
EDAP15: Program Analysis
INTRODUCTIONINTRODUCTION

Christoph Reichenbach

Welcome!

▶ EDAP15: Program Analysis
▶ Instructor: Christoph Reichenbach

christoph.reichenbach@cs.lth.se
▶ Teaching Assistants:

▶ Alexandru Dura
▶ Anton Risberg Alaküla

▶ Course Homepage:
http://cs.lth.se/EDAP15

2 / 48

http://cs.lth.se/EDAP15

Course Format
▶ Moodle: Sign up today!
▶ Lectures

▶ In Person
▶ Partially ‘Flipped’:

▶ Check Moodle for videos to watch before lecture
▶ Core material

▶ Lectures (bring your questions!)
▶ Videos

▶ Self-Study material
▶ Online Quizzes
▶ Textbooks (optional)

▶ Questions
▶ Ask in class

▶ Ask-and-Upvote system (or just raise your hand!)
▶ Online forum
▶ Office hours

▶ Mandatory Activities: Homework & Quizzes
3 / 48

Topics

▶ Concepts and techniques for understanding programs
▶ Analysing program structure
▶ Analysing program behaviour

▶ Practical concerns in program analysis

Language focus: Teal, a teaching language
▶ Concepts generalise to other mainstream languages:

▶ Imperative
▶ Object-Oriented

4 / 48

Goals

▶ Understand:
▶ What is program analysis (not) good for?
▶ What are strenghts and limitations of given analyses?
▶ How do analyses influence each other?
▶ How do programming language features influence analyses?
▶ What are some of the most important analyses?

▶ Be able to:
▶ Implement typical program analyses
▶ Critically assess typical program analyses

5 / 48

Textbooks

Static Program AnalysisStatic Program Analysis
Møller & Schwartzbach
▶ Optional
▶ PDF online from authors

Principles of Program AnalysisPrinciples of Program Analysis
Nielson, Nielson & Hankin

▶ Optional
▶ 3 copies in the library
▶ Theory-driven

6 / 48

How to Pass This Course

▶ This Week
1 today: register in Moodle
2 2024-01-17, 18:00: Find lab partner, register for lab slot
3 2024-01-19, 18:00: Mandatory quizzes in Moodle (see below)

▶ Every Week
1 Work on homework exercises
2 Present homework solutions to TAs (labs or Zoom)
3 Fri: Lab slots (for help & presenting solutions)
4 Fri, 18:00: Mandatory quizzes in Moodle

▶ Score 70% to pass
▶ Your best attempt counts
▶ No limit on number of retries

7 / 48

Passing vs. Grades

▶ Passing these requirements gives you a grade of 3
▶ TAs must have approved all homework exercise solutions

▶ For higher grades (4, 5):
▶ Additional oral exam
▶ Registration opens after course completion

8 / 48

Homework Exercises
▶ Exercises:

▶ Exercise 0: Group exercise, W3 (this week!)
▶ Exercise 1: Group exercise, W4
▶ Exercise 2–4: Solo exercises, W6/7/8

▶ To pass:
▶ Pass our internal tests
▶ Explain(!) implementation and rationale to TA

▶ Presenting to TAs
▶ You can present once a week

Additional slots depend on TA capacity
▶ Zoom or during lab hours

▶ Labs for help with / presenting homework exercises
▶ Get started on on exercises before coming to lab
▶ Every Friday (7 weeks)
▶ Extra lab slot on 2024-03-05 (Tue), 13:00-15:00
▶ Presenting older labs has lower priority

9 / 48

Uses of Program Analysis

Static Analysis

Dynamic Analysis

x Program

IDE

Program
Understanding ▶ Highlighting

▶ Search
▶ Refactoring

Compiler

Optimisation

Language
Runtime

Testing Profiling

Automatic
Repair

Adaptive
Optimisation

Static
CheckerBug-checking,

verification

10 / 48

Categories of Program Analyses

Static Analysis

Dynamic Analysis

▶ Examines structure
▶ Sees entire program

(mostly. . .)

▶ Interactive Theorem
Provers

▶ (Most) Type Checkers
▶ Static Checkers

(FindBugs,
SonarQube, . . .)

