
EDAP15: Program Analysis
INTERPROCEDURAL ANALYSISINTERPROCEDURAL ANALYSIS

Christoph Reichenbach

Welcome back!

Questions?

2 / 26

Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

3 / 26

What about subroutines?

Teal
var x := max(0, 5);
print(10 / x); // Division by zero?

▶ Understanding code usually requires understanding
subroutines like max

4 / 26

Inter- vs. Intra-Procedural Analysis

▶ Intraprocedural: Within one procedure
▶ Data flow analysis so far

▶ Interprocedural: Across multiple procedures
▶ Type Analysis, especially. with polymorphic type inference

5 / 26

Limitations of Intra-Procedural Analysis

Teal-0
a := 7;
d := f(a, 2);
e := a + d;

Teal-0
fun f(x, y) = {

var z := 0;
if x > y {

z := x;
} else {

z := y;
}
return z;

}

How can we compute Reachable Definitions here?

6 / 26

A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

x 7→ {7}
y 7→ {2}

omitting ‘obvious’ transfer functions

(return)(return)
br

6

d 7→ {2, 7}

a 7→ {7} br
6

inbr
6

= outb6 ⊔ outb4 = outbr
6

▶ outb7 : e 7→ {9, 14}

Works rather straightforwardly!
7 / 26

Inter-Procedural Control Flow Graph

e := f(1, 5)e := f(1, 5)
bc

x

(return)(return)
br

x

ENTERENTER
subroutine start

EXITEXIT
subroutine end

▶ Split call sites bx into call (bc
x) and return (br

x) nodes
▶ Intra-procedural edge bc

x br
x carries environment/store

▶ Inter-procedural edge ():
▶ Call site callee: substitutes parameters
▶ Call site return: substitutes result
▶ Otherwise like intra-procedural data flow edge

8 / 26

A Naïve Inter-Procedural Analysis

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := f(1, 5)e := f(1, 5)
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

(return)(return)
br

6

(return)(return)
br

7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}
d 7→ {1, 2, 5, 7}

e 7→ {1, 2, 5, 7}

Imprecision!
9 / 26

Valid Paths

a := 7a := 7
b5

d := f(a, 2)d := f(a, 2)
bc

6

e := a + de := a + d
b7

f(x, y) =

z := 0z := 0
b0

if ...if ...
b1

z := xz := x
b2 z := yz := y

b3

return zreturn z
b4b4

Not a valid pathNot a valid path either

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)(return)
br

6

(return)(return)
br

7

▶ [b5, bc
6 , b0, b1, b3, b4, br

6]

Context-sensitive interprocedural analyses consider only valid paths
10 / 26

Summary

▶ Intraprocedural Analysis:
▶ Considers one subroutine at a time
▶ Calls to other subroutines treated as “worst-case”

(e.g., ⊤ for dataflow analysis)
▶ Interprocedural Analysis:

▶ Analyses calls to subroutines
▶ For Dataflow analysis: uses Interprocedural CFG (ICFG)

▶ ICFG represents subroutine calls as two nodes:
call and return

▶ Special Call/Return edges caller ⇔ callee
▶ Naïve interpretation of ICFG call/return edges “spills” analysis

results across call sites

11 / 26

Interprocedural Data Flow Analysis

▶ Call-site insensitive
▶ Use same abstraction for each call site
▶ Examples for dataflow analysis:

▶ Treat ICFG call/return edges like “regular” call/return edges
▶ Use same transfer function everywhere (e.g., for builtin functions)

▶ Call-site sensitive
▶ Use different abstractions at different call sites

12 / 26

Call-Site Insensitive Analysis

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

x 7→ {1, 7}
y 7→ {2, 5}

z 7→ {1, 2, 5, 7}d 7→ {2, 7, 1, 5}

e 7→ {1, 5, 2, 7}

Call-site insensitive: analysis merges all callers to f()
13 / 26

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

14 / 26

Inlining

a := 7

d := f(a, 2)

e := f(1, 5)

f(x, y) =

z := 0

if ...

z := x z := y

return z

z := 0

if ...

