
EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 1DYNAMIC PROGRAM ANALYSIS 1

Christoph Reichenbach

Welcome back!

▶ Homework assignments relaxation:
▶ Due to TA sickness, some students did not get timely feedback
▶ Will announce options today or tomorrow

▶ Questions?

2 / 49

Static Analysis: Limitations

▶ Static program analysis faces significant challenges:
▶ Decidability requires lack of precision or soundness for most of

the interesting analyses
▶ Reflection allows calling methods / creating objects given by

arbitrary string
▶ Dynamic module loading allows running code that the

analysis couldn’t inspect ahead of time
▶ Native code allows running code written in a different

language
▶ Dynamic code generation and eval allow building arbitrary

programs and executing them
▶ No universal solution
▶ Can try to ‘outlaw’ or restrict problematic features, depending

on goal of analysis
▶ Can combine with dynamic analyses

3 / 49

More Difficulties for Static Analysis

▶ Does a certain piece of code actually get executed?
▶ How long does it take to execute this piece of code?
▶ How important is this piece of code in practice?
▶ How well does this code collaborate with hardware devices?

▶ Harddisks?
▶ Networking devices?
▶ Caches that speed up memory access?
▶ Branch predictors that speed up conditional jumps?
▶ The ALU(s) that perform arithmetic in the CPU?
▶ The TLB that helps look up memory?

. . .

Impossible to predict for all practical situations

4 / 49

Static vs. Dynamic Program Analyses
Static Analysis Dynamic Analysis

Examines Program structure Program execution
Input

Independent Dependent
Hardware/OS

Independent Dependent (for some properties)
Perspective

Sees anything that
could happen

Sees that which does happen

False Negatives
Avoidable Need all possible inputs

False Positives
Unavoidable Avoidable

6 / 49

Summary

▶ Static analysis has key limitations:
▶ Information missing from code (cf. Soundiness)
▶ Dependency on hardware details (e.g. Execution Time))

▶ This limits:
▶ Optimisation: which optimisations are worthwhile?
▶ Bug search: which potential bugs are ‘real’?

▶ Can use dynamic analysis to examine run-time behaviour

7 / 49

Gathering Dynamic Data

▶ Instrumentation
▶ Performance Counters
▶ Emulation

8 / 49

Gathering Dynamic Data: Java

Foo.java Foo.class

Dynamic
Classloader

JVM Run-
time

Compiler

FooInstr.classFooInstr.java

JVM Run-
time
Instrumented

Debug
Inter-
face

▶ Source-level instrumentation
▶ Binary-level instrumentation
▶ Load-time instrumentation

(Performed by classloader)
▶ Runtime System instrumentation
▶ Debug APIs

9 / 49

Comparison of Approaches
▶ Source-level instrumentation:
+ Flexible
– Must handle syntactic issues, name capture, . . .
– Only applicable if we have all source code

▶ Binary-level instrumentation:
+ Flexible
– Must handle binary encoding issues
– Only applicable if we know what binary code is used

▶ Load-time instrumentation:
+ Flexible
+ Can handle even unknown code
– Requires run-time support, may clash with custom loaders

▶ Runtime system instrumentation:
+ Flexible
+ Can see everything (gc, JIT, . . .)
– Labour-intensive and error-prone
– Becomes obsolete quickly as runtime evolves

▶ Debug APIs:
+ Typically easy to use and efficient
– Limited capabilities 10 / 49

Instrumentation Tools

C/C++ (Linux) Java
Source-Level C preprocessor, DMCE ExtendJ
Binary Level pin, llvm soot, asm, bcel, As-

pectJ, ExtendJ
Load-time ? Classloader, AspectJ

Debug APIs strace JVMTI

▶ Low-level data gathering:
▶ Command line: perf
▶ Time: clock_gettime() / System.nanoTime()
▶ Process statistics: getrusage()
▶ Hardware performance counters: PAPI

11 / 49

Practical Challenges in Instrumentation

▶ Measuring:
▶ Need access to relevant data (e.g., Java: source code can’t

access JIT)
▶ Representing (optional):

▶ Store data in memory until it can be emitted (optional)
▶ May use memory, execution time, perturb measurements

▶ Emitting:
▶ Write measurements out for further processing
▶ May use memory, execution time, perturb measurements