▶ Compiler Optimisers

▶ Examines behaviour
▶ Sees interactions

program ↔ world

▶ Debuggers ▶ Unit Tests
▶ Benchmarks
▶ Profilers

Manual / Interactive AutomaticManual / Interactive Automatic

Our Focus
11 / 48

Summary
▶ Program analyses are key components in Software Tools:

▶ IDEs
▶ Compilers
▶ Bug and Vulnerability Checkers
▶ Run-time systems

. . .
▶ Main Categories:

▶ Static Analysis:
Examine program structure

▶ Dynamic Analysis:
Examine program run-time behaviour

▶ Automatic Analysis:
“Black Box”: Minimal user interaction

▶ Manual / Interactive Analysis:
User in the loop

▶ Advanced manual analyses exploit automatic analysis
12 / 48

Examples of Program Analysis

Questions:
▶ ‘Is the program well-formed?’

gcc -c program.c
javac Program.java

At least for C, C++, Java; not so easy for JavaScript!
▶ ‘Does my factorial function produce the right input in the

range 0–5?’

Java
@Test // Unit Test
public void testFactorial() {

int[] expected = new int[] { 1, 1, 2, 6, 24, 120 };
for (int i = 0; i < expected.length; i++) {

assertEquals(expected[i], factorial(i));
} }

13 / 48

Let’s Analyse a Program!

▶ MISRA-C standard specifies:
“The library functions . . . , gets, . . . shall not be used.”

▶ Given some program.c:
user@host$ grep ’gets’ program.c # string search

gets(input_buffer);
/* The code below gets the system configuration */
int failed_gets_counter = 0;

user@host$

At least 2 of 3 resuls were wrong: “False Positives”

14 / 48

A First Challenge, Continued
user@host$ grep ’gets(’ program.c

gets(input_buffer);
user@host$

▶ More precise: no false positives!
▶ Will this catch all calls to gets?

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

String search not smart enough: “False Negative”

15 / 48

A First Challenge, Continued Again

C: program2.c
#include <stdio.h>
void f(char* target_buffer) {

char *(*dummy)(char*) = gets;
dummy(target_buffer);

}

user@host$ cc -c program.c -o program.o
user@host$ nm program.o

check symbol table in compiled program
0000000000000000 T f

U gets ←− Aha!
U _GLOBAL_OFFSET_TABLE_

user@host$

Using a more powerful analysis yielded better results
16 / 48

A First Challenge, Solved?

C: program3.c
#include<stdio.h>
#include<dlfcn.h>
int f(char* target_buffer) {

void* handle = dlopen("/lib/x86_64-linux-gnu/libc.so.6",
RTLD_LAZY);

void* sym = dlsym(handle, "gets");
void(*p)(char*) = sym;
p(target_buffer);
return 0;

}

▶ Dynamic library loading: gets will not show up in symbol
table

Fancier program =⇒ harder analysis
17 / 48

Analysis vs. Property-of-Interest

▶ Distinguish:
▶ Property of interest: P(φ)

Examples:
▶ All lines in φ that reference the ‘gets’ function
▶ Does φ type-check?
▶ Where does φ spend most execution time?

▶ Analysis A(φ) that approximates P(φ)

P(φ) ≈ A(φ)

18 / 48

And How Good Is It?
▶ As we saw, program analyses may be incorrect
▶ We often describe them with Information Retrieval

terminology:
r is. . . r ∈ A(φ) r /∈ A(φ)
r ∈ P(φ) True Positive False Negative
r /∈ P(φ) False Positive True Negative

▶ How well does A approximate P?
▶ Assume A(φ) returns n = #A(φ) reports

n = #True Positives + #False Positives reports
▶ Are the reports good?

