
EDAP15: Program Analysis
DATA FLOW ANALYSIS 1DATA FLOW ANALYSIS 1

Christoph Reichenbach

Welcome back!
Some Administrativa:
▶ LabsLabs:

▶ CodeProber study with Anton:
▶ Participation is 100% optional, but greatly appreciated
▶ If you participate:

Please make sure to check in auto-genered log files!
▶ Ideally: done with exercise 0, working on exercise 1
▶ No new exercise this week (exercise 1 is the biggest one)
▶ Optional polls on how much time exercises took in Moodle

▶ LecturesLectures:
▶ Guest lecturer on Wednesday: Alexandru Dura
▶ Guest lecture on 14 February:

Patrik Åberg, Magnus Templing from Ericsson

Questions?

2 / 49

Getting More out of Type Inference (1/3)

▶ Recall our typing rules from last lecture:
true : Bool false : Bool

e1 : Bool e2 : τ e3 : τ
if e1 then e2 else e3 : τ

▶ Could we make them more precise so we can e.g. tell that:
▶ if false then false else true evaluates to true
▶ if true then false else false evaluates to false

3 / 49

Getting More out of Type Inference (2/3)

Replacing Bool by more precise types True and False:

true : True false : False

e1 : True e2 : τ
if e1 then e2 else e3 : τ

(if-true)

e1 : False e3 : τ
if e1 then e2 else e3 : τ

(if-false)

We can now infer:

false : False true : True
if false then false else true : True (if-false)

4 / 49

Getting More out of Type Inference (3/3)

▶ Consider:

fun(xx) = if xx then false else true

▶ Can’t know xx in general ⇒ we must allow both:
▶ xx : True
▶ xx : False
⇒ We don’t have a principal type any more

(without adding nontrivial extra structure [Dolan & Mycroft, 2017])
▶ How would this work for int?

5 / 49

Towards Abstract Interpretation

▶ Consider the following language:

e ::= zero
| one
| ⟨e⟩+⟨e⟩
| neg ⟨e⟩

▶ Property of Interest:
Does a given program φ ∈ e compute a number ≥ 0?

▶ We will use a different theoretical framework now:
Abstract Interpratation

▶ Similar in many ways, but more suitable for the
“subtyping”-like behaviour we just saw

6 / 49

Abstract Domains
▶ Abstract Interpretation:

▶ Map all values to a simpler abstract domain

▶ For each operation, build an abstract operations

▶ Example: set abstract domain D:
D = {

D0, Program computes 0
D+, Program computes a positive value
D−

,

Program computes a negative value
}

D? Program computes any value

▶ Notation: φ ;D a , where a ∈ D

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

9 / 49

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
▶⊖ “is compatible with” neg
▶⊕ “is compatible with” +

Will return later to examine connections between elements in D

10 / 49

Abstract Domains
▶ Abstract Interpretation:

▶ Map all values to a simpler abstract domain

▶ For each operation, build an abstract operations

▶ Example: set abstract domain D:
D = {

D0, Program computes 0
D+, Program computes a positive value
D−

,

Program computes a negative value
}

D? Program computes any value

▶ Notation: φ ;D a , where a ∈ D

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

11 / 49

Abstract Interpretation
e ::= zero

| one
| ⟨e⟩+⟨e⟩
| neg ⟨e⟩

⊖ D0 = D0

⊖ D+ = D−

⊖ D− = D+

⊖ D? = D?

a1 ⊕ a2 =

D+ D0 D−

D+ D+ D+ D?

D0 D+ D0 D−

D− D? D− D−

D? ⊕ a = D? = a ⊕ D?

zero ;D D0 one ;D D+

x ;D a
neg x ;D ⊖ a

x ;D a1 y ;D a2
x + y ;D a1 ⊕ a2

12 / 49

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
▶⊖ “is compatible with” neg
▶⊕ “is compatible with” +

Will return later to examine connections between elements in D

13 / 49

Abstract Domains
▶ Abstract Interpretation:

▶ Map all values to a simpler abstract domain
▶ For each operation, build an abstract operations

▶ Example: set abstract domain D:
D = {

D0, Program computes 0
D+, Program computes a positive value
D−, Program computes a negative value
D? Program computes any value

}

▶ Notation: φ ;D a , where a ∈ D

Patrick Cousot & Radhia Cousot, “Abstract Interpretation”, published in
Principles of Programming Languages, 1977

14 / 49

Correspondence: Concrete and Abstract

· · · · · ·−3 −2 −1 0 1 2 3 D− D0 D+

D?

