## EDAP15: Program Analysis

DATAFLOW ANALYSIS 3

Christoph Reichenbach


## Welcome back!

Some Administrativa:

- Extension for Quiz 06 until Tuesday (slides were late!)
- Quiz deadlies: some slack if you missed a deadline
- 5 days buffer (cumulative across all quizzes), not counting weekends


## Questions?

## Lecture Overview

Foundations
Static Analysis

## Dynamic Analysis

Properties Control Flow

14)Review

## Non-Terminal Attributes

## JastAdd

```
syn nta C AnyNode.someNTA() = new C(this);
```

- AST node as attribute
- Reifying implicit constructs (making them explicit in AST)
- Built-in types
- Built-in functions, constants

- "Null Objects", handle missing declarations ( $\Rightarrow$ EDAN65)


## Beware

- NTAs must be fresh objects
- AST will be inconsistent if you re-use nodes JastAdd does not check for this!


## Non-Terminal Attributes

## JastAdd

syn nta C AnyNode.someNTA() = new C(this);


- NTA may have attributes
- Owner node must provide inherited attributes A.someNTA().inhY() = ...


## Summary

- Nonterminal Attributes (NTAs):
- "Synthetic" AST node
- Useful e.g. for CFG nodes that have no AST equivalent
- Need to be fresh
- Need to be owned by exactly one parent
- Function like normal AST nodes
- Can define / inherit attributes
- Can participate in collection attributes


## Building CFGs

- CFG is separate from AST
- Translate AST into CFG
- Optionally: simplify representation
- Advantages:
- Reduce number of node types
- Analyses can communicate results by transforming CFG (Remove unreachable CFG nodes etc.)
- Common in compiler mid-ends/back-ends
- CFG is part of AST
- Some AST nodes are also CFG nodes
- Advantages:
- Straightforward error reporting
- Avoid complexity of translation
- Common in compiler front-ends and IDEs
- Teal: Uses JastAdd's IntraCFG framework


## CFGs on the AST



```
Teal
fun \(f(x)=\{\)
    if \(x\) \{
        return \(\mathrm{x}+1\);
    \}
    return 0;
\}
```


## CFGs on the AST

- Some ASTNodes are CFGNodes



## Constructing CFGs on the AST (1/2)

- Categorise AST nodes by role in CFG
- CFGNode: part of CFG



## Constructing CFGs on the AST (1/2)

- Categorise AST nodes by role in CFG
- CFGNode: part of CFG
- CFGRoot: start/end of CFG with 'Enntry' / 'Ex-xiti' NTAs (e.g., FunDecl)
- CFGSupport): not part of CFG but influence CFG edges



## Constructing CFGs on the AST (2/2)

 interface CFGNode extends CFGSupport;$\longrightarrow$ syn Set CFGSupport.firstNodes()
$\longrightarrow$ inh Set CFGSupport.nextNodes()


```
AddExpr.firstNodes() = getLeft().firstNodes()
AddExpr.getLeft().nextNodes() = getRight().firstNodes()
AddExpr.getRight().nextNodes() = new Set({this})
```



## Constructing CFGs on the AST (1/2)

- Categorise AST nodes by role in CFG
- CFGNode: part of CFG
- CFGRoot: start/end of CFG with 'Entry', / 'E-XXiti' NTAs (e.g., FunDecl)
- CFGSupport): not part of CFG but influence CFG edges
- ASTNodes: can ignore
- Construct edges
- For each subtree: first CFGNodes in subtree?
- For each CFGNode: next CFGNodes after self?
$\longrightarrow$ succ ()
$\longrightarrow$ firstNodes()
$\longrightarrow$ nextNodes()



## Summary

- CFG can be separate or overlaid on AST
- Teal uses an overlay CFG
- CFGNodes are:
- ASTNodes that participate in CFG
- Some NTAs:
- Entry: Subprogram start
- Exit: Subprogram end
- Others can be useful e.g. for exception handling
- Constructing CFG with IntraCFG:
- firstNodes: For this subtree, which CFGNodes execute first? synthesised attribute
- nextNodes: For this CFGNode, which CFGNodes execute next? inherited attribute


