LUND =0

UNIVERSITY

f ' EDAP15: Program Analysis
DYNAMIC PROGRAM ANALYSIS 1

Christoph Reichenbach




Welcome back!

» Homework assignments relaxation:

» Due to TA sickness, some students did not get timely feedback
» Will announce options today or tomorrow

» Questions?

2/49



Static Analysis: Limitations

» Static program analysis faces significant challenges:

» Decidability requires lack of precision or soundness for most of
the interesting analyses

> Reflection allows calling methods / creating objects given by
arbitrary string

» Dynamic module loading allows running code that the
analysis couldn’t inspect ahead of time

» Native code allows running code written in a different
language

» Dynamic code generation and eval allow building arbitrary
programs and executing them

» No universal solution

» Can try to ‘outlaw’ or restrict problematic features, depending
on goal of analysis

» Can combine with dynamic analyses

3/49



More Difficulties for Static Analysis

» Does a certain piece of code actually get executed?
» How long does it take to execute this piece of code?
» How important is this piece of code in practice?

» How well does this code collaborate with hardware devices?

» Harddisks?

» Networking devices?

» Caches that speed up memory access?

» Branch predictors that speed up conditional jumps?
> The ALU(s) that perform arithmetic in the CPU?

» The TLB that helps look up memory?

Impossible to predict for all practical situations

4/49



Static vs. Dynamic Program Analyses

| Static Analysis | Dynamic Analysis
Examines Program structure Program execution
Input
Independent Dependent
Hardware/0OS
Independent Dependent (for some properties)

Perspective
Sees anything that | Sees that which does happen

could happen

False Negatives

Avoidable Need all possible inputs
False Positives
Unavoidable Avoidable
tjasl:add f ciikon
“r’

woot

6/49



Summary

» Static analysis has key limitations:

> Information missing from code (cf. Soundiness)
» Dependency on hardware details (e.g. Execution Time))

» This limits:
» Optimisation: which optimisations are worthwhile?
» Bug search: which potential bugs are ‘real’?

» Can use dynamic analysis to examine run-time behaviour

7/49



Gathering Dynamic Data

» Instrumentation
» Performance Counters
» Emulation

8/49



Gathering Dynamic Data: Java

Foo.class

Compiler

Foolnstr.class

» Source-level instrumentation

Foo.java

Foolnstr.java

> Binary-level instrumentation

» Load-time instrumentation
(Performed by classloader)

» Runtime System instrumentation
» Debug APlIs

Dynamic
Classloader

JVM Run-
time
Instrumented

9/49



Comparison of Approaches

> Source-level instrumentation:
- Flexible
— Must handle syntactic issues, name capture, ...
— Only applicable if we have all source code
> Binary-level instrumentation:
+ Flexible
— Must handle binary encoding issues
— Only applicable if we know what binary code is used
> Load-time instrumentation:
-+ Flexible
—+ Can handle even unknown code
— Requires run-time support, may clash with custom loaders
> Runtime system instrumentation:
—+ Flexible
~+ Can see everything (gc, JIT, ...)
— Labour-intensive and error-prone
— Becomes obsolete quickly as runtime evolves
> Debug APIs:
-+ Typically easy to use and efficient
— Limited capabilities 1049



Instrumentation Tools

] \ C/C++ (Linux) \ Java

Source-Level | C preprocessor, DMCE | ExtendJ
Binary Level pin, 1lvm soot, asm, bcel, As-
pectJ, ExtendJ
Load-time ? Classloader, Aspect)
Debug APIs strace JVMTI

> Low-level data gathering:
» Command line: perf
> Time: clock_gettime() / System.nanoTime ()
» Process statistics: getrusage()
» Hardware performance counters: PAPI

11/49



Practical Challenges in Instrumentation

» Measuring:

> Need access to relevant data (e.g., Java: source code can't
access JIT)

» Representing (optional):
> Store data in memory until it can be emitted (optional)
> May use memory, execution time, perturb measurements