z := x z := y

return z

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7}
y 7→ {2}

x 7→ {1}
y 7→ {5}

d 7→ {2, 7}

e 7→ {1, 5}

Clone subroutine IRs for each calling context
15 / 26

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

16 / 26

Call Strings of Length 1

a = 7

d = f(a, 2)

e = f(1, 5)

f(x, y) =

z = 0

if ...

z = x z = y

return z

b0

b1

b2 b3

b4

b5

bc
6

bc
7

(return)

(return)

br
6

br
7

x 7→ {7[b6]}
y 7→ {2[b6]}

x 7→ {1[b7]}
y 7→ {5[b7]}

x 7→ {7[b6]}|{1[b7]}
y 7→ {2[b6]}|{5[b7]}

z 7→ {1[b7], 5[b7]}|{2[b6], 7[b6]}d 7→ {2[b6], 7[b6]}

e 7→ {1[b7], 5[b7]}

17 / 26

Degrees of Call-Site Sensitivity
▶ We used call strings to make call sites explicit:

▶ [b6] in 2[b6]
▶ “Strings” because this idea generalises:

▶ Can keep track of multiple callers
▶ Example: 2-call-site sensitivity: [b0, b6] vs [b1, b6]

Teal
fun g(y: int): int = { return y }
fun f(x: int): int = {

return g(x) // b6
+ g(5); // b7

}
...

f(1); // b0
f(2); // b1

Must bound length of call strings to ensure termination
18 / 26

Summary

Strategies for call-site sensitive analysis:
▶ Inlining

▶ Copy subroutine bodies for each caller
▶ Performance cost
▶ Recursion: fall back to ⊤

▶ Call Strings
▶ Call string length:

▶ Unbounded: Maximum precision, may not terminate with
recursion

▶ Bounded to length k: k degrees of call site sensitivity
(speed/precision trade-off)

19 / 26

Precise Interprocedural Dataflow

▶ Precision via one of:
1 Inlining or AST cloning
2 Call Strings
3 Procedure Summaries

20 / 26

Summarising Procedures

f(x, y) =

z := 0

if ...

z := x z := y

return z

b0

b1

b2 b3

b4

z 7→ {0}

id

z 7→ {y}z 7→ {x}

id

▶ Compose transfer functions:
▶ transb0 ◦ transb1 = [z 7→ 0]
▶ transb0 ◦ transb1 ◦ transb2 = [z 7→ {x}]
▶ transb0 ◦ transb1 ◦ transb3 = [z 7→ {y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) = [z 7→ {x , y}]
▶ transb0 ◦ transb1 ◦ (transb2 ⊔ transb3) ◦ transb4 = [z 7→ {x , y}]

21 / 26

Procedure Summaries vs Recursion

f calls g calls h calls f

▶ Reqiures additional analysis to identify who calls whom
▶ Compute summaries of mutually recursive functions together
▶ Recursive call edges analogous to loops

22 / 26

Procedure Summaries
▶ Composing transfer functions yields a combined transfer

function for f():

transf = [return 7→ {x , y}]
▶ Use transf as transfer function for f(), discard f’s body
▶ Opportunities:

▶ Can yield compact subroutine descriptions
▶ Can speed up call site analysis dramatically

▶ Challenges:
▶ More complex to implement
▶ Recursion remains challenging

▶ Limitations:
▶ Requires suitable representation for summary
▶ Requires mechanism for abstracting and applying summary
▶ Worst cases:

▶ transf is symbolic expression more complex than f itself
23 / 26

Procedure Summaries for Dataflow

▶ Procedure Summaries can be as precise as inlining/call strings
. . . but only for Distributive Frameworks

▶ Algorithm for Gen/Kill analyses: IFDS
▶ Algorithm for other analyses: IDE

24 / 26

Summary

Making interprocedural dataflow precise:
▶ Call-site sensitive approaches:

▶ Inlining
▶ Call strings

▶ Call-site insensitive approaches:
▶ Procedure Summaries

▶ Precise + compact summaries only possible for distributive
frameworks

25 / 26

Outlook

▶ More static analysis on Monday
▶ Exercise 3 will go up tomorrow
▶ Exercise 4 (next week):

▶ can run via podman (on lab computers)
▶ will also offer Docker image

http://cs.lth.se/EDAP15

26 / 26

http://cs.lth.se/EDAP15