## Implementing Data Flow Analysis

```
JastAdd
```

```
syn Lattice CFGNode.in() {
```

syn Lattice CFGNode.in() {
Lattice r = \perp;
Lattice r = \perp;
for (CFGNode b: pred()) {
for (CFGNode b: pred()) {
r = r ப b.out();
r = r ப b.out();
}
}
return r;
return r;
}
}
syn Lattice CFGNode.out() {
syn Lattice CFGNode.out() {
return trans(in());
return trans(in());
}

```
}
```



## JastAdd

// Default: trans() is no-op
syn Lattice CFGNode.trans(Lattice v) = v;
// Specialised transfer function syn Lattice AssignStmt.trans(Lattice v) = ...

## Fixpoints and Reference Attributes



This solution is not well-defined

## Fixpoints from Circular Attributes

## Jast Add

syn Lattice CFGNode.out() circular [new Lattice()];


Lattice

- Circular Attributes
- JastAdd allows circular dependency if explicitly declared
- CFGNode.out () can now recursively call itself
$v_{1}=\perp \quad=$ CFGNode.out() at iteration 1
$v_{2} \quad=$ CFGNode.out () at iteration 2
$v_{k} \quad=$ CFGNode.out () at iteration k
- Iterates until $v_{k-1}$. equals $\left(v_{k}\right)$


## Beware

- Your lattice must have a correct equals() method
- You must be in a monotone framework


## Implementation Strategy

- Definitions for analysis $a$ on lattice $\mathcal{L}$ :

| Attribute | Forward | Backward |
| :--- | :--- | :--- |
| $\mathcal{L} a \operatorname{In}()$ | $\bigsqcup\{p \cdot a$ Out () $\mid p \in \operatorname{pred}()\}$ | $a \operatorname{Transfer}(a$ Out ()$)$ |
| $\mathcal{L} a \operatorname{Transfer}(\mathcal{L})$ | transfer fn | transfer $f n$ |
| $\mathcal{L} a$ Out ()$:$ | $a \operatorname{Tr} a n s f e r(a \operatorname{In}())$ | $\bigsqcup\{p \cdot a \operatorname{In}() \mid p \in \operatorname{succ}()\}$ |

- Not necessary to declare all attributes as circular
- Circularity allowed as long as one attribute on circle is declared circular


## Summary

- Attributes that depend on themselves: Usually $\Longrightarrow A G$ not well-defined
- Circular attributes are exception
- JastAdd suppresses recursion check
- Repeated evaluation
- Evaluation stops once current result .equals() last result
- It is up to attribute definition to guarantee termination!
- Monotone framework
- Finite lattice height
- (Or widening, later today)


## Naïve Iteration Revisited



$$
\begin{gathered}
\operatorname{trans}_{0}\left(\left\{x \mapsto v_{x}, y \mapsto v_{y}\right\}\right) \\
\quad=\left\{x \mapsto \mathbf{1}, \quad y \mapsto v_{y}\right\}
\end{gathered}
$$

$$
\operatorname{trans}_{1}(S)=S
$$

$$
\operatorname{trans}_{2}\left(\left\{x \mapsto \mathbf{v}_{\mathbf{x}}, y \mapsto v_{y}\right\}\right)
$$

$$
=\left\{x \mapsto v_{x}, y \mapsto \mathbf{v}_{x}\right\}
$$

|  | $\mathbf{I}$ | $\operatorname{trans}_{{ }_{a l /}^{1}(\mathbf{I})}$ | $\operatorname{trans}_{a / l}^{2}(\mathbf{I})$ | $\operatorname{trans}_{a / l}^{3}(\mathbf{I})$ |
| :--- | :--- | :--- | :--- | :--- |
| in $_{0}$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| out $_{0}$ | $\perp$ | $x \mapsto 1$ | $x \mapsto 1$ | $x \mapsto 1$ |
| out $_{1}$ | $\perp$ | $\perp$ | $x \mapsto 1$ | $x \mapsto 1$ |
| out $_{2}$ | $\perp$ | $\perp$ | $x \mapsto 1, y \mapsto 1$ | $x \mapsto 1, y \mapsto 1$ |