Precision = #True Positives
n

▶ Are the reports comprehensive?
Recall = #True Positives

#True Positives+#False Negatives
▶ #False Negatives (and thus Recall) is usually impossible to

determine in program analysis
19 / 48

Summary

▶ Purpose of Analysis A:
▶ Compute Property-of-interest P

▶ Program Analysis is nontrivial
▶ Programs can hide information that A wants
▶ Analysis A can misunderstand parts of the program

20 / 48

Soundness and Completeness

Can we always build a A with A(φ) = P(φ)?
▶ Connection to Mathematical Logic:

▶ A is sound (with respect to P) iff:

A(φ) ⊆ P(φ) (Perfect Precision)

▶ A is complete (with respect to P) iff:

A(φ) ⊇ P(φ) (Perfect Recall)

▶ A(φ) = P(φ) iff A is both sound & complete

What if P(φ) checks whether φ terminates?

21 / 48

The Bottom Line

“Everything interesting about the behaviour
of programs is undecidable.”

— Anders Møller, paraphrasing H.G. Rice [1953]

We must choose:
▶ Soundness
▶ Completeness
▶ Decidability
. . . pick any two.

22 / 48

Soundness and Completeness: Caveat

P

Acomplete Asound

P

▶ Beware: “sound” and “complete” be confusing:
▶ Example: P(φ) is “φ has a bug”
▶ If you now want to check P, the negation of P:

▶ P(φ) is “φ does not have a bug”
▶ Acomplete (= run Acomplete and invert output) is sound wrt P

▶ Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

23 / 48

Soundness and Completeness: Caveat

P

Acomplete Asound

P

▶ Beware: “sound” and “complete” be confusing:
▶ Example: P(φ) is “φ has a bug”
▶ If you now want to check P, the negation of P:

▶ P(φ) is “φ does not have a bug”
▶ Acomplete (= run Acomplete and invert output) is sound wrt P
▶ Asound is complete wrt P

Sound and Complete have converse meanings for P and P!

23 / 48

Summary
▶ Given property P and analysis A:

▶ A is sound if it triggers only on P
P = “program has bug”: A reports only bugs

▶ A is complete if it always triggeres on P
P = “program has bug”: A reports all bugs

▶ If P is nontrivial (i.e., depends on behaviour):

Decidable

Sound CompletePartial

∅
Conservative Optimistic

24 / 48

Lecture Overview

Foundations Static Analysis Dynamic
Analysis

Properties Control Flow

Foundations01

Constructing
Program Analyses
in JastAdd

02

Types03
04

Data Flow05
06
07

Memory08
09

Intraprocedural05

Interprocedural10

Indirect11

Instrumentation12

Analysis13

Review14

25 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

26 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders
Instrumentable

We can instrument and
analyse all of these (to
some degree)

26 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

26 / 48

Program Execution Pipeline

Runtime EnvironmentStatic Environment

Source
Code

Preprocessor

Compiler

Static
Linker

Binary

Libraries

Lo
ad

er

Interpreter

Dynamic
Linker

Dynamic
Compiler

java

Operating
System

Hardware

program.py

python

program.c

cpp

gcc

program.o

libc.so

program

C.java

javac

rt.jar

C.class

ClassLoaders

Instrumentable

We can instrument and
analyse all of these (to
some degree)

26 / 48

Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Principle Analyse program
structure

Analyse program execution

Input
Independent Depends on input

Hardware/OS
Independent Depends on hardware and OS

Perspective
Sees everything Sees that which actually happens

Completeness
(bug-finding) Possible Must try all possible inputs. . .
Soundness
(bug-finding) Possible Always, for free

27 / 48

Summary
▶ Preprocessor: Transforms source code before compilation
▶ Static compiler: Tranlates source code into executable

(machine or intermediate) code
▶ Interpreter: Step-by-step execution of source or

intermediate code
▶ Dynamic (JIT) compiler: Translates code into

machine-executable code
▶ Loader: System tool that ensures that OS starts executing

another program
▶ Linker: System tool that connects references between

programs and libraries
▶ Static linker: Before running
▶ Dynamic linker: While running

▶ Machine code: Code that is executable by a machine
▶ Static Analysis: Analyse program without executing it
▶ Dynamic Analysis: Analyse program execution

28 / 48

Defining Language Behaviour

The Java® Language

Specification
Java SE 8 Edition

James Gosling

Bill Joy

Guy Steele

Gilad Bracha

Alex Buckley

2015-02-13

 INCITS/ISO/IEC 14882-2011[2012]

 (ISO/IEC 14882-2011, IDT)

Information technology — Programming

languages — C++

Licensed to Christoph Reichenbach. ANSI order X_307414. Downloaded 2/10/2013 1:09 PM. Single user license only. Copying and networking prohibited.

