
EDAP15: Program Analysis
ANALYSING ADVANCED LANGUAGE FEATURESANALYSING ADVANCED LANGUAGE FEATURES

Christoph Reichenbach



Welcome back!
▶ Quick presentation about CodeProber user studies in break

by Anton
▶ Homework Exercise 1 update:

▶ Can present in office hours today if you have already presented
exercise 0

▶ Can present in office hours next week if you have already
presented exercises 0 & 2

▶ Homework Exercie 4 update:
Will reqiure one of:
▶ podman (available in Linux lab rooms in E-huset)
▶ docker
▶ Local installation & build of C programs on CLI

(Linux, OS X, *BSD, WSL, any recent-ish Unix)

Questions?
2 / 43



Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

3 / 43



Composing Representation Relations

Representation Relations (may be null analysis):
x := null;
y := y;

0

0

x

x

y

y

if x != y {
x := y;

}
y := 1;

0

0

x

x

y

y

{ t := x;
x := y;
y := t; }

0

0

x

x

y

y

0

0

x

x

y

y

Composed representation relations are again representation relations

4 / 43



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

6 / 43



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”

6 / 43



Joining Control-Flow Paths

if

x := null;
y := y;
if x != y {

x := y;
}
y := 1
{ t := x

x := y
y := t }

0

0

x

x

y

y

z

z

0

0

x

x

y

y

z

z

z := null

0 x y z

0 x y z

. . .

Logical “Or”
6 / 43



Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)

▶ Equivalently for ‘Must’ analysis:
‘x must be null’ = not (‘x may be non-null’)

▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

7 / 43



Dataflow via Graph Reachability

n = ⟨b, v⟩

▶ Assume binary latice ({⊤, ⊥}, ⊑, ⊓, ⊔)
▶ ⊤ ⊔ y = ⊤ = x ⊔ ⊤ and ⊥ ⊔ ⊥ = ⊥
▶ Typical for ‘May’ analysis (P(x) = ‘x may be null’)
▶ Equivalently for ‘Must’ analysis:

‘x must be null’ = not (‘x may be non-null’)
▶ Encode Dataflow problem as Graph-Reachability
▶ Graph nodes n = ⟨b, v⟩

▶ b: CFG node
▶ v : Variable or 0

▶ 0: ⟨b1, 0⟩ ⟨b2, y⟩: P(y) at b2 holds always
▶ Variable: ⟨b1, x⟩ ⟨b2, y⟩: P(x) at b1 =⇒ P(y) at b2

7 / 43



A Dataflow Worklist Algorithm: IFDS

▶ Call-site sensitive interprocedural data flow algorithm
▶ IFDS = (Interprocedural Finite Distributive Subset problems)
▶ ‘Exploded Supergraph’: G ♯ = (N ♯, E ♯)

▶ N♯ = NCFG × (V ∪ {0})
▶ Plus parameter/return call edges

▶ Property-of-interest holds if reachable from ⟨bs
main, 0⟩

▶ bs
main is CFG ENTER node of main entry point

▶ Key ideas:
▶ Worklist-based
▶ Construct Representation Relations on demand
▶ Construct ‘Exploded Supergraph’

▶ CFG of all functions × V ∪ {0}

8 / 43



IFDS Datastructures

⟨b0, v0⟩ → ⟨b3, v0⟩
⟨⟨b0, v0⟩, ⟨b3, v0⟩⟩Instead of we also write:

⟨b0, v0⟩ ⟨b3, v0⟩
WorkList edge All WorkList edges are also PathEdge edges

PathEdge edge Result of our analysis

N♯-edge

SummaryInst Generated from summary nodes
Otherwise equivalent to N♯-edges

9 / 43



IFDS Strategy

▶ Algorithm distinguishes between three types of
nodes:
▶ Exit nodes (be

f )
▶ Call nodes (bc

x )
▶ Other nodes

e := f(1, 5)

(return)

bc
x

br
x

ENTER f
bs

f

EXIT f
be

f

10 / 43



On-demand processing

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

11 / 43



Running Example

Teal-0: main()
var default := null;
fun main() = {

var a := get(3);
default := 1;
var b := get(3);
return b;

}

Teal-0: get()
fun get(c) = {

if c == 0 {
z := default;

} else {
z := read_int();
if z < 0 {

z := get(c - 1);
}

}
return z;

}

12 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d

0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)

▶ Propagate along intra-edges
(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)