12 / 49

Summary

▶ Different instrumentation strategies:
▶ Instrument source code or binaries
▶ Instrument statically or dynamically
▶ Instrument input program or runtime system

▶ Challenges when handling analysis:
▶ In-memory representation of measurements (for

compression or speed)
▶ Emitting measurements

13 / 49

Unit Tests

Teal
fun cmp(a, b) = {

if a > b {
return 1;

}
if a < b {

return -1;
}
return 0;

}

fun test() = {
assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}

Unit tests are a simple form of dynamic program analysis 14 / 49

Unit Test Quality

if a > bif a > b
b0

return 1return 1
b1

if b > aif b > a
b2

return -1return -1
b3

return 0return 0
b4

Teal
fun test() = {

assert cmp(1, 2) == -1;
assert cmp(2, 1) == 1;

}

Have I tested all behaviours? 15 / 49

Test Coverage

visited_bb[0] := 1
if a > b
visited_bb[0] := 1
if a > b

b0

visited_bb[1] := 1
return 1
visited_bb[1] := 1
return 1

b1

visited_bb[2] := 1
if b > a
visited_bb[2] := 1
if b > a

b2

visited_bb[3] := 1
return -1
visited_bb[3] := 1
return -1

b3

visited_bb[4] := 1
return 0
visited_bb[4] := 1
return 0

b4

▶ Test coverage = fraction of visited_bb elements updated

16 / 49

Test Coverage Properties

▶ Statement Coverage: % of executed Basic Blocks
▶ Mark basic blocks as visited while testing

▶ Edge Coverage: % of taken CFG edges
▶ Challenge: distinguish edges e1 from e2?

if ...if ...
b0 print(1)

if ...
print(1)
if ...

b1

returnreturn
b2print(2)print(2)

b3
print(2)print(2)

b3

e1
e2

(mark e1 visited)(mark e1 visited)
be1

(mark e2 visited)(mark e2 visited)
be2

▶ Path Coverage: % of CFG paths

▶ Must limit iterations
▶ Must restart tracking block coverage on every method entry

18 / 49

Test Coverage Properties

▶ Statement Coverage: % of executed Basic Blocks
▶ Mark basic blocks as visited while testing

▶ Edge Coverage: % of taken CFG edges
▶ Challenge: distinguish edges e1 from e2?

if ...if ...
b0 print(1)

if ...
print(1)
if ...

b1

returnreturn
b2print(2)print(2)

b3
print(2)print(2)

b3

e1
e2

(mark e1 visited)(mark e1 visited)
be1

(mark e2 visited)(mark e2 visited)
be2

▶ Path Coverage: % of CFG paths
▶ Must limit iterations
▶ Must restart tracking block coverage on every method entry

18 / 49

Summary

▶ Unit Tests are a simple form of dynamic program analysis
▶ Minimal tooling needed
▶ Custom checks
▶ Limited to what underlying language can express directly

▶ Test Coverage tells us how much of our code gets analysed
by at least one unit test

▶ Implement by setting markers on relevant basic blocks
▶ Different criteria, such as:

▶ Statement Coverage
▶ Edge Coverage: may require helper BBs
▶ Path Coverage: paths through CFG (usually excluding loops)

▶ Tools for Java: JCov, JaCoCo

19 / 49

General Data Collection

▶ Events: When we measure
▶ Characteristics: What we measure
▶ Measurements: Individual observations
▶ Samples: Collections of measurements

20 / 49

Events

▶ Subroutine call
▶ Subroutine return
▶ Memory access (read or write or either)
▶ System call
▶ Page fault

. . .

21 / 49

Characteristics

▶ Value: What is the type / numeric value / . . . ?
▶ Counts: How often does this event happen?
▶ Wallclock times: How long does one event take to finish,

end-to-end?
Derived properties:
▶ Frequencies: How often does this happen

▶ Per run
▶ Per time interval
▶ Per occurrence of another event

▶ Relative execution times: How long does this take
▶ As fraction of the total run-time
▶ As fraction of some surrounding event

22 / 49

Perturbation

Example challenge: can we use total counts to decide whether
to optimise some function f?
▶ On each method entry: get current time
▶ On each method exit: get current time again, update

aggregate
▶ Reading timer takes: ∼ 80 cycles
▶ Short f calls may be much faster than 160 cycles
▶ Also: measurement needs CPU registers

⇒ may require registers
⇒ may slow down code further

Measurements perturb our results, slow down
execution

23 / 49

Sampling

Alternative to full counts: Sampling
▶ Periodically interrupt program and measure
▶ Problem: how to pick the right period?

