

EDAP15: Program Analysis

DATA FLOW ANALYSIS 1

Christoph Reichenbach

Welcome back!

Some Administrativa:

- ▶ Labs:
	- ▶ CodeProber study with Anton:
		- \triangleright Participation is 100% optional, but greatly appreciated
		- \blacktriangleright If you participate: **Please make sure to check in auto-genered log files!**
	- \blacktriangleright Ideally: done with exercise 0, working on exercise 1
	- \triangleright No new exercise this week (exercise 1 is the biggest one)
	- ▶ Optional polls on how much time exercises took in Moodle

 \blacktriangleright Lectures:

- ▶ Guest lecturer on Wednesday: **Alexandru Dura**
- ▶ Guest lecture on 14 February: **Patrik Åberg**, **Magnus Templing** from Ericsson

Questions?

Getting More out of Type Inference (1/3)

▶ Recall our typing rules from last lecture:

true : Bool false : Bool e_1 : BOOL e_2 : τ e_3 : τ **if** e_1 then e_2 else e_3 : *τ*

 \triangleright Could we make them more precise so we can e.g. tell that:

- \triangleright if false then false else true evaluates to true
- \rightarrow if true then false else false evaluates to false

Getting More out of Type Inference (2/3)

Replacing BOOL by more precise types TRUE and FALSE:

true : TRUE	false : FALSE	
e_1 : TRUE	e_2 : τ	(if true)
if e_1 then e_2 else e_3 : τ	(if true)	
if e_1 then e_2 else e_3 : τ	(if false)	

We can now infer:

false : False true : True if false then false else true : True (if-false)

Getting More out of Type Inference (3/3)

▶ Consider:

$fun(x) = if x then false else true$

- \triangleright Can't know x in general \Rightarrow we must allow both:
	- \triangleright x : True
	- \triangleright x : False
- \Rightarrow We don't have a principal type any more (without adding nontrivial extra structure [Dolan & Mycroft, 2017])
- \blacktriangleright How would this work for int?

Towards Abstract Interpretation

 \triangleright Consider the following language:

 e $:=$ zero | one | ⟨e⟩**+**⟨e⟩ $|$ neg $\langle e \rangle$

▶ **Property of Interest**:

Does a given program *φ* ∈ e compute a number ≥ 0?

- \triangleright We will use a different theoretical framework now: **Abstract Interpratation**
- \triangleright Similar in many ways, but more suitable for the "subtyping"-like behaviour we just saw

Abstract Domains

▶ Abstract Interpretation:

▶ Map all values to a simpler abstract domain

 \blacktriangleright Example: set abstract domain \mathcal{D} :

 $\mathcal{D} = \{$ D 0 *,* Program computes 0 D ⁺*,* Program computes a positive value D⁻ Program computes a negative value }

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract

Abstract Domains

▶ Abstract Interpretation:

▶ Map all values to a simpler abstract domain

Example: set abstract domain \mathcal{D} :

$$
\mathcal{D} = \left\{ \begin{array}{c} D^0, & \text{Program computes } 0 \\ D^+, & \text{Program computes a positive value} \\ D^- & \text{Program computes a negative value} \end{array} \right\}
$$

▶ Notation:
$$
\boxed{\varphi \rightsquigarrow^{D} a}
$$
, where $a \in \mathcal{D}$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Abstract Interpretation

$$
\Theta D^{0} = D^{0}
$$
\n
$$
\Theta D^{+} = D^{-}
$$
\n
$$
\Theta D^{-} = D^{+}
$$
\n
$$
\Theta D^{?} = D^{?}
$$
\n
$$
a_{1} \oplus a_{2} = \begin{cases}\n\frac{||D^{+}|| D^{0}|| D^{-}}{D^{+}} \\
\frac{D^{0}}{D^{0}} \\
\frac{D^{0}}{D^{+}} \\
\frac{D^{0}}{D^{0}} \\
\frac{D^{1}}{D^{0}} \\
\frac{D^{2}}{D^{0}} \\
\frac{2}{D^{0}} \\
\frac{2}{D^{0}}
$$

Correspondence: Concrete and Abstract

Abstract Domains

▶ Abstract Interpretation:

- ▶ Map all values to a simpler abstract domain
- ▶ For each operation, build an abstract operations

Example: set abstract domain \mathcal{D} :

$$
\mathcal{D} = \left\{ \begin{array}{c} D^0, & \text{Program computes } 0 \\ D^+, & \text{Program computes a positive value} \\ D^-, & \text{Program computes a negative value} \\ D^? & \text{Program computes any value} \end{array} \right.
$$