▶ Propagate along SummaryInst:
(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



d := nulld := null
b0

ENTER main
bs

main

a := get(3)a := get(3)
bc

1

(return)(return)
br

1

d := 1d := 1
b2

b := get(a)b := get(a)
bc

3

(return)(return)
br

3

return breturn b
b4

EXIT main
be

main

ENTER get
bs

get

ifif
b5

z := dz := d
b6

z := rint()z := rint()
b7

ifif
b8

z := get(c-1)z := get(c-1)
bc

9

(return)(return)
br

9

return zreturn z
bA

EXIT get
be

get

0 a b d 0 z c d

0 z c d

0 z c d

G♯ = ⟨N♯, E ♯⟩
where N ⊆ (V ∪ {0}) × NCFG

Initialisation
▶ WorkList =

{⟨bs
main, 0⟩ → ⟨bs

main, 0⟩}
▶ Analogous self-loops for

static variables with
property of interest (d)

▶ e ∈ WorkList =⇒
e ∈ PathEdge

Step (regular edge)
▶ Pick e off the work queue

e = n1 → n2
▶ n2 neither call (c) nor exit (e)?
▶ Find all n2 → n3

propagate(n1 → n3)
▶ Remove e from WorkList
▶ e remains in PathEdge

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end
Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

Step (call edge)
▶ Pick e = n1 → nc

2 off the work queue
▶ nc

2 is call (c)?
▶ Init called procedure:

▶ Find all parameter edges
t = nc

2 → ⟨bs
f , v⟩ ∈ E ♯

▶ propagate(⟨bs
f , v⟩ → ⟨bs

f , v⟩)
▶ Propagate along intra-edges

(As with regular edges)
▶ Propagate along SummaryInst:

(As with regular edges)

Step (exit edge)
▶ Pick e = ns

1 → ne
2 off the work queue

▶ ne
2 is exit (e)?

(ns
1 is always start node.)

▶ For each call/return pair nc
i , nr

i that
calls the current function,
if nc

i → ns
1 → ne

2 → nr
i :

▶ If nc
i → nr

i /∈ SummaryInst:
▶ Add it to SummaryInst
▶ Find all n → nc

i ∈ PathEdge and
propagate(n → nr

1)

Worklist empty: Done
▶ Can now read results off of

PathEdge
▶ e.g. at end of main():

▶ a may be null
▶ b and d definitely non-null

14 / 43



The IFDS Algorithm: Initialisation and
Propagation)

Procedure Init():
begin

WorkList := PathEdge := ∅
propagate(⟨bs

main, 0⟩ → ⟨bs
main, 0⟩)

ForwardTabulate()
end

Procedure propagate(n1 → n2):
begin

if n1 → n2 ∈ PathEdge then
return

PathEdge := PathEdge ∪ {n1 → n2}
WorkList := WorkList ∪ {n1 → n2}

end

15 / 43



IFDS: Forward Tabulation
Procedure ForwardTabulate():
begin

while n0 → n1 ∈ WorkList do
WorkList := WorkList \ {n0 → n1}
⟨b0, v0⟩ = n0; ⟨b1, v1⟩ = n1
if b1 is neither Call nor Exit node then

foreach n1 → n2 ∈ E ♯:
propagate(n0 → n2)

else if b1 is Call node then begin
foreach call edge n1 → n2 ∈ E ♯:

propagate(n2 → n2)
foreach non-call edge n1 → n2 ∈ E ♯ ∪ SummaryInst:

propagate(n0 → n2)
end else if b1 is Exit node then begin

foreach caller/return node pair bc
i , br

i that calls b0 and vars v0, v1 do
ns = ⟨bc

i , v0⟩; nr = ⟨bc
i , v1⟩

if {ns → n0, n0 → n1, n1 → nr } ⊆ E ♯ and not ns → nr ∈ SummaryInst then begin
SummaryInst := SummaryInst ∪ {ns → nr }
foreach nz → ns ∈ PathEdge:

propagate(nz , nr )
end done end done end

16 / 43



Summary: IFDS Algorithm
▶ Computes yes-or-no analysis on all variables

▶ Original notion of ‘variables’ is slightly broader)
▶ Represents facts-of-interest as nodes ⟨b, v⟩:

▶ b is node (basic block) in CFG
▶ v is variable that we are interested in

▶ Uses
▶ ‘Exploded Supergraph’ G♯

▶ All CFGs in program in one graph
▶ Plus interprocedural call edges

▶ Representation relations
▶ Graph reachability
▶ A worklist

▶ Distinguishes between Call nodes, Exit nodes, others
▶ Demand-driven: only analyses what it needs
▶ Whole-program analysis
▶ Computes Least Fixpoint on distributive frameworks

17 / 43



CodeProber study
Call for interviewees



Background

CodeProber is an active research project and we are curious of how you use 
CodeProber!

We would like to answer the following research questions by interviewing you:

- How is CodeProber used during the development of compilers and static 
analysis tools?

- What is the user perception of CodeProber?
- How does CodeProber compare to other tools during the development 

process (e.g debuggers, test cases, print-statements, AI, etc.)?



