EDAP15: Program Analysis

LATTICES

Christoph Reichenbach

Lattices ('gitter' in Swedish)

Image by Emma Mae (Flickr) via Wikimedia commons

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle\mathcal{L}, \sqsubseteq\rangle$:

- Set: \mathcal{L} describes possible information
- $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$:
- Intuition for $a \sqsubseteq b$ (for program analysis):
- b has at least as much information as a

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle\mathcal{L}, \sqsubseteq\rangle$:

- Set: \mathcal{L} describes possible information
- $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$:
- Intuition for $a \sqsubseteq b$ (for program analysis):
- b has at least as much information as a
$-(\sqsubseteq)$ is a partial order.

$$
\begin{array}{ll}
a \sqsubseteq a & \\
\text { Reflexivity } \\
a \sqsubseteq b \text { and } b \sqsubseteq a \Longrightarrow a=b & \text { Antisymmetry } \\
a \sqsubseteq b \text { and } b \sqsubseteq c \Longrightarrow a \sqsubseteq c \quad \text { Transitivity }
\end{array}
$$

Partially Ordered Set

Lattices L are based on a partially ordered set $\langle\mathcal{L}, \sqsubseteq\rangle$:

- Set: \mathcal{L} describes possible information
- $(\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$:
- Intuition for $a \sqsubseteq b$ (for program analysis):
- b has at least as much information as a
- (\sqsubseteq) is a partial order.

$$
\begin{array}{ll}
a \sqsubseteq a & \\
\text { Reflexivity } \\
a \sqsubseteq b \text { and } b \sqsubseteq a \Longrightarrow a=b & \text { Antisymmetry } \\
a \sqsubseteq b \text { and } b \sqsubseteq c \Longrightarrow a \sqsubseteq c \quad \text { Transitivity }
\end{array}
$$

- Example:
- $\mathcal{L}=$ \{unknown, true, false, true-or-false $\}$
- unknown \sqsubseteq true $\sqsubseteq t r u e-o r-f a l s e ~$
- unknown \sqsubseteq false \sqsubseteq true-or-false

Least Upper Bound

Combining potentially contradictory information:

- Join operator. (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$
a \sqsubseteq a \sqcup b \text { and } b \sqsubseteq a \sqcup b
$$

Least Upper Bound

Combining potentially contradictory information:

- Join operator. (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$
a \sqsubseteq a \sqcup b \text { and } b \sqsubseteq a \sqcup b
$$

- Least element with this property:

$$
a \sqsubseteq d \text { and } b \sqsubseteq d \Longrightarrow a \sqcup b \sqsubseteq d
$$

Least Upper Bound

Combining potentially contradictory information:

- Join operator. (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$
a \sqsubseteq a \sqcup b \text { and } b \sqsubseteq a \sqcup b
$$

- Least element with this property:

$$
a \sqsubseteq d \text { and } b \sqsubseteq d \Longrightarrow a \sqcup b \sqsubseteq d
$$

Greatest Lower bound

Converse operation:

- Meet operator: $(\square): \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$
a \sqcap b \sqsubseteq a \text { and } a \sqcap b \sqsubseteq b
$$

- Greatest element with this property:

$$
d \sqsubseteq a \text { and } d \sqsubseteq b \Longrightarrow d \sqsubseteq a \sqcap b
$$

Lattices

$$
L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle
$$

- $\mathcal{L}:$ Underlying set
- (Б) $\subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
-(ப) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}:$ Join (computes l.u.b.)
-(п) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}:$ Meet (computes g.l.b.)

Lattices

$$
L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle
$$

- $\mathcal{L}:$ Underlying set
-($\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
-(ப) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Join (computes I.u.b.)
-(п) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}:$ Meet (computes g.l.b.)
- can show:

Commutativity:

$$
\begin{aligned}
a \sqcup b & =b \sqcup a \\
a \sqcup(b \sqcup c) & =(a \sqcup b) \sqcup c
\end{aligned}
$$

(Analogous for \sqcap)

Complete Lattices

A lattice $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup\rangle$ is complete iff:

- For any $\mathcal{L}^{\prime} \subseteq \mathcal{L}$ there exist:
- $T=\bigsqcup \mathcal{L}^{\prime}$
$-\perp=\Pi \mathcal{L}^{\prime}$

Complete Lattices: Visually

T

n
\perp

Complete Lattices: Visually

T

Complete Lattices: Visually

Complete Lattices: Visually

T

Complete Lattices: Visually

Example: Binary Lattice

true	- \top = true
	- $\perp=$ false
	- $\sqcup=$ logical "or"
Ise	- $\square=$ logical "and"

Example: Booleans

- If $\mathbb{B}=\{$ true, false $\}$:
- Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$

Example: Booleans

- If $\mathbb{B}=\{$ true, false $\}$:
- Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$
- Interpretation for data flow e.g.:
- \top = true-or-false
- $\perp=$ unknown
- $a \sqcup b$: either a or b
- $a \sqcap b$: both a and b

