

EDAP15: Program Analysis

DATA FLOW ANALYSIS 1

Christoph Reichenbach

Welcome back!

Some Administrativa:

- ► <u>Labs</u>:
 - CodeProber study with Anton:
 - ▶ Participation is 100% optional, but greatly appreciated
 - If you participate: Please make sure to check in auto-genered log files!
 - Ideally: done with exercise 0, working on exercise 1
 - ▶ No new exercise this week (exercise 1 is the biggest one)
 - Optional polls on how much time exercises took in Moodle
- Lectures:
 - ► Guest lecturer on Wednesday: Alexandru Dura
 - Guest lecture on 14 February:

Patrik Åberg, Magnus Templing from Ericsson

Questions?

Getting More out of Type Inference (1/3)

▶ Recall our typing rules from last lecture:

true: BOOL false: BOOL

 $\begin{array}{c|c} e_1 : BOOL & e_2 : \tau & e_3 : \tau \\ if e_1 & then e_2 & else & e_3 : \tau \end{array}$

▶ Could we make them more precise so we can e.g. tell that:

- ▶ if false then false else true evaluates to true
- ▶ if true then false else false evaluates to false

Getting More out of Type Inference (2/3)

Replacing BOOL by more precise types TRUE and FALSE:

$$\overline{\text{true}:\text{TRUE}}$$
 $\overline{\text{false}:\text{FALSE}}$ $e_1:\text{TRUE}$ $e_2:\tau$ $if e_1$ then e_2 else $e_3:\tau$ (if-true) $e_1:\text{FALSE}$ $e_3:\tau$ $if e_1$ then e_2 else $e_3:\tau$

We can now infer:

false : FALSEtrue : TRUEif false then false else true : TRUE(if-false)

Getting More out of Type Inference (3/3)

Consider:

$fun(\underline{x}) = if \underline{x}$ then false else true

- Can't know \underline{x} in general \Rightarrow we must allow both:
 - $\blacktriangleright \underline{x}$: True
 - $\blacktriangleright \underline{x}$: False
- ⇒ We don't have a principal type any more (without adding nontrivial extra structure [Dolan & Mycroft, 2017])
- How would this work for int?

Towards Abstract Interpretation

Consider the following language:

e ::= zero | one $| \langle e \rangle + \langle e \rangle$ $| neg \langle e \rangle$

Property of Interest:

Does a given program $\varphi \in e$ compute a number ≥ 0 ?

- We will use a different theoretical framework now: Abstract Interpratation
- Similar in many ways, but more suitable for the "subtyping"-like behaviour we just saw

Abstract Domains

Abstract Interpretation:

Map all values to a simpler abstract domain

▶ Example: set *abstract domain* D:

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract

Abstract Domains

• Abstract Interpretation:

Map all values to a simpler abstract domain

• Example: set *abstract domain* \mathcal{D} :

• Notation:
$$\varphi \rightsquigarrow^{D} a$$
, where $a \in \mathcal{D}$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Abstract Interpretation

Correspondence: Concrete and Abstract

Abstract Domains

Abstract Interpretation:

- Map all values to a simpler abstract domain
- ▶ For each operation, build an *abstract operations*

• Example: set *abstract domain* \mathcal{D} :

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract

Also:

- ► ⊖ *"is compatible with"* neg
- \oplus "is compatible with" +

Will return later to examine connections between elements in \mathcal{D}

157

Summary

Abstract Interpretation maps concrete values to "abstract value" in Abstract Domain

Mapping extends from just values to include expressions, statements, whole programs

 $\leadsto^{\scriptscriptstyle D}: \textit{Program} \to \mathcal{D}$

- ▶ Map operations to *compatible* operations on abstract domain
- Many design options for abstract domain:
 - Challenge: precision vs. decidability
- ► Theoretical foundation/generalisation of other analysis theories
- Unlike type inference, $\rightsquigarrow^{\scriptscriptstyle D}$ is a *function*
- Other common notation (instead of $\varphi \rightsquigarrow^{D} a$):

$$\llbracket \varphi \rrbracket^{\mathcal{D}} = \mathbf{a}$$

Lecture Overview

Teal

Teal-0	Imperative and Procedural
Teal-1	Minor extensions to Teal-0
Teal-2	User-Defined Data Types
Teal-3	Dynamic Dispatch, Inheritance

- Small enough for homework exercises
- Big enough to exhibit real challenges
- "Nonsensical" operations in Teal trigger dynamic *failures*:
 - null dereference:

Teal var a := null; print(a[0]);

Array-out-of-bounds access:

Teal

```
var a := [7]; // List with one element, 7
print(a[-1]);
```

A New Analysis Challenge

Teal

```
var x := [0, 0];
print(x); // A
if z {
    x[0] := 2; // B
    x := null;
}
x[0] := 1; // C
```

- ► Analyse: Can there be a *failure* at B or C?
- \blacktriangleright Must distinguish between x at A vs. x at B and C
- ► Need to model program flow: Flow-Sensitive Analysis
 - ► Type inference is not Flow-Sensitive
 - Abstract interpretation can be Flow-Sensitive

Need analysis that can represent data flow through program

Evaluation Order

Teal-0

```
fun p(a) = { print(a); return 1; }
fun main() = {
    p(p(0) + p(1));
}
```

Teal-0 with explicit order

```
fun main() = {
    var tmp1 := p(0);
    var tmp2 := p(1);
    var tmp3 := tmp1 + tmp2;
    var tmp4 := p(tmp3);
}
```

Evaluation order specified in language definition

Every analysis must remember the evaluation order rules!

