

EDAP15: Program Analysis

LATTICES

Christoph Reichenbach

Lattices ('gitter' in Swedish)

Image by Emma Mae (Flickr) via Wikimedia commons

Partially Ordered Set

Lattices *L* are based on a *partially ordered set* $\langle \mathcal{L}, \sqsubseteq \rangle$:

- \blacktriangleright Set: ${\cal L}$ describes possible information
- $\blacktriangleright (\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}:$
- Intuition for $a \sqsubseteq b$ (for program analysis):
 - b has at least as much information as a

Partially Ordered Set

Lattices *L* are based on a *partially ordered set* $\langle \mathcal{L}, \sqsubseteq \rangle$:

- \blacktriangleright Set: ${\cal L}$ describes possible information
- $\blacktriangleright (\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}:$
- Intuition for $a \sqsubseteq b$ (for program analysis):
 - b has at least as much information as a
- ► (□) is a partial order:

Partially Ordered Set

Lattices *L* are based on a *partially ordered set* $\langle \mathcal{L}, \sqsubseteq \rangle$:

- Set: \mathcal{L} describes possible information
- $\blacktriangleright (\sqsubseteq) \subseteq \mathcal{L} \times \mathcal{L}:$
- Intuition for $a \sqsubseteq b$ (for program analysis):
 - b has at least as much information as a
- ► (□) is a partial order.

 $a \sqsubseteq a$ Reflexivity $a \sqsubseteq b$ and $b \sqsubseteq a \implies a = b$ Antisymmetry $a \sqsubseteq b$ and $b \sqsubseteq c \implies a \sqsubseteq c$ Transitivity

Example:

- $\mathcal{L} = \{$ *unknown*, *true*, *false*, *true-or-false* $\}$
- $unknown \sqsubseteq true \sqsubseteq true-or-false$
- $unknown \sqsubseteq false \sqsubseteq true-or-false$

Least Upper Bound

Combining potentially contradictory information:

- Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

Least Upper Bound

Combining potentially contradictory information:

- Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

Least element with this property:

$$a \sqsubseteq d$$
 and $b \sqsubseteq d \implies a \sqcup b \sqsubseteq d$

Least Upper Bound

Combining potentially contradictory information:

- Join operator: (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$a \sqsubseteq a \sqcup b$$
 and $b \sqsubseteq a \sqcup b$

Least element with this property:

$$a \sqsubseteq d$$
 and $b \sqsubseteq d \implies a \sqcup b \sqsubseteq d$

Greatest Lower bound

Converse operation:

- Meet operator: $(\sqcap) : \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$
- Pointwise monotonic:

$$a \sqcap b \sqsubseteq a$$
 and $a \sqcap b \sqsubseteq b$

• *Greatest* element with this property:

$$d \sqsubseteq a \text{ and } d \sqsubseteq b \implies d \sqsubseteq a \sqcap b$$

Lattices

$$L=\langle \mathcal{L},\sqsubseteq,\sqcap,\sqcup\rangle$$

- \mathcal{L} : Underlying set
- (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
- ▶ (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Join (computes l.u.b.)
- ▶ (\sqcap) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Meet (computes g.l.b.)

Lattices

$$L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$$

- \mathcal{L} : Underlying set
- (\sqsubseteq) $\subseteq \mathcal{L} \times \mathcal{L}$: Partial Order
- ▶ (\sqcup) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Join (computes l.u.b.)
- ▶ (\sqcap) : $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$: Meet (computes g.l.b.)
- can show:

 $\begin{array}{rcl} \text{Commutativity:} & a \sqcup b & = & b \sqcup a \\ & \text{Associativity:} & a \sqcup (b \sqcup c) & = & (a \sqcup b) \sqcup c \\ \text{(Analogous for } \sqcap) \end{array}$

Complete Lattices

A lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup \rangle$ is *complete* iff:

- For any $\mathcal{L}' \subseteq \mathcal{L}$ there exist:
 - $\top = \bigsqcup \mathcal{L}'$ $\bot = \bigsqcup \mathcal{L}'$

Example: Binary Lattice

$$\begin{array}{ccc} true & \blacktriangleright \top = true \\ & \clubsuit \bot = false \\ & \flat \sqcup = logical "or" \\ & false & \triangleright \sqcap = logical "and" \end{array}$$