▶ Many languages have multiple language implementations
▶ Language behaviour defined in language specification:

▶ Static Semantics:
Behaviour in static environment

▶ Dynamic Semantics:
Behaviour in runtime environment

29 / 48

Static vs. Dynamic Semantics

Runtime EnvironmentStatic Environment

▶ Static semantics:
▶ Identifier binding

(C, Java)
▶ Type checking

(C, Java)
▶ Other well-formedness

constraints
(C, Java)

▶ Dynamic semantics:
▶ Execution, evaluation,

control flow
▶ Identifier binding

(Python, JavaScript)
▶ Type checking

(Python, JavaScript, Java)
▶ Dynamic dispatch

(Java, Python, JavaScript)

30 / 48

Analysis vs. Semantics

▶ Static Program Analysis:
▶ Analysing Static Semantics: sound & complete (most

languages)
▶ Analysing Dynamic Semantics: sound or complete

▶ Dynamic Program Analysis:
▶ Analysing Static Semantics: ?

▶ Depends on language; static information may or may not be
available dynamically

▶ Dynamic Semantics: Sound

31 / 48

Static Analysis
Analysing Program Structure

32 / 48

Java lexing
i n t i ;
i f (2 > 0) {

i = "One" ;
}
return i ;

int i ; if (2 > 0) i = "One" ; return i ;

Lexing / Tokenisation

33 / 48

Java lexing & parsing

int i ; if (2 > 0) i = "One" ; return i ;

int ; if (>) = ; return ;id num num id str id

Lexemes

Tokens

stmt

dstmt

type

prim-ty
decls

decl

id

stmt

ifstmt

stmt

assign

aop
expr

strid

expr

binexpr

binop
expr

num

expr

num

stmt

return

expr

id

stmt

block

CST = parse tree
AST
attr block

ifstmt

returndstmt

prim-ty
decl

id

binexpr

num num

assign

strid

return

id

int i 2 > 0 i = "One" i

34 / 48

Parsing in general
Translate text files into meaningful in-memory structures
▶ CST = Concrete Syntax Tree

▶ Full “parse”, cf. language BNF grammar
▶ Not usually materialised in memory

▶ AST = Abstract Syntax Tree
▶ Standard in-memory representation
▶ Avoids syntactic sugar from CST, preserves important

nonterminals as AST nodes
▶ Converts useful tokens into intrinsic attributes

▶ The AST is the most common Intermediate
Representation (IR) of program code
▶ Effective for frontend analyses
▶ Other IRs focus e.g. on optimisations in the backend

Program analysis starts on the AST
35 / 48

In-Memory Representation

int i 2 > 0 i = "One" i

prim-ty id

decl

dstmt

binexpr

num num strid

assign

id

return

ifstmt

block

Typical in-memory representations for this AST:
▶ Algebraic values (functional)
▶ Records (imperative)
▶ Objects (object-oriented)

36 / 48

Summary

▶ Static program analysis operates on an Intermediate
Program Representation (IR)
▶ Our main IR: Abstract Syntax Trees (ASTs)
▶ Other IRs can speed up / simplify certain tasks (more later)

▶ ASTs constructed by Compiler Frontend:
▶ Scanning/lexing/tokenising
▶ Parsing
▶ Translation from parse tree into AST
▶ Not covered in this course; see EDAN65: Compiler

Construction for details

37 / 48

The AST as Data Structure

SubExpr

AddExpr

IntConstantIntConstant

IntConstant

Program Root node

parent

child

38 / 48

Structure of the AST
Abstract Grammar

Program ::= ...; // start symbol

abstract Expr;
IntConstant : Expr ::= <Value:int>;

AddExpr : Expr ::= Left:Expr Right:Expr;
SubExpr : Expr ::= Left:Expr Right:Expr;

abstract Stmt;
WhileStmt : Stmt ::= Cond:Expr Body:Stmt;

SubExpr

AddExpr

IntConstantIntConstant
Left Right

IntConstant

Left Right
SubExpr

WhileStmtIntConstant
Left Right

Not allowed:
WhileStmt is
not an Expr!