» Emitting:
> Write measurements out for further processing
> May use memory, execution time, perturb measurements

12/49



Summary

» Different instrumentation strategies:
» Instrument source code or binaries
» Instrument statically or dynamically
» Instrument input program or runtime system
» Challenges when handling analysis:
> In-memory representation of measurements (for
compression or speed)
» Emitting measurements

13/49



Unit Tests

Teal
fun cmp(a, b) = {
if a > b {
return 1;
}
if a < b {
return -1;
}

return O;

}

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

Unit tests are a simple form of dynamic program analysis | 14,4



Unit Test Quality
CB:f a>b

1 7 P
O v
‘z!f g’> a

()=
eturn O

Teal

fun test() = {
assert cmp(l, 2) == -1;
assert cmp(2, 1) == 1;
}

| Have | toacted all hehavicnive? |

15/49



Test Coverage

b

0
’éisited_bb[O]

if a > b

b.

~

-

2
Z A el ]

if b > a

b 4

1
'éisited_bb[l]
return 1

b,

~

-

4
/éisited_bb[4]

return O

» Test coverage = fraction of visited bb elements updated

b 4

3)
visited bb[3]
return -1

16 /49



Test Coverage Properties

» Statement Coverage: % of executed Basic Blocks
» Mark basic blocks as visited while testing

» Edge Coverage: % of taken CFG edges
» Challenge: distinguish edges e; from e,?

1
@ Jprint (1)

€1 /
b. h - L

3 b
print(2) @ eturn

b

18/49



Test Coverage Properties

» Statement Coverage: % of executed Basic Blocks
» Mark basic blocks as visited while testing
» Edge Coverage: % of taken CFG edges

» Challenge: distinguish edges e; from e,?
bl

Jprint (1)

Tif ...

mark e visited mark e visited)

- / e
!p rint(2) @ eturn

» Path Coverage: % of CFG paths

» Must limit iterations
» Must restart tracking block coverage on every method entry

18/49



Summary

» Unit Tests are a simple form of dynamic program analysis

» Minimal tooling needed
» Custom checks
» Limited to what underlying language can express directly

» Test Coverage tells us how much of our code gets analysed
by at least one unit test

» Implement by setting markers on relevant basic blocks
» Different criteria, such as:

» Statement Coverage
» Edge Coverage: may require helper BBs
» Path Coverage: paths through CFG (usually excluding loops)

» Tools for Java: JCov, JaCoCo

19/49



General Data Collection

» Events: When we measure
» Characteristics;: What we measure
» Measurements: Individual observations

» Samples: Collections of measurements

20/ 49



Events

» Subroutine call

» Subroutine return

» Memory access (read or write or either)
» System call

» Page fault

21/49



Characteristics

» Value: What is the type / numeric value / ...7?
» Counts: How often does this event happen?
» Wallclock times: How long does one event take to finish,
end-to-end?
Derived properties:
» Frequencies: How often does this happen
» Per run
» Per time interval
» Per occurrence of another event
» Relative execution times: How long does this take

» As fraction of the total run-time
» As fraction of some surrounding event

22/49



Perturbation

Example challenge: can we use total counts to decide whether
to optimise some function £?

» On each method entry: get current time

» On each method exit: get current time again, update
aggregate

» Reading timer takes: ~ 80 cycles
» Short £ calls may be much faster than 160 cycles

> Also: measurement needs CPU registers
= may require registers
=> may slow down code further

Measurements perturb our results, slow down
execution

23/49



Sampling

Alternative to full counts: Sampling

» Periodically interrupt program and measure

> Problem: how to pick the right period?