Example: Booleans

If B = {true, false}:
Lattice sometimes called B^T_⊥

Example: Booleans

- If $\mathbb{B} = \{ true, false \}$:
 - Lattice sometimes called $\mathbb{B}_{\perp}^{\top}$
- Interpretation for data flow e.g.:
 - $\blacktriangleright \top =$ true-or-false
 - L = unknown
 - $a \sqcup b$: either a or b
 - ▶ $a \sqcap b$: both a and b

Example: Booleans

- If $\mathbb{B} = \{ true, false \}$:
 - \blacktriangleright Lattice sometimes called \mathbb{B}_{\bot}^{\top}
- Interpretation for data flow e.g.:
 - $\blacktriangleright \top =$ true-or-false
 - ▶ \bot = unknown
 - $a \sqcup b$: either a or b
 - ▶ $a \sqcap b$: both a and b

Other interpretations possible

Example: Flat Lattice on Integers

Analogous for other X_{\perp}^{\top} from set X

Example: Type Hierarchy Lattices

► □ constructs most precise supertype

Example: Type Hierarchy Lattices

- ► 🗆 constructs most precise supertype
- ► □ constructs *intersection types*:

java.lang.Comparable □ java.io.Serializable

Java notation:

java.lang.Comparable & java.io.Serializable 12/17

Example: Powersets

► Take any set
$$S = \{a, b, c\}$$

► $\mathcal{L} = \mathcal{P}(S)$
► $\top = S$
► $\bot = \emptyset$
► $(\Box) = (\cup)$
► $(\Box) = (\cap)$

Example: Lattices and Non-Lattices

Example: Lattices and Non-Lattices

Right-hand side is missing e.g. a unique $R \sqcup S$

Example: Natural numbers with 0, ω

Product Lattices

Assume (complete) lattices:

- $L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \bot_1 \rangle$
- $\blacktriangleright L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \bot_2 \rangle$

Product Lattices

- Assume (complete) lattices:
 - $L_1 = \langle \mathcal{L}_1, \sqsubseteq_1, \sqcap_1, \sqcup_1, \top_1, \bot_1 \rangle$ $L_2 = \langle \mathcal{L}_2, \sqsubseteq_2, \sqcap_2, \sqcup_2, \top_2, \bot_2 \rangle$
- Let $L_1 \times L_2 = \langle \mathcal{L}_1 \times \mathcal{L}_2, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$ where:

Product Lattices

Assume (complete) lattices:

$$L_{1} = \langle \mathcal{L}_{1}, \Box_{1}, \Box_{1}, \Box_{1}, \bot_{1} \rangle$$

$$L_{2} = \langle \mathcal{L}_{2}, \Box_{2}, \Box_{2}, \Box_{2}, \bot_{2} \rangle$$

$$Let \ L_{1} \times L_{2} = \langle \mathcal{L}_{1} \times \mathcal{L}_{2}, \Box, \Box, \Box, \top, \bot \rangle \text{ where:}$$

$$\langle a, b \rangle \sqsubseteq \langle a', b' \rangle \text{ iff } a \sqsubseteq_{1} a' \text{ and } b \sqsubseteq_{2} b'$$

$$\langle a, b \rangle \Box \langle a', b' \rangle = \langle a \Box_{1} a', b \Box_{2} b' \rangle$$

$$\langle a, b \rangle \sqcup \langle a', b' \rangle = \langle a \sqcup_{1} a', b \sqcup_{2} b' \rangle$$

$$\top = \langle \top_{1}, \top_{2} \rangle$$

$$L = \langle \bot_{1}, \bot_{2} \rangle$$

Point-wise products of (complete) lattices are again (complete) lattices

Summary

- Complete lattices are formal basis for many program analyses
- ▶ Complete lattice $L = \langle \mathcal{L}, \sqsubseteq, \sqcap, \sqcup, \top, \bot \rangle$
 - ► L: Carrier set
 - ► (⊑): Partial order
 - ▶ (\sqcup): Join operation: find least upper lower bound
 - ► (□): Meet operation: find greatest lower bound (not usually necessary)
 - \top : Top-most element of complete lattice
 - \perp : Bottom-most element of complete lattice
- ▶ **Product Lattices**: $L_1 \times L_2$ forms a lattice if L_1 and L_2 are lattices