Also:
▶⊖ “is compatible with” neg
▶⊕ “is compatible with” +

Will return later to examine connections between elements in D
15 / 49

Summary
▶ Abstract Interpretation maps concrete values to “abstract

value” in Abstract Domain
▶ Mapping extends from just values to include expressions,

statements, whole programs

;D: Program→ D

▶ Map operations to compatible operations on abstract domain
▶ Many design options for abstract domain:

▶ Challenge: precision vs. decidability
▶ Theoretical foundation/generalisation of other analysis theories

▶ Unlike type inference, ;D is a function
▶ Other common notation (instead of φ ;D a):

JφKD = a

16 / 49

Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

17 / 49

Teal
Teal-0 Imperative and Procedural
Teal-1 Minor extensions to Teal-0
Teal-2 User-Defined Data Types
Teal-3 Dynamic Dispatch, Inheritance

▶ Small enough for homework exercises
▶ Big enough to exhibit real challenges
▶ “Nonsensical” operations in Teal trigger dynamic failures:

▶ null dereference:

Teal
var a := null;
print(a[0]);

▶ Array-out-of-bounds access:

Teal
var a := [7]; // List with one element, 7
print(a[-1]);

18 / 49

A New Analysis Challenge

Teal
var x := [0, 0];
print(x); // A
if z {

x[0] := 2; // B
x := null;

}
x[0] := 1; // C

▶ Analyse: Can there be a failure at B or C?
▶ Must distinguish between x at A vs. x at B and C
▶ Need to model program flow: Flow-Sensitive Analysis

▶ Type inference is not Flow-Sensitive
▶ Abstract interpretation can be Flow-Sensitive

Need analysis that can represent data flow through program
19 / 49

Evaluation Order

Teal-0
fun p(a) = { print(a); return 1; }
fun main() = {

p(p(0) + p(1));
}

Teal-0 with explicit order
fun main() = {

var tmp1 := p(0);
var tmp2 := p(1);
var tmp3 := tmp1 + tmp2;
var tmp4 := p(tmp3);

}

▶ Evaluation order specified in language definition

Every analysis must remember the evaluation order rules!

20 / 49

Evaluation Order: Other Languages
▶ Complex subexpressions / evaluation order:

Java / C / C++
// Many challenging constructions:
a[i++] = b[i > 10 ? i-- : i++] + c[f(i++, --i)];

▶ Beware: exact evaluation order is undefined in C and C++!
▶ Short-Circuit Evaluation:

Java (similar in C / C++)
int[] a2 = some_array;
bool v = (a == null)

|| ((a2 = a)[0] == 0);

▶ The assignment a2 = a is executed while computing v
. . . but only if a == null is not true!

Violates most coding styles, but allowed by language!

21 / 49

Summary

▶ Understanding differences before/after variable updates
requires Flow-Sensitive Analysis

▶ Type inference is not flow sensitive
▶ “Flow” is complicated, influenced by:

▶ Expression evaluation order
▶ Short-circuit evaluation
▶ Statement execution order

22 / 49

Control-Flow Graphs (CFGs)

Teal
var v := [0, 0];
if condition {

v := null;
} else {

print(v);
}
v[0] := 1;

v := [0, 0]
if condition
v := [0, 0]
if condition

b0

:̌= null:̌= null
b1 print(v)print(v)

b2

v[0] := 1v[0] := 1
b3

true false

Run in order:

1
2

Control Flow Graphs encode statement execution order

23 / 49

Control-Flow-Graphs

▶ Encode statement order by nodes codecode
b0 and edges

▶ Multiple outgoing edges (branches): Add label:

if conditionif condition
b0

true false

▶ Uniform representation for control statements:

while conditionwhile condition
b1

x := x + 1x := x + 1
b2

true

false

24 / 49

Summary

Control-Flow Graph (CFG):
▶ Motivation:

▶ Universal representation of control flow
▶ Computed once before running analyses
▶ Flow-sensitive analyses can utilise CFG

▶ Idea:
▶ Represent control flow as Blocks and Control-Flow Edges
▶ Edges represent control flow, labelled to identify conditionals

25 / 49

Control Flow

Understanding data flow requires understanding control flow:

Teal
var v := [0, 0];
print(v);
if z {

v[0] := 2;
v := null;

}
v[0] := 1;

v := [0, 0]
b1

print(v)
b2

if z
b3

v[0] := 2
b4

v := null
b5

v[0] := 1
b6Control flow

Data flow

26 / 49

Intuition behind Data Flow Analysis

v := [0, 0]v := [0, 0]v ← array

print(v)print(v)(no change)

if zif z(no change)

v[0] := 2v[0] := 2(no change)

v := nullv := nullv ← null

v[0] := 1v[0] := 1(no change)

v unknown

v nonnull

v nonnull

v nonnull v nonnull

v nonnull

v nullv either?

“Is v null?”