\n
$$
\blacktriangleright \text{Notation: } \boxed{\varphi \leadsto^D a}, \text{ where } a \in \mathcal{D}
$$

Patrick Cousot & Radhia Cousot, "Abstract Interpretation", published in Principles of Programming Languages, 1977

Correspondence: Concrete and Abstract

Also:

- $\rightarrow \ominus$ "is compatible with" neg
- ▶ ⊕ "is compatible with" **+**

Will return later to examine connections between elements in D 15 / 49

Summary

▶ **Abstract Interpretation** maps concrete values to "abstract value" in **Abstract Domain**

▶ Mapping extends from just values to include expressions, statements, whole programs

 \rightsquigarrow^D : Program $\rightarrow \mathcal{D}$

- \triangleright Map operations to *compatible* operations on abstract domain
- ▶ Many design options for abstract domain:
	- ▶ Challenge: precision vs. decidability
- \blacktriangleright Theoretical foundation/generalisation of other analysis theories
- \blacktriangleright Unlike type inference, $\leadsto^{\scriptscriptstyle D}$ is a *function*
- ▶ Other common notation (instead of $\varphi \sim^p a$):

$$
[\![\varphi]\!]^{\mathcal{D}}=a
$$

Lecture Overview

Teal

- ▶ Small enough for homework exercises
- \triangleright Big enough to exhibit real challenges
- \triangleright "Nonsensical" operations in Teal trigger dynamic *failures*:
	- ▶ null dereference:

▶ Array-out-of-bounds access:

Teal var a := [7]; // List with one element, 7 $print(a[-1]);$

A New Analysis Challenge

Teal var x := [0, 0]; print (x) ; // A **if** z { $x[0] := 2; // B$ $x := null;$ }

 $x[0] := 1;$ // C

- \blacktriangleright Analyse: Can there be a *failure* at B or C?
- \triangleright Must distinguish between x at A vs. x at B and C
- ▶ Need to model program flow: **Flow-Sensitive Analysis**
	- ▶ Type inference is not Flow-Sensitive
	- ▶ Abstract interpretation can be Flow-Sensitive

Need analysis that can represent data flow through program

Evaluation Order

Teal-0

```
fun p(a) = \{ print(a); return 1; \}fun \text{main}() = \{p(p(0) + p(1));}
```
Teal-0 with explicit order

```
fun main() = {
   var tmp1 := p(0);
   var tmp2 := p(1);
   var tmp3 := tmp1 + tmp2;
   var tmp4 := p(tmp3);
}
```
▶ Evaluation order specified in language definition

Every analysis must remember the evaluation order rules!

Evaluation Order: Other Languages

 \triangleright Complex subexpressions / evaluation order:

```
Java / C / C++
 // Many challenging constructions:
 a[i+1] = b[i > 10 ? i-- : i++] + c[f(i++, -i)];
```
- \triangleright Beware: exact evaluation order is *undefined* in C and $C_{++}!$
- ▶ Short-Circuit Evaluation:

```
Java (similar in C / C++)
 int[] a2 = some_array;
 bool v = (a == null)|| ((a2 = a) [0] == 0);
```
 \triangleright The assignment a2 = a is executed while computing v . . . but only if a == **null** is **not true**!

Violates most coding styles, but allowed by language!

Summary

- \blacktriangleright Understanding differences before/after variable updates requires **Flow-Sensitive Analysis**
- \blacktriangleright Type inference is *not* flow sensitive
- ▶ "Flow" is complicated, influenced by:
	- ▶ Expression evaluation order
	- \blacktriangleright Short-circuit evaluation
	- ▶ Statement execution order

Control-Flow Graphs (CFGs)

Control Flow Graphs encode statement execution order

Control-Flow-Graphs

- \blacktriangleright Encode statement order by nodes b_0 $\frac{1}{2}$ and edges \rightarrow
- \triangleright *Multiple* outgoing edges (branches): Add label:

▶ Uniform representation for control statements:

Summary

Control-Flow Graph (CFG):

▶ Motivation:

- ▶ Universal representation of control flow
- ▶ Computed once before running analyses
- ▶ Flow-sensitive analyses can utilise CFG

▶ Idea:

- ▶ Represent control flow as **Blocks** and **Control-Flow Edges**
- ▶ Edges represent control flow, **labelled** to identify conditionals

Control Flow

Understanding data flow requires understanding control flow:

Control flow Data flow

Intuition behind Data Flow Analysis

Knowledge about data "flows" through CFG and $\frac{1}{27/49}$

What does "either?" mean?