## Naïve Iteration Revisited

Analysis on
$\mathbb{Z}_{\perp}^{\top} \times \mathbb{Z}_{\perp}^{\top}$

$\operatorname{trans}_{1}(S)=S$ $\operatorname{trans}_{2}\left(\left\{x \mapsto \mathbf{v}_{\mathbf{x}}, y \mapsto v_{y}\right\}\right)$

$$
=\left\{x \mapsto v_{x}, y \mapsto \mathbf{v}_{\mathbf{x}}\right\}
$$

|  | $\mathbf{I}$ | $\operatorname{trans}_{a l /}^{1}(\mathbf{I})$ | $\operatorname{trans}_{a l /}^{2}(\mathbf{I})$ | $\operatorname{trans}_{a / l}^{3}(\mathbf{I})$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{i n}_{0}$ | $\top$ | $\top$ | $\top$ | $\top$ |
| out $_{0}$ | $\top$ | $x \mapsto 1, y \mapsto \top$ | $x \mapsto 1, y \mapsto \top$ | $x \mapsto 1, y \mapsto \top$ |
| out $_{1}$ | $\top$ | $\top$ | $x \mapsto 1, y \mapsto \top$ | $x \mapsto 1, y \mapsto \top$ |
| out $_{2}$ | $\top$ | $\top$ | $\top$ | $x \mapsto 1, y \mapsto 1$ |

## Least Fixed Point vs MFP



## MFP

Naïve Iteration

MOP

## Summary

- MFP
- Efficient
- Fixpoint $\sqsupseteq$ starting point
- Naïve fixpoint iteration
- Fixpoint may be above or below starting point
- MOP
- One fixpoint, no "starting point"
- Maximal Precision
- Undecidable in general
- This list of fixpoint algorithms is not exhaustive
- Different fixpoint lattices per algorithm
- All fixpoints are sound overapproximations


## Dimensions of Data Flow

- Data Flow analysis is highly versatile
- Scalable by adjusting:
- Lattice and transfer functions
- Treatment of subroutine calls
- Data representation
- Today we explore four dimensions of scalability:
- More precision: Control- and Path sensitivity
- More speed: Gen/Kill sets
- Infinite lattices: Widening


## Control Sensitivity



## Control Sensitivity



## Control Sensitivity


control insensitive


## Multiple Conditionals



Should we carry path information across merge points?

## Path Sensitivity



Number of paths grows exponentially

## Summary

- Control sensitive analysis considers conditionals:
- May propagate different information along different edges:
- if $P$ :
- Special transfer function for 'assert $P$ ' on 'true' edge
- Special transfer function for 'assert not $P$ ' on 'false' edge
- Path sensitive analysis considers one sequence of CFG edges (execution path) at a time:
- May propagate different information along different paths
- High precision possible, but must cover all paths
- Number of paths $O$ (\# of conditionals)
- Avoid exponential blow-up by merging (as before)
- Path-sensitive procedure summaries might require exponential number of cases
- Usually not practical


## Product Lattices over Binary Lattices

- Recall binary lattices:
- $\top=$ true
- $\perp=$ false
$\left.\right|_{\text {false }} ^{\text {true }}{ }^{\text {true }} \times\left.\right|_{\text {false }} ^{\text {true }}$
- $\sqcup=$ logical "or"
- $\square=$ logical "and"
- Computer hardware can compute $\sqcup$, $\sqcap$ of multiple lattices in parallel:
- Bitwise or/and
$\Longrightarrow$ Highly efficient
- Can represent other lattices efficiently, too

Give rise to highly efficient Gen-/Kill-Set based program analysis

## Dataflow Analysis

## Analyse properties of variables or basic blocks

Examples in practice:

- Live Variables

Is this variable ever read?

- Reaching Definitions

What are the possible values for this variable?

- Available Expressions

What variable definitely has which expression?