Knowledge about data “flows” through CFG 27 / 49

What does “either?” mean?

x := [0, 0]
b1

x := null
b2

...x ...
b3

▶ Should analysis report x as null or as nonnull?
▶ New category: either
▶ “Can I safely dereference without a check?”
⇒ better assume null

▶ “Is this guaranteed to be null?”
⇒ better assume nonnull

▶ We might not need extra either category, depending on what
properties we are looking for

28 / 49

“May” vs “Must” Analysis

▶ “May” analysis: we cannot rule out property
▶ “either?” becomes true
▶ Avoids False Negatives

▶ “Must” analysis: we can guarantee property
▶ “either?” becomes false
▶ Avoids False Positives

29 / 49

Another Analysis

Teal
z := ...
x := 1;
y := 2;
if z > ... {

y := z
if z < ... {

z := 7
}

}
print(y);

▶ Which assignments are unnecessary?
⇒ Possible oversights / bugs

(Live Variables Analysis)
30 / 49

Unnecessary Assignments: Intuition
1 Which variables may we

need later?
2 Where do we assign

unneccessarily?

z := ...z := ...

x := 1x := 1x := 1

y := 2y := 2

if z > ...if z > ...

y := z;y := z;

if z < ...if z < ...

z := 7z := 7z := 7

print(y)print(y)
∅

{y} {y}{y}

{y}

{y, z}

{z}
Overwrite y ⇒
don’t need old y

{y, z}

{y, z}

{z}{z}

{z}

∅

Analysis effective: found useless assignments to z and x 31 / 49

Observations

1 Data Flow analysis can be run forward or backward
2 May have to join results from multiple sources
3 Some analyses may need multiple “passes” (steps)

32 / 49

What about Loops? (1/2)

x := nullx := null

while ...while ...

x := new()x := new()

print(x)print(x)

x unknown

x null

x null

x null

x either

x either x nonnull
. .

▶ Analysis: Null Pointer Dereference
▶ May need to analyse each node/edge more than once
▶ Stop when we’re not learning anything new any more

33 / 49

What about Loops? (2/2)

x := 1x := 1

while ...while ...

x := x + 1x := x + 1

print(x)print(x)

x =?

x = 1

x ∈ {1, 2, 3, . . .}
x ∈ {1, 2, 3, . . .}

x ∈ {2, 3, . . .}

. .

▶ Analysis: Reaching Values / Reaching Definitions
/ Copy Propagation

We need to bound repetitions!
34 / 49

Summary: Data-Flow Analysis
(Introduction)

▶ Data flow depends on control flow
▶ Data flow analysis examines how variables or other program

state change across control-flow edges
▶ May have to join multiple results
▶ When joining “yes” and “no”, must decide:

▶ “May” analysis: optimistically report what is possible
▶ “Must” analysis: conservatively report what is guaranteed
▶ Alternative: introduce value for “don’t know”

▶ Can run forward or backward relative to control flow edges
▶ Handling loops is nontrivial

35 / 49

Summary: Some Analyses
1 Reaching Values / Reaching Definitions

(Also “Copy Propagation”):
▶ What values might our variables contain?
▶ Forward analysis
▶ Most common as a Must analysis, where either:

▶ ‘vv has constant value c’, or
▶ ‘vv might not have constant value’

▶ We will also use it as May analysis
2 Live Variables

▶ Which variables might still be read later in the program?
▶ Backward analysis
▶ May analysis

3 Unnecessary Assignments (also “Dead Assignments”):
▶ Refinement of Live Variables analysis
▶ Flags assignments on variables that are not live

36 / 49

Engineering Data Flow Algorithms

1 General Algorithm
▶ Keep updating until nothing changes
▶ JastAdd: Circular Attributes

2 Termination
▶ Assumption: Operate on Control Flow Graph
▶ Theory: Ensure termination

3 (Correctness)

37 / 49

Data Flow Analysis on CFGs

▶ inb: knowledge at entrance of
basic block b

▶ outb: knowledge at exit of basic
block b

▶ joinb: combines all outbi for all
basic blocks bi that flow into b
“Join Function”

▶ transb: updates outb from inb
“Transfer Function”

b inb

outb

transb

joinb

38 / 49

Characterising Data Flow Analyses

Characteristics:
▶ Forward or backward analysis
▶ L: Set of “abstract values” that represent our knowledge

about the program
▶ transb : L→ L
▶ joinb : L× L→ L

Require properties of L, transb, joinb to ensure termination

39 / 49

Limiting Iteration

initinit
b0

while ...while ...
b1

x := x + 1;x := x + 1;
b2

P0

P1 P2

▶ Does the following ever stop changing:
inb1 = joinb1(P0, P2)
inb2 = transb1(inb1)
P2 = transb2(inb2)