Evaluation Order: Other Languages

Complex subexpressions / evaluation order:

```
Java / C / C++
// Many challenging constructions:
a[i++] = b[i > 10 ? i-- : i++] + c[f(i++, --i)];
```

- Beware: exact evaluation order is *undefined* in C and C++!
- Short-Circuit Evaluation:

The assignment a2 = a is executed while computing v ... but only if a == null is not true!

Violates most coding styles, but allowed by language!

Summary

- Understanding differences before/after variable updates requires Flow-Sensitive Analysis
- Type inference is not flow sensitive
- "Flow" is complicated, influenced by:
 - Expression evaluation order
 - Short-circuit evaluation
 - Statement execution order

Control-Flow Graphs (CFGs)

Control Flow Graphs encode statement execution order

Control-Flow-Graphs

- \blacktriangleright Encode statement order by nodes $\stackrel{({}^{D_0})_{\text{code}}}{\longrightarrow}$ and edges \rightarrow
- ► *Multiple* outgoing edges (branches): Add label:

Uniform representation for control statements:

Summary

Control-Flow Graph (CFG):

Motivation:

- Universal representation of control flow
- Computed once before running analyses
- ► Flow-sensitive analyses can utilise CFG

Idea:

- ► Represent control flow as **Blocks** and **Control-Flow Edges**
- ► Edges represent control flow, labelled to identify conditionals

Control Flow

Understanding data flow requires understanding control flow:

Teal
<pre>var v := [0, 0];</pre>
<pre>print(v);</pre>
if z {
v[0] := 2;
v := null;
}
v[0] := 1;

Intuition behind Data Flow Analysis

Knowledge about data "flows" through CFG

What does "either?" mean?

Should analysis report x as null or as nonnull?

- New category: either
- "Can I safely dereference without a check?"
 - \Rightarrow better assume **null**
- "Is this guaranteed to be null?"
 - \Rightarrow better assume **nonnull**
- We might not need extra either category, depending on what properties we are looking for

"May" vs "Must" Analysis

"May" analysis: we cannot rule out property

- "either?" becomes true
- Avoids False Negatives
- "Must" analysis: we can guarantee property
 - "either?" becomes false
 - Avoids False Positives

Another Analysis

- Which assignments are unnecessary?
- ⇒ Possible oversights / bugs (Live Variables Analysis)

Unnecessary Assignments: Intuition

Analysis effective: found useless assignments to z and x $\frac{1}{49}$

Observations

Data Flow analysis can be run *forward* or *backward* May have to *join* results from multiple sources
 Some analyses may need multiple "passes" (steps)

What about Loops? (1/2)

- Analysis: Null Pointer Dereference
- ▶ May need to analyse each node/edge more than once
- Stop when we're not learning anything new any more

What about Loops? (2/2)

 Analysis: Reaching Values / Reaching Definitions / Copy Propagation

We need to bound repetitions!

Summary: Data-Flow Analysis (Introduction)

- Data flow depends on control flow
- Data flow analysis examines how variables or other program state change across control-flow edges
- May have to join multiple results
- ▶ When joining "yes" and "no", must decide:
 - "May" analysis: optimistically report what is possible
 - "Must" analysis: conservatively report what is guaranteed
 - Alternative: introduce value for "don't know"
- Can run forward or backward relative to control flow edges
- Handling loops is nontrivial

Summary: Some Analyses

Reaching Values / Reaching Definitions (Also "Copy Propagation"):

- What values might our variables contain?
- Forward analysis
- ▶ Most common as a *Must* analysis, where either:
 - ► 'v has constant value c', or
 - <u>v</u> might not have constant value'
- ▶ We will also use it as *May* analysis

2 Live Variables

- Which variables might still be read later in the program?
- Backward analysis
- May analysis

B Unnecessary Assignments (also "Dead Assignments"):

- ▶ Refinement of *Live Variables* analysis
- Flags assignments on variables that are not live

Engineering Data Flow Algorithms

1 General Algorithm

- Keep updating until nothing changes
- JastAdd: Circular Attributes
- 2 Termination
 - Assumption: Operate on Control Flow Graph
 - ► Theory: Ensure termination
- 3 (Correctness)

Data Flow Analysis on CFGs

- ► in_b: knowledge at entrance of basic block b
- out_b: knowledge at exit of basic block b
- ▶ join_b: combines all **out**_{bi} for all basic blocks b_i that flow into b "Join Function"
- *trans_b*: updates **out**_b from **in**_b "Transfer Function"

