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Welcome back!

Questions?
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What about subroutines?

Teal
var x := max(0, 5);
print(10 / x); // Division by zero?

▶ Understanding code usually requires understanding
subroutines like max
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Inter- vs. Intra-Procedural Analysis

▶ Intraprocedural: Within one procedure
▶ Data flow analysis so far

▶ Interprocedural: Across multiple procedures
▶ Type Analysis, especially. with polymorphic type inference
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Limitations of Intra-Procedural Analysis

Teal-0
a := 7;
d := f(a, 2);
e := a + d;

Teal-0
fun f(x, y) = {

var z := 0;
if x > y {

z := x;
} else {

z := y;
}
return z;

}

How can we compute Reachable Definitions here?
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A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)(return)
br

6

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 ⊔ outb4 = outbr
6

▶ outb7 : e 7→ {9, 14}

Works rather straightforwardly!
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Inter-Procedural Control Flow Graph

e := f(1, 5)e := f(1, 5)
bc

x

(return)(return)
br

x

ENTERENTER
subroutine start

EXITEXIT
subroutine end

▶ Split call sites bx into call (bc
x ) and return (br

x) nodes
▶ Intra-procedural edge bc

x br
x carries environment/store

▶ Inter-procedural edge ( ):
▶ Call site callee: substitutes parameters
▶ Call site return: substitutes result
▶ Otherwise like intra-procedural data flow edge
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A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := f(1, 5)e := f(1, 5)
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

(return)(return)
br

6

(return)(return)
br

7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
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Valid Paths

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)(return)
br

6

(return)(return)
br

7

▶ [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive interprocedural analyses consider only valid paths
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Summary

▶ Intraprocedural Analysis:
▶ Considers one subroutine at a time
▶ Calls to other subroutines treated as “worst-case”

(e.g., ⊤ for dataflow analysis)
▶ Interprocedural Analysis:

▶ Analyses calls to subroutines
▶ For Dataflow analysis: uses Interprocedural CFG (ICFG)

▶ ICFG represents subroutine calls as two nodes:
call and return

▶ Special Call/Return edges caller ⇔ callee
▶ Naïve interpretation of ICFG call/return edges “spills” analysis

results across call sites
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Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Use same abstraction for each call site
▶ Examples for dataflow analysis:

▶ Treat ICFG call/return edges like “regular” call/return edges
▶ Use same transfer function everywhere (e.g., for builtin functions)

▶ Call-site sensitive
▶ Use different abstractions at different call sites
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Call-Site Insensitive Analysis

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Call-site insensitive: analysis merges all callers to f()
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries
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Inlining

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

z := 0

if ...

z := x z := y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries
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Call Strings of Length 1

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7[b6]}
y 7→ {2[b6]}

x 7→ {1[b7]}
y 7→ {5[b7]}

x 7→ {7[b6]}|{1[b7]}
y 7→ {2[b6]}|{5[b7]}

z 7→ {1[b7], 5[b7]}|{2[b6], 7[b6]}d 7→ {2[b6], 7[b6]}

e 7→ {1[b7], 5[b7]}
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Degrees of Call-Site Sensitivity
▶ We used call strings to make call sites explicit:

▶ [b6] in 2[b6]
▶ “Strings” because this idea generalises:

▶ Can keep track of multiple callers
▶ Example: 2-call-site sensitivity: [b0, b6] vs [b1, b6]

Teal
fun g(y: int): int = { return y }
fun f(x: int): int = {

return g(x) // b6
+ g(5); // b7

}
...

f(1); // b0
f(2); // b1

Must bound length of call strings to ensure termination
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Summary

Strategies for call-site sensitive analysis:
▶ Inlining

▶ Copy subroutine bodies for each caller
▶ Performance cost
▶ Recursion: fall back to ⊤

▶ Call Strings
▶ Call string length:

▶ Unbounded: Maximum precision, may not terminate with
recursion

▶ Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)
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Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries
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Summarising Procedures

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

▶ Compose transfer functions:
▶ transb0 ◦ transb1 = [z 7→ 0]
▶ transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
▶ transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) = [z 7→ {x , y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) ◦ transb4 = [z 7→ {x , y}]
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Procedure Summaries vs Recursion

f calls g calls h calls f

▶ Reqiures additional analysis to identify who calls whom
▶ Compute summaries of mutually recursive functions together
▶ Recursive call edges analogous to loops
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Procedure Summaries
▶ Composing transfer functions yields a combined transfer

function for f():

transf = [return 7→ {x , y}]
▶ Use transf as transfer function for f(), discard f’s body
▶ Opportunities:

▶ Can yield compact subroutine descriptions
▶ Can speed up call site analysis dramatically

▶ Challenges:
▶ More complex to implement
▶ Recursion remains challenging

▶ Limitations:
▶ Requires suitable representation for summary
▶ Requires mechanism for abstracting and applying summary
▶ Worst cases:

▶ transf is symbolic expression more complex than f itself
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Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE
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Summary

Making interprocedural dataflow precise:
▶ Call-site sensitive approaches:

▶ Inlining
▶ Call strings

▶ Call-site insensitive approaches:
▶ Procedure Summaries

▶ Precise + compact summaries only possible for distributive
frameworks
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Outlook

▶ More static analysis on Monday
▶ Exercise 3 will go up tomorrow
▶ Exercise 4 (next week):

▶ can run via podman (on lab computers)
▶ will also offer Docker image

http://cs.lth.se/EDAP15
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