Example: Booleans

- If $\mathbb{B}=\{$ true, false $\}$:
- Lattice sometimes called \mathbb{B}_{\perp}^{T}
- Interpretation for data flow e.g.:
- \top = true-or-false
- $\perp=$ unknown
- $a \sqcup b$: either a or b
- $a \sqcap b$: both a and b

Other interpretations possible

Example: Flat Lattice on Integers

- Sometimes written $\mathbb{Z}_{\perp}^{\top}$
- $\top=\mathbb{Z}$
- $\perp=\emptyset$
- $a \sqcup b=\left\{\begin{array}{lll}a & \text { iff } & a=b \\ \top & \text { otherwise }\end{array}\right.$
$-a \sqcap b=\left\{\begin{array}{lll}a & \text { iff } & a=b \\ \perp & \text { otherwise }\end{array}\right.$

Analogous for other X_{\perp}^{\top} from set X

Example: Type Hierarchy Lattices

- \sqcup constructs most precise supertype

Example: Type Hierarchy Lattices

- \sqcup constructs most precise supertype
- Π constructs intersection types:

$$
\text { java.lang.Comparable } \sqcap \text { java.io.Serializable }
$$

- Java notation:
java.lang.Comparable \& java.io.Serializable

Example: Powersets

Example: Lattices and Non-Lattices

Example: Lattices and Non-Lattices

Right-hand side is missing e.g. a unique $R \sqcup S$

Example: Natural numbers with $0, \omega$

```
\varepsilon
i
I
I
I
3
- \(a \sqcup b=\) maximum of \(a\) and \(b\)
- \(a \sqcap b=\) minimum of \(a\) and \(b\)
```


Product Lattices

- Assume (complete) lattices:
- $L_{1}=\left\langle\mathcal{L}_{1}, \sqsubseteq_{1}, \sqcap_{1}, \sqcup_{1}, \top_{1}, \perp_{1}\right\rangle$
- $L_{2}=\left\langle\mathcal{L}_{2}, \sqsubseteq_{2}, \sqcap_{2}, \sqcup_{2}, \top_{2}, \perp_{2}\right\rangle$

Product Lattices

- Assume (complete) lattices:
- $L_{1}=\left\langle\mathcal{L}_{1}, \sqsubseteq_{1}, \sqcap_{1}, \sqcup_{1}, \top_{1}, \perp_{1}\right\rangle$
- $L_{2}=\left\langle\mathcal{L}_{2}, \sqsubseteq_{2}, \sqcap_{2}, \sqcup_{2}, \top_{2}, \perp_{2}\right\rangle$
- Let $L_{1} \times L_{2}=\left\langle\mathcal{L}_{1} \times \mathcal{L}_{2}, \sqsubseteq, \sqcap, \sqcup, \top, \perp\right\rangle$ where:

Product Lattices

- Assume (complete) lattices:

$$
\begin{aligned}
& \text { - } L_{1}=\left\langle\mathcal{L}_{1}, \sqsubseteq_{1}, \sqcap_{1}, \sqcup_{1}, \top_{1}, \perp_{1}\right\rangle \\
& \text { - } L_{2}=\left\langle\mathcal{L}_{2}, \sqsubseteq_{2}, \sqcap_{2}, \sqcup_{2}, \top_{2}, \perp_{2}\right\rangle \\
& \text { - Let } L_{1} \times L_{2}=\left\langle\mathcal{L}_{1} \times \mathcal{L}_{2}, \sqsubseteq, \sqcap, \sqcup, \top, \perp\right\rangle \text { where: } \\
& \text { - }\langle a, b\rangle \sqsubseteq\left\langle a^{\prime}, b^{\prime}\right\rangle \text { iff } a \sqsubseteq_{1} a^{\prime} \text { and } b \sqsubseteq_{2} b^{\prime} \\
& \text { - }\langle a, b\rangle \sqcap\left\langle a^{\prime}, b^{\prime}\right\rangle=\left\langle a \sqcap_{1} a^{\prime}, b \sqcap_{2} b^{\prime}\right\rangle \\
& \text { - }\langle a, b\rangle \sqcup\left\langle a^{\prime}, b^{\prime}\right\rangle=\left\langle a \sqcup_{1} a^{\prime}, b \sqcup_{2} b^{\prime}\right\rangle \\
& \text { - } \top=\left\langle\top_{1}, \top_{2}\right\rangle \\
& \text { - } \perp=\left\langle\perp_{1}, \perp_{2}\right\rangle
\end{aligned}
$$

Point-wise products of (complete) lattices are again (complete) lattices

Summary

- Complete lattices are formal basis for many program analyses
- Complete lattice $L=\langle\mathcal{L}, \sqsubseteq, \sqcap, \sqcup, \top, \perp\rangle$
- \mathcal{L} : Carrier set
- (Б): Partial order
$-(\sqcup)$: Join operation: find least upper lower bound
- (\square) : Meet operation: find greatest lower bound (not usually necessary)
- T: Top-most element of complete lattice
- \perp : Bottom-most element of complete lattice
- Product Lattices: $L_{1} \times L_{2}$ forms a lattice if L_{1} and L_{2} are lattices