39 / 48

Restricting AST Structure

SubExpr

WhileStmtIntConstant
Left Right

▶ Intuition:
▶ SubExpr wants to subtract values from each other
▶ WhileStmt does not compute a value

▶ Parser and type system guarantee that such nonsensical
combinations don’t occur
▶ Otherwise program analyses would have to check for them

40 / 48

Abstract Grammars
▶ Grammar specifies all permissible tree constructions
▶ Consists of production rules:

▶ Production (AddExpr): Name of the language construct
▶ Nonterminal (Expr): Category (‘supertype’) for production
▶ Components (Left:Expr): Child nodes

▶ Nonterminal components: child nodes
▶ Terminal components: intrinsic attributes

AddExpr : Expr ::= Left:Expr Right:Expr;

AddExpr

ExprExpr
Left Right

IntConstant : Expr ::= <Value:int>;

IntConstant
Value=. . .

41 / 48

Summary

▶ Permissible structure of the AST is governed by the Abstract
Grammar

▶ The grammar is specified in terms of Production Rules
▶ Production rules describe the components of one Production
▶ Each Production belongs to one Nonterminal
▶ Standard notation: Backus-Naur Form (BNF)
▶ Exact BNF syntax varies between tools; we will use JastAdd’s

variant
▶ Structure is enforced by parser and type system
⇒ Simplifies analysis construction
▶ Common nonterminals:

▶ Expr: computes a value
▶ Stmt: triggers a side effect or controls the order of side effects
▶ Decl: declares or defines a variable/function/. . .

42 / 48

Some Basic Analyses

▶ Name Analysis:
▶ Which name use binds to which declaration?

▶ Type Analysis:
▶ What are the types of all expressions?

▶ Static Correctness Checks:
▶ Are there type errors?
▶ Is a variable unused?
▶ Are we initialising all variables?

. . .

43 / 48

Example: Name Analysis

prim-ty id

decl

dstmt

binexpr

num num strid

assign

id

return

ifstmt

block

ty=int id="i" id="i"
decl=

id="i"
decl=

▶ For each id, compute the corresponding decl
▶ In AST-based IR: keep reference to
▶ Check that we found a decl node (otherwise Error)

44 / 48

Example: Type Analysis

prim-ty id

decl

dstmt

binexpr

num num strid

assign

id

return

ifstmt

block

ty=int id="i" id="i"
type=int
decl=

id="i"
decl=

type=String

▶ Check that all types are compatible with their operators
▶ Must first compute types
▶ assign node: type error!

Trying to assign String to int variable

45 / 48

Summary

▶ Program analysis on AST:
▶ Enrich AST nodes with additional information
▶ Name Analysis: references to declarations
▶ Type Analysis: types (computed, propagated)
▶ Analyses often need to use results of earlier analyses

▶ Lecture 2 will introduce systematic strategies for computing
such information

46 / 48

Moving Forward

▶ How do we build static program analyses?
▶ Avoid building from scratch: many frameworks available
▶ Re-use where you can
▶ Here: JastAdd: Next lecture (Flipped!)

▶ How do we design program analyses?
▶ Theoretical frameworks:

▶ Type Inference
▶ Dataflow analysis
▶ Abstract interpretation

. . .
▶ Language Definition:

▶ Static Semantics:
Compile-time/load-time behaviour

▶ Dynamic Semantics:
Run-time behaviour

47 / 48

Outlook
▶ Remember:

▶ Join Moodle today
▶ Form groups by Wednesday, 18:00

▶ Continuing on static program analysis:
▶ Type Analysis
▶ Data Flow Analysis
▶ Heap Analysis

▶ Next Lecture: Wednesday, same time & place:
▶ Topic: Building Program Analyses with Reference Attribute

Grammars in JastAdd
▶ Flipped Classroom lecture

▶ Watch videos beforehand
▶ Bring questions
▶ We will discuss material from the videos based on your questions

http://cs.lth.se/EDAP15

48 / 48

http://cs.lth.se/EDAP15