▶ Should analysis report x as **null** or as **nonnull**?

- ▶ New category: **either**
- ▶ "Can I safely dereference without a check?"
	- ⇒ better assume **null**
- \blacktriangleright "Is this guaranteed to be null?"
	- ⇒ better assume **nonnull**
- ▶ We might not need extra **either** category, depending on what properties we are looking for

"May" vs "Must" Analysis

▶ "**May**" analysis: we cannot rule out property

- ▶ "either?" becomes **true**
- ▶ Avoids False Negatives
- ▶ "**Must**" analysis: we can guarantee property
	- ▶ "either?" becomes **false**
	- ▶ Avoids False Positives

Another Analysis

- ▶ Which assignments are unnecessary?
- \Rightarrow Possible oversights / bugs (Live Variables Analysis)

Unnecessary Assignments: Intuition

Analysis effective: found useless assignments to z and $\mathbf{x} = \frac{41}{4}$

Observations

1 Data Flow analysis can be run forward or backward 2 May have to join results from multiple sources **3** Some analyses may need multiple "passes" (steps)

What about Loops? (1/2)

- ▶ Analysis: Null Pointer Dereference
- \blacktriangleright May need to analyse each node/edge more than once
- \triangleright Stop when we're not learning anything new any more

What about Loops? (2/2)

 \triangleright Analysis: Reaching Values / Reaching Definitions / Copy Propagation

We need to bound repetitions!

Summary: Data-Flow Analysis (Introduction)

- ▶ Data flow depends on *control flow*
- \triangleright Data flow analysis examines how variables or other program state change across control-flow edges
- \triangleright May have to join multiple results
- ▶ When joining "yes" and "no", must decide:
	- ▶ "May" analysis: optimistically report what is possible
	- ▶ "**Must**" analysis: conservatively report what is guaranteed
	- ▶ Alternative: introduce value for "don't know"
- ▶ Can run *forward* or *backward* relative to control flow edges
- \blacktriangleright Handling loops is nontrivial

Summary: Some Analyses

¹ **Reaching Values** / **Reaching Definitions** (Also "Copy Propagation"):

- ▶ What values might our variables contain?
- ▶ Forward analysis
- \blacktriangleright Most common as a *Must* analysis, where either:
	- \blacktriangleright 'v has constant value c', or
	- ▶ 'v might not have constant value'
- \triangleright We will also use it as *May* analysis

² **Live Variables**

- ▶ Which variables might still be read later in the program?
- ▶ Backward analysis
- \blacktriangleright *May* analysis

³ **Unnecessary Assignments** (also "Dead Assignments"):

- ▶ Refinement of Live Variables analysis
- \triangleright Flags assignments on variables that are not live

Engineering Data Flow Algorithms

1 General Algorithm

- \triangleright Keep updating until nothing changes
- ▶ JastAdd: Circular Attributes
- **2** Termination
	- ▶ Assumption: Operate on Control Flow Graph
	- ▶ Theory: Ensure termination
- **3** (Correctness)

Data Flow Analysis on CFGs

- \triangleright **in**_b: knowledge at entrance of basic block b
- \triangleright **out**_b: knowledge at exit of basic block b
- \blacktriangleright *join_b*: combines all \textsf{out}_{b_i} for all basic blocks b_i that flow into b "**Join Function**"
- \triangleright trans_b: updates **out**_b from **in**_b "**Transfer Function**"

Characterising Data Flow Analyses

Characteristics:

- \triangleright Forward or backward analysis
- \blacktriangleright L: Set of "abstract values" that represent our knowledge about the program
- \blacktriangleright trans $\kappa : L \to L$
- \blacktriangleright join $_b: L \times L \rightarrow L$

Require properties of L**, trans**b**, join**^b **to ensure termination**

Limiting Iteration

 \triangleright Does the following ever stop changing:

$$
\begin{array}{rcl}\n\mathbf{in}_{b_1} &=& \text{join}_{b_1}(P_0, P_2) \\
\mathbf{in}_{b_2} &=& \text{trans}_{b_1}(\mathbf{in}_{b_1}) \\
P_2 &=& \text{trans}_{b_2}(\mathbf{in}_{b_2})\n\end{array}
$$