- We are looking for ~10 people
- 40-50 minutes long
- Swedish, English or Swenglish
- Mostly open questions, no “tests”, no need to prepare anything
- Interviews will be conducted in E building by me (Anton) and Niklas Fors.

Interview



Data and results management

- Interviews will be recorded for transcription purposes.
- Anonymized results will be discussed in the research team for this study 

(Anton, Niklas, Emma Söderberg). 
- Anonymized results from interviews may be included in a publication.
- You can withdraw from the study up to 1 month after it takes place



Reward

- Drinks & snacks (“fika”) at the interview
- A small gift to bring home 🎁
- A feeling of contentment from having helped with research!

- A quote from you during can become (anonymized &) published at a conference!



Interested?

Apply at https://book.ms/b/Intervju5@LundUniversityO365.onmicrosoft.com

(link & information will be mailed out after the lecture today)

Multiple time slots available next week (study week 7, 26/2→1/3)

- First come first served
- Please sign up as soon as possible, but at the latest Friday at 12
- Talk to me at the break if you want to register now!



Interprocedural Analysis in Java

Java
public static void main(String[] args) {

Object obj = MyClass.getObj();
System.err.println(obj.toString());

}

Subroutine call
▶ Analogous to Teal-0 calls
▶ . . . need to know MyClass

Method call
▶ Dynamic Dispatch
▶ Exact subroutine depends on

dynamic type of obj

18 / 43



Challenges

▶ Other modules:
▶ Must have access to analysable representation of module
▶ Not always available

▶ Dynamic Dispatch:

obj.toString()

▶ Which toString method are we calling?
▶ Worst case assumption: any class (Integer.toString(),

HashSet.toString(), . . . )
▶ Can we do better?

19 / 43



The Call Graph

Example in C
(No dynamic dispatch
yet. . . )

int main(int argc,
char *argv) {

if (argc > 1) {
f(argv[0]);

}
g();
return 0;

}

void f(char *s) {
for (char *p = s; *p; p++) {

*p = up(*p);
}
puts(s);

}

void g(void) {
puts("Hello, World!");

}

char up(char c) {
if (c >= ’a’ && c <= ’z’) {

return c - (’a’ - ’A’);
}
return c;

}

20 / 43



The Call Graph
▶ Gcall = ⟨P, Ecall⟩
▶ Connects procedures from P via call edges from Ecall
▶ ‘Which procedure can call which other procedure?’
▶ Often refined to:

‘Which call site can call which procedure?’
▶ Used by program analysis to find procedure call targets

main

f up

g

21 / 43



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

23 / 43



Dynamic Dispatch: Call Graph

Challenge: Computing the precise call graph:

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

24 / 43



Summary

▶ Call Graphs capture which procedure calls which other
procedure

▶ For program analysis, further specialised to map:

Callsite → Procedure

▶ Direct calls: straightforward
▶ Virtual calls (dynamic dispatch):

▶ Multiple targets possible for call
▶ No fully sound/precise solution in general

25 / 43



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

26 / 43



Class Hierarchy Analysis

Object

Main
main(String[])

A
f()
g()

B C D
g() g() g()

▶ Use declared type to determine possible targets
▶ Must consider all possible subtypes
▶ In our example: assume a.f can call any of:

A.f(), B.f(), C.f(), D.f()

27 / 43



Class Hierarchy Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

CHA prediction

28 / 43



Summary

▶ Call Hierarchy Analysis resolves virtual calls a.f () by:
▶ Examining static types T of receivers (a : T )
▶ Finding all subtypes S <: T
▶ Creating call edges to all S.f , if S.f exists

▶ Sound
▶ Assuming strongly and statically typed language with subtyping

▶ Not very precise
▶ Java: ((Object) obj).toString():

Will use all toString() methods anywhere

29 / 43



Rapid Type Analysis

▶ Intuition:
▶ Only consider reachable code
▶ Ignore unused classes
▶ Ignore classes instantiated only by unused code

30 / 43



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

31 / 43



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

31 / 43



Rapid Type Analysis: Example

Main.main()

a.f
a.g

a2.g

A.<init>()

A.f()

A.g()

B.<init>()

B.g()

C.<init>()

C.g()

D.<init>()