System events (e.g., GC trigger or safepoint)
System events may bias results

Timer events: periodic intervals

> May also bias results for periodic applications
» Randomised intervals can avoid bias

> Short intervals: perturbation, slowdown

> Long intervals: imprecision

24/49



Samples and Measurements

Samples are collections of measurements
» Bigger samples:

» Typically give more precise answers
» May take longer to collect

» Challenge: representative sampling

15
1
0.5
9 Jtl'lllll
0 0.5 1 1.5 2

Carefully choose what and how to sample

25 /49



Summary

» We measure Characteristics of Events
» Sample: set of Measurements (of characteristics of events)
» Measurements often cause perturbation:
» Measuring disturbs characteristics
» Not relevant for all measurements
» Measuring time: more relevant the smaller our time intervals
get
» Can measure by:

» Counting: observe every event

> Gets all events
» Maximum measurement perturbation

» Sampling: periodically measure
> Misses some events
» Reduces perturbation

26 /49



Presenting Measurements

P1 P2
Mean 1 1,001 0,999
Standard Deviation ¢ 0,273 0,275

Assuming normal

distribution:
1.5

27 /49



Standard Deviation, Assuming Normal

Distribution

0 02 04 06 08 1 12 14 16 1.8

Deviation
o

1,960

20

2,580

30

Chance of actual ;1 being in interval
68,27%
95,00%
95,45%
99,00%
99,73%

2

2.2

28 /49



How Well Does Normal Distribution
Fit?

Representation with error bars (95% confidence interval):

P2 | . |
X XX X
P1 } * |

Mean + Std.Dev. are misleading if measurements don’t
observe normal distribution!

29/49



Box Plots

*————x—— X XE X XX ¥ -———————-— a’( ®
| ~
1st Q Median 4th Q

» Split data into 4 Quartiles:

> Upper Quartile (1st Q): Largest 25% of measurements
> Lower Quartile (4th Q): Smallest 25% of measurements
» Median: measured value, middle of sorted list of measurements

» Box: Between 1st/4th quartile boundaries
Box width = inter-quartile range (/QR)

» 1st Q whisker shows largest measured value < 1,5 x IQR
(from box)

» 4th Q whister analogously
» Remaining outliers are marked

30/49



Box plot: example

o |
o
w |
— "
.
04 —_—
- C———
o _|
o
o |
o

31/49



Violin Plots

2.0

15

1.0

0.5
|

0.0

32/49



Summary

» We don't usually know our statistical distribution

» There exist statistical methods to work precisely with
confidence intervals, given certain assumptions about the
distribution (not covered here)

» Visualising without statistical analysis:

» Box Plot
> Splits data into quartiles
> Highlights points of interest
» No assumption about distribution

» Violin Plot
> Includes Box Plot data
> Tries to approximate probability distribution function visually
> Can help to identify actual distribution

33/49



Automatic Performance Measurement

» Profiler:

» Interrupts program during execution
» Examines call stack

» Simulator:

> Simulates CPU/Memory in software
» Tries to replicate inner workings of machine
> Often also an Emulator (= replicate observable functionality)

» Operating System:
» Counts important system events (network accesses etc.)
» CPU:

» Hardware performance counters count interesting events

34/49



Profiler

» Measures: which functions are we spending
our time in?
» Approach:

» Build stack maps

» Execute program, interrupt regularly
» During interrupt:
» Examine stack

» Infer functions from stack contents

Execution Stack

return (alt-1)

$fp (alt-1)

return (alt-2)

$£p (alt-2)

| Can be inaccurate: misses short function calls

35/49



Simulator

memory.c

5

input.c :> cpu.c |::> output.c

L\ Rest of the world 4=y

» Software simulates hardware components
» Can count events of interest (memory accesses etc.)

Modern CPUs are very complex: Simulators tend to be
inaccurate

36/49



Software Performance Counters

» Complex software may use high-level properties such as:

» How much time do we spend waiting for the harddisk?

» How often was our program suspended by the operating system
in order to let another program run?

» How much data did we receive through the network?