Characterising Data Flow Analyses

Characteristics:

- Forward or backward analysis
- L: Set of "abstract values" that represent our knowledge about the program
- $trans_b : L \to L$
- ▶ $join_b : L \times L \rightarrow L$

Require properties of L, $trans_b$, $join_b$ to ensure termination

Limiting Iteration

Does the following ever stop changing:

$$\begin{array}{rcl} \mathbf{in}_{b_1} &=& join_{b_1}(P_0,P_2) \\ \mathbf{in}_{b_2} &=& trans_{b_1}(\mathbf{in}_{b_1}) \\ P_2 &=& trans_{b_2}(\mathbf{in}_{b_2}) \end{array}$$

Intuition: we keep generalising information

- Growth limit: bound amount of generalisation
- ▶ Make sure *join_b*, *trans_b* never throw information away

Eventually, either nothing changes or we hit growth limit

Ordering Knowledge

- \blacktriangleright B describes at least as much knowledge as A
- Either:
 - A = B (i.e., $A \sqsubseteq B \sqsubseteq A$), or
 - B has strictly more knowledge than A

Intuition: Knowing Less, Knowing More Structure of *L*:

- join_b must not lose knowledge
 - $A \sqsubseteq join_b(A, B)$
 - $\blacktriangleright B \sqsubseteq join_b(A, B)$
- ▶ *trans_b* must be *monotonic* over amount of knowledge:

$$x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)$$

▶ Introduce bound: ⊤ means 'too much information'

Aggregating Knowledge

$$P_1 = join_{b_0}(A, B)_{b_0} \qquad P_2 = trans_{b_0}(join_{b_0}(A, B))_{b_1}$$

- ▶ Interplay between *trans_b* and *join_b* helps preserve knowledge
- ► $A \sqsubseteq join_b(A, B)$: As we add knowledge, P_1 either:
 - Stays the same
 - Increases knowledge
- Monotonicity of $trans_b$: If P_1 goes up, then P_2 either:
 - Stays the same
 - Increases knowledge
- \Rightarrow At each node, we either stay equal or grow

Now we must only prevent infinite growth...

Ascending Chains

	► A (possibly infinite) sequence a ₀ , a ₁ , a ₂ , is an ascending chain iff:
$a_k = a_{k+1} = \dots$	$a_i \sqsubseteq a_{i+1}$ (for all $i \ge 0$)
 a ₃ 	 Ascending Chain Condition: For every ascending chain a₀, a₁, a₂, in
 	 abstract domain <i>L</i>: ▶ there exists <i>k</i> ≥ 0 such that:
a ₁	$a_k=a_{k+n}$ for any $n\geq 0$
<i>a</i> ₀	

ACC is formalisation of growth limit

Top and Bottom

► *Convention*: We introduce two distinguished elements:

- ▶ **Top**: \top : $A \sqsubseteq \top$ for all A
- **Bottom**: \bot : $\bot \sqsubseteq A$ for all A

Since
$$A \sqsubseteq join_b(A, B)$$
 and $B \sqsubseteq join_b(A, B)$:

▶
$$join_b(\top, A) = \top = join_b(A, \top)$$

$$\perp \sqsubseteq A \sqsubseteq join_b(\bot, A)$$

In practice, it is safe and simple to set:

$$join_b(\bot, A) = A = join_b(A, \bot)$$

Intuition:

- ► T: means 'contradictory / too much information'
- \blacktriangleright \perp : means 'no information known yet'

Summary

- Designing a Forward or backward analysis:
- Pick Abstract Domain L
 - ▶ Must be **partially ordered** with $(\sqsubseteq) \subseteq L \times L$: $A \sqsubset B$ iff B 'knows' at least as much as A
 - ► Unique top element ⊤
 - Unique bottom element \bot
- $trans_b : L \to L$
 - Must be monotonic:

 $x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)$

- ▶ $join_b : L \times L \rightarrow L$ must produce an *upper bound* for its parameters:
 - $A \sqsubseteq join_b(A, B)$
 - $\blacktriangleright B \sqsubseteq join_b(A, B)$
- Satisfy Ascending Chain Condition to ensure termination
 - Easiest solution: make L finite

Abstract Domains Revisited

 \ominus is monotonic (and \oplus extended with \perp is, too)

Summary

 \blacktriangleright We can extend $\{D^+, D^-, D^0, D^?\}$ by adding \bot

$$L_D = \{D^+, D^-, D^0, D^?, \bot\}$$

- L representing "not known" not needed for our example analysis (~→^D), but would be needed if we had variables / control flow in that language
- L_D is finite, so the DCC holds trivially
- Our *Transfer Functions* \ominus , \oplus are monotonic
 - ▶ Concretely, \oplus is "pointwise monotonic", meaning: if $d \in L_D$ is constant, then
 - $x \mapsto d \oplus x$ is monotonic
 - ▶ $x \mapsto x \oplus d$ is monotonic

Outlook

- ▶ We will continue on Dataflow Analysis
- Next lecture held by Alexandru Dura

http://cs.lth.se/EDAP15