LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DATA FLOW ANALYSIS 1

Christoph Reichenbach

Welcome back!

Some Administrativa:
» Labs:

» CodeProber study with Anton:

» Participation is 100% optional, but greatly appreciated

> If you participate:

Please make sure to check in auto-genered log files!
> Ideally: done with exercise 0, working on exercise 1
> No new exercise this week (exercise 1 is the biggest one)
» Optional polls on how much time exercises took in Moodle
» Lectures:
» Guest lecturer on Wednesday: Alexandru Dura
» Guest lecture on 14 February:
Patrik Aberg, Magnus Templing from Ericsson

Questions?

2/49

Getting More out of Type Inference (1/3)

» Recall our typing rules from last lecture:

true : BooL false : BooL

eg:BooOL e:7 e:7T
if e; then & else e3: 7

» Could we make them more precise so we can e.g. tell that:

» if false then false else true evaluates to true
» if true then false else false evaluates to false

3/49

Getting More out of Type Inference (2/3)

Replacing BOOL by more precise types TRUE and FALSE:

true : TRUE false : FALSE

e1: TRUE e :7

if e; then e else e3: 7 (/f—true)

e1: FALSE e3: 7 (if-false)
if e then e else e3 .7 ‘1€

We can now infer:

false : FALSE true: TRUE .
f-fal
if false then false else true: TRUE (I ase)

4/49

Getting More out of Type Inference (3/3)

» Consider:
fun(x) = if x then false else true

» Can't know x in general = we must allow both:
» x: TRUE
> x : FALSE

—> We don't have a principal type any more
(without adding nontrivial extra structure [Dolan & Mycroft, 2017])

» How would this work for int?

5/49

Towards Abstract Interpretation

» Consider the following language:

e ZEero

| one
| (e)+(e)
| neg (e)
> Property of Interest:
Does a given program ¢ € e compute a number > 07

» We will use a different theoretical framework now:
Abstract Interpratation

» Similar in many ways, but more suitable for the
“subtyping”-like behaviour we just saw

6/49

Abstract Domains

» Abstract Interpretation:
> Map all values to a simpler abstract domain

» Example: set abstract domain D:
D= {
D°, Program computes 0

D", Program computes a positive value
D~ Program computes a negative value

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

9/49

Correspondence: Concrete and Abstract

-=-3-2-10 1 2 3 - D~ D° Dt

10/49

Abstract Domains

» Abstract Interpretation:
» Map all values to a simpler abstract domain

» Example: set abstract domain D:
D= {
D°, Program computes 0

D", Program computes a positive value
D~ Program computes a negative value

al, where a € D

» Notation: | ~

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

11/49

Abstract Interpretation

o DO
o Dt
oD
oD’

a b ap

DO
D-
D+
D?

zZero
one

(e)+(e)

neg (e)

D'®a=D"=a®D’

zero ~»2 DO one ~»? Dt

X’\/)Da X/\./)Dal y’\./)Daz

neg x ~° ©a X+ y~Pa®a

12/49

Correspondence: Concrete and Abstract

13/49

Abstract Domains

» Abstract Interpretation:

» Map all values to a simpler abstract domain

» For each operation, build an abstract operations
» Example: set abstract domain D:

D= {
D° Program computes 0
D", Program computes a positive value
D=, Program computes a negative value
D? Program computes any value

al, where a € D

» Notation: | ~

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

14 /49

Correspondence: Concrete and Abstract

-=-3-2-10 1 2 3 - D~ D° Dt

Also:
» & “is compatible with” neg
» @ "“is compatible with” +

Will return later to examine connections between elements in D_ J

Summary

» Abstract Interpretation maps concrete values to “abstract
value” in Abstract Domain

» Mapping extends from just values to include expressions,
statements, whole programs

~": Program — D

» Map operations to compatible operations on abstract domain
» Many design options for abstract domain:

» Challenge: precision vs. decidability
» Theoretical foundation/generalisation of other analysis theories

D

» Unlike type inference, ~" is a function

» Other common notation (instead of ¢ ~»" a):
[e]” =4

16 /49

Lecture Overview

_ . : Dynamic
Foundations Static Analysis Ar}:alysis
Properties Control Flow

0l)Foundations ‘ g‘ﬂTypes ‘ 12)Instrumentation ‘
02)Constructing gg Data Flow ‘@Intraprocedural ‘@Analysis ‘

Program Analyses |07

in JastAdd gaMemory ‘@Interprocedural ‘

)indirect ‘
14)Review ‘

17/49

Teal

Teal-0 | Imperative and Procedural
Teal-1 | Minor extensions to Teal-0
Teal-2 | User-Defined Data Types
Teal-3 | Dynamic Dispatch, Inheritance
» Small enough for homework exercises
» Big enough to exhibit real challenges
» “Nonsensical” operations in Teal trigger dynamic failures:
» null dereference:

Teal
var a := null;
print(a[0]);
» Array-out-of-bounds access:
Teal
var a := [7]; // List with one element, 7

print(al[-11);

18/49

A New Analysis Challenge

Teal
var x := [0, O];
print (x); // A
if z {
x[0] :=2; // B
X := null;
+

x[0] := 1; // C

> Analyse: Can there be a failure at B or C7

» Must distinguish between x at A vs. x at B and C

> Need to model program flow: Flow-Sensitive Analysis
» Type inference is not Flow-Sensitive
» Abstract interpretation can be Flow-Sensitive

Need analysis that can represent data flow through program

19/49

Evaluation Order

Teal-0
fun p(a) = { print(a); return 1; }
fun main() = {
p(p(0) + p(1));
}

Teal-0 with explicit order

fun main() = {

var tmpl := p(0);

var tmp2 := p(1);

var tmp3 := tmpl + tmp2;
var tmp4 := p(tmp3);

X

» Evaluation order specified in language definition

Every analysis must remember the evaluation order rules!