 \blacktriangleright Intuition: we keep generalising information

- ▶ Growth limit: bound amount of generalisation
- \blacktriangleright Make sure *join_b, trans_b* never throw information away

Eventually, either nothing changes or we hit growth limit

Ordering Knowledge

- \triangleright B describes at least as much knowledge as A
- ▶ Either:
	- ▶ $A = B$ (i.e., $A \sqsubseteq B \sqsubseteq A$), or
	- \triangleright B has strictly more knowledge than A

Intuition: Knowing Less, Knowing More Structure of Γ :

- \blacktriangleright join_h must not lose knowledge
	- \blacktriangleright A \sqsubseteq join_b(A, B)
	- \blacktriangleright *B* \sqsubseteq join_b(A, B)
- \triangleright trans_b must be *monotonic* over amount of knowledge:

$$
x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)
$$

▶ Introduce bound: ⊤ means 'too much information'

Aggregating Knowledge

$$
P_1 = \text{join}_{b_0}(A, B)_{\begin{bmatrix} b_0 \\ b_1 \end{bmatrix}} \qquad P_2 = \text{trans}_{b_0}(\text{join}_{b_0}(A, B))_{\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}}
$$

- Interplay between *trans_b* and join_b helps preserve knowledge
- \blacktriangleright A \sqsubseteq join_b(A, B): As we add knowledge, P_1 either:
	- \blacktriangleright Stays the same
	- ▶ Increases knowledge
- \triangleright Monotonicity of *trans_b*: If P_1 goes up, then P_2 either:
	- \blacktriangleright Stays the same
	- ▶ Increases knowledge
- \Rightarrow At each node, we either stay equal or grow

Now we must only prevent infinite growth. . .

Ascending Chains

ACC is formalisation of growth limit

Top and Bottom

 \triangleright Convention: We introduce two distinguished elements:

- ▶ **Top**: ⊤: A ⊑ ⊤ for all A
- ▶ **Bottom**: ⊥: ⊥ ⊑ A for all A

$$
\blacktriangleright \text{ Since } A \sqsubseteq \text{join}_b(A, B) \text{ and } B \sqsubseteq \text{join}_b(A, B):
$$

▶
$$
join_b(\top, A) = \top = join_b(A, \top)
$$

$$
\blacktriangleright \bot \sqsubseteq A \sqsubseteq \textit{join}_b(\bot, A)
$$

 \blacktriangleright In practice, it is safe and simple to set:

$$
join_b(\perp, A) = A = join_b(A, \perp)
$$

▶ Intuition:

- ▶ ⊤: means 'contradictory / too much information'
- ▶ ⊥: means 'no information known yet'

Summary

- ▶ Designing a Forward or backward analysis:
- ▶ Pick **Abstract Domain** L
	- ▶ Must be **partially ordered** with (⊑) ⊆ L × L: $A \sqsubset B$ iff B 'knows' at least as much as A
	- ▶ Unique top element ⊤
	- ▶ Unique bottom element ⊥
- \blacktriangleright trans $\kappa : L \to L$
	- \blacktriangleright Must be *monotonic*:

 $x \sqsubseteq y \implies trans_b(x) \sqsubseteq trans_b(y)$

- \blacktriangleright join $_b: L \times L \to L$ must produce an *upper bound* for its parameters:
	- \blacktriangleright A \sqsubseteq join_b(A, B)
	- $▶ B \sqsubseteq join_b(A, B)$
- ▶ Satisfy **Ascending Chain Condition** to ensure termination
	- ▶ Easiest solution: make L finite

Abstract Domains Revisited

 \ominus is monotonic (and \oplus extended with \perp is, too)

Summary

► We can extend $\{D^+, D^-, D^0, D^?\}$ by adding \bot

$$
L_D = \{D^+, D^-, D^0, D^?, \perp\}
$$

- \blacktriangleright \perp representing "not known" not needed for our example analysis $(\sim^{\scriptscriptstyle D})$, but would be needed if we had variables $/$ control flow in that language
- \blacktriangleright L_D is finite, so the DCC holds trivially
- ▶ Our Transfer Functions ⊖*,* ⊕ are monotonic
	- ▶ Concretely, \oplus is "pointwise monotonic", meaning: if $d \in L_D$ is constant, then
		- \triangleright $x \mapsto d \oplus x$ is monotonic
		- \triangleright $x \mapsto x \oplus d$ is monotonic

Outlook

- ▶ We will continue on Dataflow Analysis
- ▶ Next lecture held by **Alexandru Dura**

<http://cs.lth.se/EDAP15>