## Analyses on Powersets (1/2)



- Common: 'Which elements of $S$ are possible / necessary?'
- $S \subseteq \mathbb{Z}$ (Reaching Definitions)
- $S=$ Numeric Constants in code $\cup\{0,1\}$
- $S=$ Variables (Live Variables)
- $S=$ Program Locations (alt. Reaching Definitions)
- $S=$ Types
- Abstract Domain: Powerset $\mathcal{P}(S)$
- Finite iff $S$ is finite


## Analyses on Powersets (2/2)



- join $_{b}$ can be $\cup$ or $\cap$
- U:
- Property that is true over any path
- May-analysis (e.g., Reaching Definitions)
- $\cap$ :
- Property that is true over all paths
- Must-analysis


## Gen-Sets and Kill-Sets

- Many transfer functions trans $_{b}$ have the following form:
- Remove set of options kill ${ }_{x, b}$ from each variable $x$
- Add set of options gen $_{x, b}$ to each variable $x$
- Don't depend on other variables

$$
\operatorname{trans}_{b}(\{x \mapsto A, \ldots\})=\left\{x \mapsto\left(A \backslash \text { kill }_{x, b}\right) \cup \operatorname{gen}_{x, b}, \ldots\right\}
$$

- Bit-vector implementation:
- $A \backslash B$ : bitwise-AND with bitwise-NOT of $B$
- $A \cup B$ : bitwise-OR
- Examples:
- Reaching Definitions on finite domain
- gen: assignment to var in current basic block
- kill: other existing assignments to same var
- Live Variables
- gen: used variables
- kill: overwritten variables


## Gen/Kill: Available Expressions

"Which expressions do we currently have evaluated and stored?"

```
C
int a = 3 + x;
int y = 2 + z;
if (z > 0) {
    x = 4;
}
f(2 + z); // Can re-use y here!
f(3 + x); // Cannot use a, since x changed
```

- Forward analysis
- gen: any (sub)expressions computed
- kill: old expressions whose variables changed
- join $_{b}=\cap$


## Gen/Kill: Very Busy Expressions

"Which expression do we definitely need to evaluate at least once?"

```
C
// (x / 42) is very busy: (A),(B)
if (z > 0) {
    x = 4 + x / 42; // (A)
    y = 1;
} else {
    x = x / 42; // (B)
}
g(x);
```

- Backward analysis
- gen: any (sub)expression computed
- kill: old expressions whose variables changed
- join $_{b}=\cap$


## Summary

- Common: Abstract Domain is powerset of some set $S$
- Transfer function trans $_{b}$ :

$$
\operatorname{trans}_{b}(\{x \mapsto A, \ldots\})=\left\{x \mapsto\left(A \backslash \text { kill }_{x, b}\right) \cup \operatorname{gen}_{x, b}, \ldots\right\}
$$

- kill: 'Kill set': Entries of $S$ to remove
- gen: 'Gen set': Entries of $S$ to add
- join ${ }_{b}$ is $\cup$ or $\cap$
- Often admits very efficient implementation

May
Forward Reaching Definitions Available Expressions Backward Live Variables Very Busy Expressions

## Numerical Domains

```
Teal
    // valid index range: [0, 2]
    var a := [1, 2, 3];
    var i := 0;
    var result = 0;
    while i <= 3
        result += a [i];
        i := i + 1;
}
```

- Bug: i may be 3/and out of bounds for a
- Analysis: Conpute bounding intervals [min, max]
- Interva Abstract Domain
- i : $[0,3]^{\text {² }}$


## Numerical Domains

## Teal

Out of bounds?