20/49

Evaluation Order: Other Languages

» Complex subexpressions / evaluation order:

Java / C / C++

// Many challenging constructions:
ali++] = bli > 10 ? i-- : i++] + c[f(i++, —-i)];

» Beware: exact evaluation order is undefined in C and C4+4-!
» Short-Circuit Evaluation:
Java (similar in C / C++)

int[] a2 = some_array;
bool v = (a == null)
Il ((a2 = a)[0] == 0);
» The assignment a2 = a is executed while computing v
...but only if a == null is not true!

Violates most coding styles, but allowed by language!

21/49

Summary

» Understanding differences before/after variable updates
requires Flow-Sensitive Analysis

» Type inference is not flow sensitive
» “Flow” is complicated, influenced by:

» Expression evaluation order
» Short-circuit evaluation
» Statement execution order

22/49

Control-Flow Graphs (CFGs)

Run in order:

Teal A [0, 0]

var v := [0, 0]; if condition

if condition {
v := null;

} else {
print(v);

+

v[0] := 1;

Control Flow Graphs encode statement execution order

23/49

Control-Flow-Graphs

» Encode statement order by nodes and edges —
» Multiple outgoing edges (branches): Add label:

1f cond1t10n|

tV Yse

» Uniform representation for control statements:

by }— — true
while condltlonl—
falsel . .=

X :=x + 1

24/49

Summary

Control-Flow Graph (CFG):
» Motivation:

» Universal representation of control flow
» Computed once before running analyses
» Flow-sensitive analyses can utilise CFG

> |dea:

» Represent control flow as Blocks and Control-Flow Edges
» Edges represent control flow, labelled to identify conditionals

25/49

Control Flow

Understanding data flow requires understanding control flow:

Teal

var v := [0, 0];

print(v);

if z {
v[0] := 2;
v := null;

}

v[0] := 1;

— Control flow
— Data flow

26 /49

Intuition behind Data Flow Analysis

v unknown fﬂsv-nu"?”)

vV < array 74,74|V := [0, 0]

v _|nonnull
~

(nochange)————{print(v)

v |nonnull
-

(no change) ------ —{EE

v |nonnu v _nonnull

(no change) -~ -------f{----——-—-

v&—null----------

(no change) ---

Knowledge about data “flows” through CFG 2749

What does “either?” mean?

» Should analysis report x as null or as nonnull?
» New category: either
» “Can | safely dereference without a check?”
= better assume null
» “Is this guaranteed to be null?”
= better assume nonnull

» We might not need extra either category, depending on what
properties we are looking for

28/49

“May” vs “Must” Analysis

» “May"” analysis: we cannot rule out property
» “either?” becomes true
» Avoids False Negatives

» “Must” analysis: we can guarantee property

» “either?” becomes false
» Avoids False Positives

29/49

Another Analysis

Tea

A
X =
y =
if z
y
if

I
N v N -

N
A N -
-~

z
}

}

print(y);

» Which assignments are unnecessary?

—> Possible oversights / bugs
(Live Variables Analysis)

30/49

Unnecessary Assignments: Intuition

0 Which variables may we
need later?
{z} Where do we assign
unneccessarily?
{z}
{v, z} Overwrite y =
{z} | don’t need old y
- = Z; :
{y, 2}
if z < ...
/ {y}
4 A //7\@k
print (y) [

| Analysis effective: found useless assienments to z and x

:{1/49

Observations

Data Flow analysis can be run forward or backward
May have to join results from multiple sources
Some analyses may need multiple “passes” (steps)

32/49

What about Loops? (1/2)

x unknown
X := null

x| null

x nonnull

X either

x| either

v

print (x)

» Analysis: Null Pointer Dereference
» May need to analyse each node/edge more than once

» Stop when we're not learning anything new any more
33/49

What about Loops? (2/2)

x€{1,2,3,.. .}

h

print(x)

» Analysis: Reaching Values / Reaching Definitions
/ Copy Propagation

| We need to bound repetitions!

34/49

Summary: Data-Flow Analysis
(Introduction)

» Data flow depends on control flow

» Data flow analysis examines how variables or other program
state change across control-flow edges

» May have to join multiple results

» When joining “yes” and “no”, must decide:
» “May"” analysis: optimistically report what is possible
» “Must” analysis: conservatively report what is guaranteed
» Alternative: introduce value for “don’t know”

» Can run forward or backward relative to control flow edges
» Handling loops is nontrivial

35/49

Summary: Some Analyses

Reaching Values / Reaching Definitions
(Also “Copy Propagation”):
» What values might our variables contain?