▶ Intuition: we keep generalising information
▶ Growth limit: bound amount of generalisation
▶ Make sure joinb, transb never throw information away

Eventually, either nothing changes or we hit growth limit
40 / 49

Ordering Knowledge

A ⊑ B
A

B

▶ B describes at least as much knowledge as A
▶ Either:

▶ A = B (i.e., A ⊑ B ⊑ A), or
▶ B has strictly more knowledge than A

41 / 49

Intuition: Knowing Less, Knowing More
Structure of L:

A B

A+B
joinb

· · · Y Z

Y+Ztransb

transb

M
or

e
K

no
wl

ed
ge

▶ joinb must not lose knowledge
▶ A ⊑ joinb(A, B)
▶ B ⊑ joinb(A, B)

▶ transb must be monotonic over amount of knowledge:

x ⊑ y =⇒ transb(x) ⊑ transb(y)
▶ Introduce bound: ⊤ means ‘too much information’

42 / 49

Aggregating Knowledge

b0 b1
P1 = joinb0(A, B) P2 = transb0(joinb0(A, B))

▶ Interplay between transb and joinb helps preserve knowledge
▶ A ⊑ joinb(A, B):

As we add knowledge, P1 either:
▶ Stays the same
▶ Increases knowledge

▶ Monotonicity of transb: If P1 goes up, then P2 either:
▶ Stays the same
▶ Increases knowledge

⇒ At each node, we either stay equal or grow

Now we must only prevent infinite growth. . .
43 / 49

Ascending Chains

ak = ak+1 = . . .

a3

a2

a1

a0

▶ A (possibly infinite) sequence a0, a1, a2, . . . is an
ascending chain iff:

ai ⊑ ai+1 (for all i ≥ 0)

▶ Ascending Chain Condition:
▶ For every ascending chain a0, a1, a2, . . . in

abstract domain L:
▶ there exists k ≥ 0 such that:

ak = ak+n for any n ≥ 0

ACC is formalisation of growth limit

44 / 49

Top and Bottom
⊤

⊥

▶ Convention: We introduce two distinguished elements:
▶ Top: ⊤: A ⊑ ⊤ for all A
▶ Bottom: ⊥: ⊥ ⊑ A for all A

▶ Since A ⊑ joinb(A, B) and B ⊑ joinb(A, B):
▶ joinb(⊤, A) = ⊤ = joinb(A,⊤)
▶ ⊥ ⊑ A ⊑ joinb(⊥, A)

▶ In practice, it is safe and simple to set:
joinb(⊥, A) = A = joinb(A,⊥)

▶ Intuition:
▶ ⊤: means ‘contradictory / too much information’
▶ ⊥: means ‘no information known yet’

45 / 49

Summary
▶ Designing a Forward or backward analysis:
▶ Pick Abstract Domain L

▶ Must be partially ordered with (⊑) ⊆ L× L:
A ⊑ B iff B ‘knows’ at least as much as A

▶ Unique top element ⊤
▶ Unique bottom element ⊥

▶ transb : L→ L
▶ Must be monotonic:

x ⊑ y =⇒ transb(x) ⊑ transb(y)
▶ joinb : L× L→ L must produce an upper bound for its

parameters:
▶ A ⊑ joinb(A, B)
▶ B ⊑ joinb(A, B)

▶ Satisfy Ascending Chain Condition to ensure termination
▶ Easiest solution: make L finite

46 / 49

Abstract Domains Revisited

D− D0 D+

D?

⊑ ⊒

= ⊤

⊥

⊒ ⊑

· · · · · ·−3 −2 −1 0 1 2 3

⊖ is compatible with neg

⊖⊥ = ⊥
⊖ D0 = D0

⊖ D+ = D−

⊖ D− = D+

⊖ D? = D?

⊖ is monotonic (and ⊕ extended with ⊥ is, too)

47 / 49

Summary

▶ We can extend {D+, D−, D0, D?} by adding ⊥

LD = {D+, D−, D0, D?,⊥}

▶⊥ representing “not known” – not needed for our example
analysis (;D), but would be needed if we had variables /
control flow in that language

▶ LD is finite, so the DCC holds trivially
▶ Our Transfer Functions ⊖,⊕ are monotonic

▶ Concretely, ⊕ is “pointwise monotonic”, meaning:
if d ∈ LD is constant, then

▶ x 7→ d ⊕ x is monotonic
▶ x 7→ x ⊕ d is monotonic

48 / 49

Outlook

▶ We will continue on Dataflow Analysis
▶ Next lecture held by Alexandru Dura

http://cs.lth.se/EDAP15

49 / 49

http://cs.lth.se/EDAP15