- Array access is safe!
- Analysis must capture relations between variables
- Octagon Abstract Domain

```
var a := [1, 2, 3];
var a := [1, 2, 3];
var i := 0;
var i := 0;
var ri: [0,2] new arrey[int](3);
var ri: [0,2] new arrey[int](3);
while i < 3 {
while i < 3 {
    var j := 0;
    var j := 0;
    var c : j: [0, 2]
    var c : j: [0, 2]
    while j<3-i {
    while j<3-i {
        c:= c + a[i + j] i. 
        j := j + 1;
        j := j + 1;
    }
    }
    result[i] := c;
    result[i] := c;
    i := i + 1;
    i := i + 1;
}
}
                            -Guarantee: j<3 - i
                            -Guarantee: j<3 - i
                                    "j+i<3
                                    "j+i<3

\section*{Numerical Domains}
- Interval Abstract Domain
- Constraints: \(x \in\left[\min _{x}, \max _{x}\right]\)
- Octagon Abstract Domain
- Constraints: \(\pm x \pm y \leq c\)
- ( \(x, y\) variables, \(c\) constant number)
- Polyhedra Abstract Domain
- \(c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \leq c_{0}\)
- \(c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}=c_{0}\)
- Increasingly powerful, increasingly expensive to analyse

\section*{Interval Domain}


\section*{Summary}
- Numerical Abstract Domains capture linear relations between variables and constants
- Interval Abstract Domain: \(x \in\left[\min _{x}, \max _{x}\right]\)
- Octagon Abstract Domain: \(\pm x \pm y \leq c\)
- Polyhedra Abstract Domain: Arbitrary linear relationships
- Infinite Domain height: No termination guarantee with our current tools

\section*{Applying the Interval Domain}


\section*{Applying the Interval Domain}


\section*{Applying the Interval Domain}


\section*{Widening}

- Inefficient: no reason to assume \(2,3, \ldots\) will help us converge
- Detection: when updating \(\mathbf{i n}_{1}\) :
- Check if we have converged
- Otherwise, widen
\[
v_{1} \nabla v_{2}= \begin{cases}v_{1} & \Longleftrightarrow v_{1}=v_{2} \\ \operatorname{widen}\left(v_{1} \sqcup v_{2}\right) & \Longleftrightarrow v_{1} \neq v_{2}\end{cases}
\]
- For a suitable widen function

\section*{Widening Functions}
- For convergence: satisfy Ascending Chain Condition on:
\[
v_{i+1}=\operatorname{widen}\left(v_{i}\right)
\]
- Suitable functions for Interval Domain?
- widen \(_{T}(v)=T\)
- Very conservative
- Ensures convergence
- widen \(_{10000}([I, r])=[I-10000, r+10000]\)
- No convergence: still allows infinite ascending chain
- \(\boldsymbol{w i d e n}_{\mathcal{K}}([I, r])=[\max (\{v \in \mathcal{K} \mid v<I\}), \min (\{v \in \mathcal{K} \mid v>r\})]\)
- Ensures convergence iff \(\mathcal{K}\) is finite
- Must pick "good" \(\mathcal{K}\)
- Common strategy:
\(\mathcal{K}=\{-\infty, \infty\} \cup\) all numeric literals in program
Our example: \(\mathcal{K}=\{-\infty, 0,1,9000, \infty\}\)
```

var x := 0;
while x < 9000 {
x := x + 1;
}

```

\section*{Summary}
- Widening allows us to use infinite domains \(\mathcal{L}\)
- Use widen function
- widen must satisfy Ascending Chain Condition on \(\mathcal{L}\)
- widen \((\mathcal{L})\) generates finite lattice
- Widening operator \(\nabla\) applies widen function iff needed
- Approach:

1 Before analysis runs: we design analysis on infinite-height lattice
2 When analysis runs on concrete program:
- widen constructs finite-height lattice specific to program
- \(\nabla\) applies widen on demand

MFP: When updating: \(\mathbf{i n}_{i}:=\) in \(_{i} \nabla\) out \(_{j}\)

\section*{Lecture Overview}

Foundations
Static Analysis

\section*{Dynamic Analysis}

Properties Control Flow

14)Review

\section*{Summary and Outlook}
- Summary:
- Non-Terminal Attributes
- Building CFGs
- Circular Attributes
- Control Sensitivity \& Path Sensitivity
- Gen-Kill style analyses
- Numerical Domains (Interval Domain etc.)
- Widening
- Next up: Analysing the Heap
http://cs.lth.se/EDAP15```