D.g()

direct call
virtual call

RTA prediction

32 / 43



Rapid Type Analysis Algorithm Sketch
Procedure RTA(mainproc, <:):
begin

Worklist := {mainproc}
VirtualCalls := ∅
LiveClasses := ∅
while s ∈ mainproc do

foreach call c ∈ s do
if c is direct call to p then

addToWorklist(p)
registerCallEdge(c → p)

else if c = v.m() and v : T then begin
VirtualCalls := VirtualCalls ∪ {c}
foreach S <: T do

addToWorklist(S.m)
registerCallEdge(c → S.m)

done
end else if c = new C() and C /∈ LiveClasses then begin

LiveClasses := LiveClasses ∪ {C}
foreach v .m() ∈ VirtualCalls with v : T and C <: T do

addToWorklist(C.m)
registerCallEdge(c → C.m)

done
end

done done end
33 / 43



Summary

▶ Rapid Type Analysis resolves virtual calls a.f () as follows:
▶ Find all classes that can be instantiated in reachable code
▶ Expand reachable code:

▶ For direct calls to p, add p as reachable
▶ For all virtual calls to v .m() with v : T :

⇒ Add S.m() as reachable
▶ Iterate until we reach a fixpoint

▶ Sound
▶ Assuming strongly and statically typed language with subtyping

▶ More precise than Class Hierarchy Analysis

34 / 43



Finding Calls and Targets

class Main {
public void
main(String[] args) {

A[] as = { new A(), new B() };
for (A a: as) {

A a2 = a.f();
print(a.g());
print(a2.g());

}
}

}

class A {
public A
f() { return new C(); }

public String
g() { return "A"; }

}

class B extends A {
@Override
public String
g() { return "B"; }

}

class C extends A {
@Override
public String
g() { return "C"; }

}

class D extends A {
@Override
public String
g() { return "D"; }

}

a.f

a.g

a2.g

Use points-to analysis?

But what call graph should the points-to analysis use?

35 / 43



Dependencies

Points-to analysis

Call graph Dataflow analyses

▶ Mutual dependencies across program analyses

36 / 43



Loose Composition

Loose Composition: Split analyses into multiple passes

▶ Each pass finishes before next pass starts
▶ Example:

1 RTA: compute initial call graph
2 Steensgaard on RTA output: conservative points-to graph
3 Build pointer-based call graph from Steensgaard’s results
4 Andersen’s analysis with refined (smaller) call graph

37 / 43



Tight Composition

Tight Composition: Analyses depend on each other’s
intermediate results

▶ Analyses run “together”
▶ Example:

▶ JastAdd circular attribute computations (Exercise 2)
▶ Could combine data flow analysis with points-to or call-graph

analysis
▶ Challenges:

▶ Traditional worklist algorithms:
▶ Complex manual engineering needed

▶ Declarative approaches:
▶ Must guarantee Monotonicity

38 / 43



Summary

▶ Mutual dependency between points-to, data flow, call graph
analyses

▶ Two approaches:
▶ Loose composition:

▶ One analysis after the other
▶ May need to run analyses multiple times

▶ Tight composition:
▶ Analyses can use each other’s intermediate results
▶ Difficult to engineer for worklist algorithms
▶ Easier with declarative approaches (attribute grammars, logic

programming)

39 / 43



Summary: Flow-Insensitive Analysis

▶ Monomorphic type inference
▶ Free variables, occurs check, unification
▶ Close to O(#AST nodes)

▶ Polymorphic type inference (Hindley-Damas-Milner)
▶ Type schemas and instantiation
▶ DEXPTIME-complete

▶ Steensgaard’s points-to analysis
▶ Similar to monomorphic type inference
▶ Close to O(#AST nodes)

▶ Andersen’s points-to analysis
▶ Points-to edges and inclusion edges that generate new edges
▶ O(#nodes3)

40 / 43



Summary: Data Flow Analyses

▶ MFP
▶ Precise for distributive frameworks
▶ O(#edges × height(L))

▶ MOP
▶ Precise for monotone frameworks
▶ Undecidable

▶ IFDS / IDE
▶ Interprocedural, precise for distributive frameworks
▶ O(#edges × #variables3)

(IDE: O(#edges × #variables3 × height(L)))

41 / 43



Summary: Call Graph Analyses

▶ Class Hierarchy analysis
▶ Trivial
▶ O(#classes × #methods)

▶ Rapid Type Analysis
▶ Transitive reachability check
▶ O(#classes × #methods)

▶ Points-to-based call graph analysis
▶ Mutual dependency
▶ Complexity and precision vary

42 / 43



Building Analyses: Considerations
▶ What level of soundness?

▶ Conservative: sound, but can be imprecise
▶ Optimistic: unsound, but can be more precise

▶ What performance needs?
▶ Trade-off: soundness vs. precision vs. performance
▶ More precise server analysis =⇒ faster client analysis
▶ Some analyses can be split into:

▶ fast/coarse “filter” pass
▶ slow/precise main pass

▶ Interactive use? Low latency, consider incremental analyses
▶ High reliability need? (Integrate interactive tools?)

. . .
▶ What do we know?

▶ Language semantics
▶ External libraries of importance
▶ User annotations / specs to help analysis

. . .
43 / 43