1 System events (e.g., GC trigger or safepoint)
System events may bias results

2 Timer events: periodic intervals
▶ May also bias results for periodic applications
▶ Randomised intervals can avoid bias
▶ Short intervals: perturbation, slowdown
▶ Long intervals: imprecision

24 / 49

Samples and Measurements

Samples are collections of measurements
▶ Bigger samples:

▶ Typically give more precise answers
▶ May take longer to collect

▶ Challenge: representative sampling

0 0.5 1 1.5 2
0

0.5
1

1.5

Carefully choose what and how to sample

25 / 49

Summary

▶ We measure Characteristics of Events
▶ Sample: set of Measurements (of characteristics of events)
▶ Measurements often cause perturbation:

▶ Measuring disturbs characteristics
▶ Not relevant for all measurements
▶ Measuring time: more relevant the smaller our time intervals

get
▶ Can measure by:

▶ Counting: observe every event
▶ Gets all events
▶ Maximum measurement perturbation

▶ Sampling: periodically measure
▶ Misses some events
▶ Reduces perturbation

26 / 49

Presenting Measurements

P1 P2
Mean µ 1,001 0,999
Standard Deviation σ 0,273 0,275 Assuming normal

distribution:

0 0.5 1 1.5 2

0.5

1

1.5

27 / 49

Standard Deviation, Assuming Normal
Distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1
µ ± σ

Deviation Chance of actual µ being in interval
σ 68,27%

1,96σ 95,00%
2σ 95,45%

2,58σ 99,00%
3σ 99,73%

28 / 49

How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

0 0,5 1 1,5

P1

P2

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

29 / 49

Box Plots

1st Q 4th QMedian

▶ Split data into 4 Quartiles:
▶ Upper Quartile (1st Q): Largest 25% of measurements
▶ Lower Quartile (4th Q): Smallest 25% of measurements
▶ Median: measured value, middle of sorted list of measurements

▶ Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (IQR)

▶ 1st Q whisker shows largest measured value ≤ 1,5 × IQR
(from box)

▶ 4th Q whister analogously
▶ Remaining outliers are marked

30 / 49

Box plot: example

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

31 / 49

Violin Plots

0.
0

0.
5

1.
0

1.
5

2.
0

1 2

●
●

32 / 49

Summary

▶ We don’t usually know our statistical distribution
▶ There exist statistical methods to work precisely with

confidence intervals, given certain assumptions about the
distribution (not covered here)

▶ Visualising without statistical analysis:
▶ Box Plot

▶ Splits data into quartiles
▶ Highlights points of interest
▶ No assumption about distribution

▶ Violin Plot
▶ Includes Box Plot data
▶ Tries to approximate probability distribution function visually
▶ Can help to identify actual distribution

33 / 49

Automatic Performance Measurement

▶ Profiler:
▶ Interrupts program during execution
▶ Examines call stack

▶ Simulator:
▶ Simulates CPU/Memory in software
▶ Tries to replicate inner workings of machine
▶ Often also an Emulator (= replicate observable functionality)

▶ Operating System:
▶ Counts important system events (network accesses etc.)

▶ CPU:
▶ Hardware performance counters count interesting events

34 / 49

Profiler

▶ Measures: which functions are we spending
our time in?

▶ Approach:
▶ Build stack maps
▶ Execute program, interrupt regularly
▶ During interrupt:

▶ Examine stack
▶ Infer functions from stack contents

Execution Stack
return (alt-1)

$fp (alt-1)
. . .
. . .

return (alt-2)
$fp (alt-2)

. . .

Can be inaccurate: misses short function calls

35 / 49

Simulator

RAM

Input
devices CPU Output

devices

Rest of the world

memory.c

input.c cpu.c output.c

Rest of the world

▶ Software simulates hardware components
▶ Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate

36 / 49

Software Performance Counters

▶ Complex software may use high-level properties such as:
▶ How much time do we spend waiting for the harddisk?
▶ How often was our program suspended by the operating system

in order to let another program run?
▶ How much data did we receive through the network?