» Forward analysis
» Most common as a Must analysis, where either:

> ‘v has constant value c¢', or
> ‘v might not have constant value’'

» We will also use it as May analysis

Live Variables
» Which variables might still be read later in the program?
» Backward analysis
» May analysis

Unnecessary Assignments (also “Dead Assignments”):
» Refinement of Live Variables analysis
» Flags assignments on variables that are not live

36/49

Engineering Data Flow Algorithms

General Algorithm

» Keep updating until nothing changes
» JastAdd: Circular Attributes

Termination

» Assumption: Operate on Control Flow Graph
» Theory: Ensure termination

(Correctness)

37/49

Data Flow Analysis on CFGs

» in,: knowledge at entrance of
basic block b

» out,: knowledge at exit of basic
block b

> join,: combines all out,, for all
basic blocks b; that flow into b

¥) X . transb
Join Function
» transy,: updates out, from in, (outy)

“Transfer Function”

38/49

Characterising Data Flow Analyses

Characteristics:
» Forward or backward analysis

» L: Set of "abstract values” that represent our knowledge
about the program

> trans, 1 L — L
»joing L x L — L

Require properties of L, transy, join, to ensure termination

39/49

Limiting Iteration

nit

» Does the following ever stop changing:
irlb1 = jOinbl(Po, P2)
in,, = transp,(ing,)
P, = transp,(ing,)
» Intuition: we keep generalising information
» Growth limit: bound amount of generalisation
> Make sure join,, transp, never throw information away

Eventually, either nothing changes or we hit growth limit

40 /49

Ordering Knowledge

» B describes at least as much knowledge as A
» Either:

»A=B (e, ACBC A), or

» B has strictly more knowledge than A

41/49

Intuition: Knowing Less, Knowing More

Structure of L:

G)J\

20

3

= —> A+B transp Y+Z
S |join, - - o
i) wB transp - Y

)

=

> join, must not lose knowledge
» A C join, (A, B)
» B C joiny(A, B)
» trans, must be monotonic over amount of knowledge:
x Cy = transy(x) C transp(y)

» Introduce bound: T means ‘too much information’

42/49

Aggregating Knowledge

Py :joinbo(A, B)Q;(D_| P, = transbo(joinbO(A, B)) b,
4 4
» Interplay between trans, and join, helps preserve knowledge
» A C joiny(A, B):
As we add knowledge, P; either:

» Stays the same
> Increases knowledge

» Monotonicity of trans,: If P; goes up, then P, either:

» Stays the same
» Increases knowledge

—> At each node, we either stay equal or grow

Now we must only prevent infinite growth. ..

43 /49

Ascending Chains

» A (possibly infinite) sequence ag, a1, a, . . . is an
ascending chain iff:
i = dk+1 =
: aj E dir1 (fOI’ all Z 0)
1
1
a3 » Ascending Chain Condition:
| » For every ascending chain ag, ar, az, ... in
2 abstract domain L:
| > there exists k > 0 such that:
a
|1 ax = akqn for any n >0
ao

| ACC is formalisation of growth limit

44/ 49

Top and Bottom

i N o

» Convention: We introduce two distinguished elements:
» Top: T: AC T forall A
» Bottom: L: 1 T Aforall A
» Since A C join,(A, B) and B C join,(A, B):
> joiny(T,A) =T = join, (A, T)
» L C AL joing(L, A)
> In practice, it is safe and simple to set:
Jjoiny(L, A) = A = join,(A, L)
> Intuition:
> T: means ‘contradictory / too much information’

» 1 : means ‘no information known yet’
45 /49

Summary

» Designing a Forward or backward analysis:
» Pick Abstract Domain L
» Must be partially ordered with () C L x L:
A C B iff B 'knows’ at least as much as A
» Unique top element T
» Unique bottom element L
> trans, 1 L — L
» Must be monotonic:

x Cy = transp(x) C transp(y)

» join, : L x L — L must produce an upper bound for its
parameters:
» A C join, (A, B)
> B C joiny(A, B)

» Satisfy Ascending Chain Condition to ensure termination
» Easiest solution: make L finite

46 /49

Abstract Domains Revisited

© is compatible w

oL = 1

oD = DO
oDt = D
oD~ = Dt
oD’ = D’

© is monotonic (and @ extended with L is, too)

47 /49

Summary

» We can extend {D*, D=, D° D’} by adding L
Lp={D",D~,D° D’ 1}

» | representing “not known" — not needed for our example
analysis (~"), but would be needed if we had variables /
control flow in that language

> Lp is finite, so the DCC holds trivially
» Our Transfer Functions &, @ are monotonic

» Concretely, @ is “pointwise monotonic”, meaning:
if d € Lp is constant, then

> x — d @ x is monotonic
> x — x @ d is monotonic

48 /49

Outlook

» We will continue on Dataflow Analysis
> Next lecture held by Alexandru Dura

http://cs.1lth.se/EDAP15

49 /49

http://cs.lth.se/EDAP15