» Operating systems collect many of these statistics

37/49



Hardware Performance Counters (1/2)

Performance
Counter
i Monitor

IF ID E).( MEM wB
Arithmetic operations

38/49



Hardware Performance Counters (2/2)

Special CPU registers:
» Count performance events

» Registers must be configured to collect specific performance
events
» Number of CPU cycles
» Number of instructions executed
» Number of memory accesses

» #performance event types > #performance registers

May be inaccurate: not originally built for software
developers

39/49



Summary

» Performance analysis may require detailed dynamic data
» Profiler: Probes stack contents at certain intervals
» Simulator:
» Simulates hardware in software, measures
» Tends to be inaccurate
» Performance Counters:
» Software:
» Operating System counts events of interest
» Hardware:
> Special registers can be configured to measure CPU-level events

40/49



Generality of Performance
Measurements?

Measured performance properties are valid for. ..
» Selected CPU
» Selected operating system
» Compiler version and configuration
» Operating system configuration:

» OS setup

(e.g., dynamic scheduler)
» Processes running in parallel

» A particular input/output setup

» Behaviour of attached devices

» Time of day, temperature, air pressure, ...
» CPU configuration (CPU frequency etc.)

| Is that all? a1/



Unexpected Effects

» User toddm measures run time 0.6s
» User amer measures run time 0.8s
» Both measurements are stable

» Reason for discrepancy:

» Before program start, Linux copies shell environment onto stack
» Shell environment contains user name
» Program is loaded into different memory addresses
= Memory caches can speed up memory access in one case
but not the other

Changing your user name can speed up code

42/49



Unexpected Effects

1600000 —

1400000 —

1200000 —

cycles(00)

1000000 —

800000 —

600000 —

1000 —
2000 —
3000 —
4000 —

bytes added to empty environment

Mytkowicz, Diwan, Hauswirth, Sweeney: “Producing wrong data
without doing anything obviously wrong”, in ASPLOS 2009

43 /49



Linking Order

Is there a difference between re-ordering modules in RAM?
gcc a.o b.o -o program (Variant 1)
gcc b.o a.o -o program (Variant 2)

1.10
=)
g @
% 1.05 4
>
(&)
g - @@@ <+
S 1.00 - = B e
%)
&
S / + default
© 0.95 x alphabetical
I I I I I I I I I I I |
g E £ N B B X 5 @ x L g
& 2 ¢ él 3 E E £ & Jc%l E S
te 8 B8ETS
o (0]
2 a

(Mytkowicz, Diwan, Hauswirth, Sweeney, ASPLOS'09)

44/ 49



Adaptive Systems

» Measurement: 11 runs

1.0

Runtime (s)
05

Iteration

Warm-up effect

45 /49



Warm-Up Effects

» Performance varies during initial runs
» Eventually reaches steady state

» Reason: Adaptive Systems
» Hardware:

> Cache: Speed up some memory accesses
» Branch Prediction: Speed up some jumps
> Translation Lookaside Buffer

» Software:
> Operating System / Page Table
> Operating System / Scheduler
> Just-in-Time compiler
» What should we measure?

» Latency: measure first run
Reset system before every run

» Throughput: later runs
Discard initial n measurements

46 /49



Ignored Parameters

» Performance affected by subtle effects

» System developers must “think like researchers” to spot
potential influences

Beware of generalising measurement results!

47 /49



Summary

» Modern computers are complex

» Caches make memory access times hard to predict
» Multi-tasking may cause sudden interruptions

» This makes measurements difficult:
» Must carefully consider what assumptions we are making
» Must measure repeatedly to gather distribution
» Must check for warm-up effects
» Must try to understand causes for performance changes
» Measurements are often not normally distributed

» Mean + Standard Deviation may not describe samples well
» If in doubt, use box plots or violin plots

48 /49



Outlook

» Guest Lecture on Wednesday:

> Noric Couderc (LTH): Bayesian Methods for Dynamic
Program Analysis

» Guest Lecture next Monday (first half):

> Patrik Aberg, Magnus Templing (Ericsson): DMCE: Did My
Code Execute?

http://cs.1lth.se/EDAP15

49 /49


http://cs.lth.se/EDAP15