▶ Operating systems collect many of these statistics

37 / 49

Hardware Performance Counters (1/2)

PSp Reg

A
LU

A
LU DSp Reg

IF ID EX MEM WB

L1-Instr L1-Data

L2-Cache

RAM
Performance
Counter
Monitor

Cache miss

Cache miss

Cache miss

Branch prediction

Arithmetic operations

38 / 49

Hardware Performance Counters (2/2)

Special CPU registers:
▶ Count performance events
▶ Registers must be configured to collect specific performance

events
▶ Number of CPU cycles
▶ Number of instructions executed
▶ Number of memory accesses

. . .
▶ #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

39 / 49

Summary

▶ Performance analysis may require detailed dynamic data
▶ Profiler: Probes stack contents at certain intervals
▶ Simulator:

▶ Simulates hardware in software, measures
▶ Tends to be inaccurate

▶ Performance Counters:
▶ Software:

▶ Operating System counts events of interest
▶ Hardware:

▶ Special registers can be configured to measure CPU-level events

40 / 49

Generality of Performance
Measurements?

Measured performance properties are valid for. . .
▶ Selected CPU
▶ Selected operating system
▶ Compiler version and configuration
▶ Operating system configuration:

▶ OS setup
(e.g., dynamic scheduler)

▶ Processes running in parallel
. . .

▶ A particular input/output setup
▶ Behaviour of attached devices
▶ Time of day, temperature, air pressure, . . .

▶ CPU configuration (CPU frequency etc.)
. . .

Is that all? 41 / 49

Unexpected Effects

▶ User toddm measures run time 0.6s
▶ User amer measures run time 0.8s
▶ Both measurements are stable
▶ Reason for discrepancy:

▶ Before program start, Linux copies shell environment onto stack
▶ Shell environment contains user name
▶ Program is loaded into different memory addresses

⇒ Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

42 / 49

Unexpected Effects

Mytkowicz, Diwan, Hauswirth, Sweeney: “Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009

43 / 49

Linking Order
Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS’09)
44 / 49

Adaptive Systems

▶ Measurement: 11 runs

●

●

●

●

●
●

●●

●

●

●

● ● ●

1 2 3 4 5 6 7 8 9 10 11

0.
5

1.
0

1.
5

Durchlaufnummer

La
uf

ze
it

Ru
nt

im
e

(s
)

Iteration

Warm-up effect

45 / 49

Warm-Up Effects
▶ Performance varies during initial runs
▶ Eventually reaches steady state
▶ Reason: Adaptive Systems

▶ Hardware:
▶ Cache: Speed up some memory accesses
▶ Branch Prediction: Speed up some jumps
▶ Translation Lookaside Buffer

▶ Software:
▶ Operating System / Page Table
▶ Operating System / Scheduler
▶ Just-in-Time compiler

▶ What should we measure?
▶ Latency: measure first run

Reset system before every run
▶ Throughput: later runs

Discard initial n measurements
46 / 49

Ignored Parameters

▶ Performance affected by subtle effects
▶ System developers must “think like researchers” to spot

potential influences

Beware of generalising measurement results!

47 / 49

Summary

▶ Modern computers are complex
▶ Caches make memory access times hard to predict
▶ Multi-tasking may cause sudden interruptions

. . .
▶ This makes measurements difficult:

▶ Must carefully consider what assumptions we are making
▶ Must measure repeatedly to gather distribution
▶ Must check for warm-up effects
▶ Must try to understand causes for performance changes

▶ Measurements are often not normally distributed
▶ Mean + Standard Deviation may not describe samples well
▶ If in doubt, use box plots or violin plots

48 / 49

Outlook

▶ Guest Lecture on Wednesday:
▶ Noric Couderc (LTH): Bayesian Methods for Dynamic

Program Analysis
▶ Guest Lecture next Monday (first half):

▶ Patrik Åberg, Magnus Templing (Ericsson): DMCE: Did My
Code Execute?

http://cs.lth.se/EDAP15

49 / 49

http://cs.lth.se/EDAP15

