Presenting Measurements

P1 P2
Mean 1 1,001 0,999
Standard Deviation ¢ 0,273 0,275

Assuming normal

distribution:
1.5

36/43

Standard Deviation, Assuming Normal

Distribution

0 02 04 06 08 1 12 14 16 1.8

Deviation
o

1,960

20

2,580

30

Chance of actual ;1 being in interval
68,27%
95,00%
95,45%
99,00%
99,73%

2

2.2

37/43

How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

P2 | . |
X XX X
P1 } * |

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

38/43

Box Plots

*————x—— X XE X XX ¥ -———————-— a’(®
| ~
1st Q Median 4th Q

» Split data into 4 Quartiles:

> Upper Quartile (1st Q): Largest 25% of measurements
> Lower Quartile (4th Q): Smallest 25% of measurements
» Median: measured value, middle of sorted list of measurements

» Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (/QR)

» 1st Q whisker shows largest measured value < 1,5 x IQR
(from box)

» 4th Q whister analogously
» Remaining outliers are marked

39/43

Box plot: example

o |
o
w |
— "
.
04 —_—
- C———
o _|
o
o |
o

40/43

Violin Plots

2.0

15

1.0

0.5
|

0.0

41/43

Summary

» We don't usually know our statistical distribution

» There exist statistical methods to work precisely with
confidence intervals, given certain assumptions about the
distribution (not covered here)

» Visualising without statistical analysis:

» Box Plot
> Splits data into quartiles
> Highlights points of interest
» No assumption about distribution

» Violin Plot
> Includes Box Plot data
> Tries to approximate probability distribution function visually
> Can help to identify actual distribution

42/43

Outlook

http://cs.1lth.se/EDAP15

43/43

http://cs.lth.se/EDAP15

