LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
INTERPROCEDURAL ANALYSIS

Christoph Reichenbach

Welcome back!

Questions?

2/26

Lecture Overview

_ . : Dynamic
Foundations Static Analysis Azalysis
Properties Control Flow
01)Foundations ‘gﬂTypes ‘ 12)|nstrumentation ‘
92)Constructing gg Data Flow ‘@Intraprocedural ‘@Analysis ‘
Program Analyses (07
in JastAdd gﬂMemory ‘@Interprocedural ‘
Wndirect ‘
14)Review ‘

3/26

What about subroutines?

Teal

var x := max(0, 5);
print(10 / x); // Division by zero?

» Understanding code usually requires understanding
subroutines like max

4/26

Inter- vs. Intra-Procedural Analysis

» Intraprocedural: Within one procedure
» Data flow analysis so far
» Interprocedural: Across multiple procedures
» Type Analysis, especially. with polymorphic type inference

5/26

Limitations of Intra-Procedural Analysis

Teal-0 Teal-0
a :=7; fun f(x, y) = {
d := f(a, 2); var z := 0O;
e 1= a + d; if x >y {
Z = X;
} else {
zZ = y;
}
return z;
}

How can we compute Reachable Definitions here?

6/26

A Naive Inter-Procedural Analysis

x = {7} fx, y) =
* e
Z =
TP

inbg = out,, L outp, :Outbg

»out,,: e — {9, 14}

Works rather straightforwardly!

7/26

Inter-Procedural Control Flow Graph

subroutine start

__»| ENTER

@e = £(1, 5)[
1

(return) |

— EXIT

subroutine end

» Split call sites b, into call (bS) and return (b}) nodes
» Intra-procedural edge bS — b’ carries environment /store
> Inter-procedural edge (=):

» Call site — callee: substitutes parameters
» Call site <= return: substitutes result
» Otherwise like intra-procedural data flow edge

8/26

A Naive Inter-Procedural Analysis

x> {7} Ty =

by v 2

x— {1,7}
y = {2,5}

=)
zZ :=

z—{1,2,5,7}

e {1,2,5,7}

Imprecision!

9/26

Valid Paths

{ return

by

4 [b5, bg, bO, bla b3> b4a é]

] NqNawalidafidtbatither \

| Context-sensitive interprocedural analyses consider only valid paths |

10/26

Summary

» Intraprocedural Analysis:

» Considers one subroutine at a time
» Calls to other subroutines treated as “worst-case”
(e.g., T for dataflow analysis)

» Interprocedural Analysis:

» Analyses calls to subroutines
> For Dataflow analysis: uses Interprocedural CFG (ICFG)

> ICFG represents subroutine calls as two nodes:
call and return

» Special Call/Return edges caller < callee

> Naive interpretation of ICFG call/return edges “spills” analysis
results across call sites

11/26

Interprocedural Data Flow Analysis

» Call-site insensitive

» Use same abstraction for each call site
» Examples for dataflow analysis:

> Treat ICFG call/return edges like “regular” call/return edges
> Use same transfer function everywhere (e.g., for builtin functions)

» Call-site sensitive
» Use different abstractions at different call sites

12/26

Call-Site Insensitive Analysis

x = {7} £G, y) =

Oy gdadtl

x = {1,7}
y = {2,5}

z—{1,2,5,7}

e {1,5,2,7}

Call-site insensitive: analysis merges all callers to £ ()

13/26

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

14 /26

Inlining

:= £(1, 5)

x — {1} >

o 15}

e {1,5}

return z

Clone subroutine IRs for each calling context

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

16 /26

Call Strings of Length 1

f(x, y) =

X = {7[b6]}

@ y = {259}

x = {71 {16
¥ = {205 H{5, }

e = {1[p,}, Sip1}

17/26

Degrees of Call-Site Sensitivity

» We used call strings to make call sites explicit:
> [be] in 2(p
» “Strings" because this idea generalises
» Can keep track of multiple callers
» Example: 2-call-site sensitivity: [bo, bs] vs [b1, bs]

Teal

fun g(y: int): int

fun f(x: int): int
return g(x) // bs

{ return y }
{

+ g(5); // by
}
£(1); // bo
£(2); // b

Must bound length of call strings to ensure termination |

18/26

Summary

Strategies for call-site sensitive analysis:
> Inlining
» Copy subroutine bodies for each caller

» Performance cost
» Recursion: fall back to T

» Call Strings
» Call string length:

» Unbounded: Maximum precision, may not terminate with
recursion

» Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

19/26

Precise Interprocedural Dataflow

» Precision via one of:

Inlining or AST cloning
Call Strings
Procedure Summaries

20/26

Summarising Procedures

» Compose transfer functions:
> transp, o transp, = [z + 0]
transp, o transp, o transp, = [z — {x}]
transp, o transp, o transp, = [z — {y}]
transp, o transp, o (transp, Ll transp,) = [z — {x, y}]
transp, o transp, o (transp, LI transp,) o transp, = [z — {x, y}]

vV vYyVvyy

21/26

Procedure Summaries vs Recursion

f calls g calls h calls £

» Reqiures additional analysis to identify who calls whom
» Compute summaries of mutually recursive functions together
» Recursive call edges analogous to loops

22/26

Procedure Summaries

» Composing transfer functions yields a combined transfer
function for £():

transy = [return — {x, y}]

» Use transy as transfer function for £ (), discard f's body
» Opportunities:
» Can yield compact subroutine descriptions
» Can speed up call site analysis dramatically
» Challenges:
» More complex to implement
» Recursion remains challenging
» Limitations:
» Requires suitable representation for summary
» Requires mechanism for abstracting and applying summary
» Worst cases:
> transs is symbolic expression more complex than f itself
23/26

Procedure Summaries for Dataflow

» Procedure Summaries can be as precise as inlining/call strings

but only for Distributive Frameworks

> Algorithm for Gen/Kill analyses: IFDS
» Algorithm for other analyses: IDE

24/26

Summary

Making interprocedural dataflow precise:
» Call-site sensitive approaches:

» Inlining

» Call strings
» Call-site insensitive approaches:

» Procedure Summaries

> Precise + compact summaries only possible for distributive
frameworks

25/26

Outlook

» More static analysis on Monday
» Exercise 3 will go up tomorrow
» Exercise 4 (next week):

> can run via podman (on lab computers)
» will also offer Docker image

http://cs.1th.se/EDAP15

26/26

http://cs.lth.se/EDAP15

